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ABSTRACT

A new Monte Carlo algorithm that solves the transport equations for the neutron noise in the
frequency domain has been developed. Neutron noise equations, which are obtained by assum-
ing small perturbations of macroscopic cross-sections around a steady state in the neutron field
and by subsequently taking the Fourier transform in the frequency domain, are usually solved by
analytical techniques or by resorting to diffusion theory. A stochastic approach has been recently
proposed in the literature by using particles with complex-valued weights and applying a weight
cancellation technique which requires the positive and negative values of the real and imaginary
parts of particule weights to be summed up over a sufficiently fine spatial mesh. The new stochastic
method presented here does not need any weight cancellation technique and relies on a modified
collision operator. In this paper, the two Monte Carlo methods are compared with the usual de-
terministic methods (diffusion and transport) in the case of a heterogenous one-dimensional rod
geometry for several noise frequencies. Our stochastic method is shown to be faster (except at very
high frequencies) and easier to implement.
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1. INTRODUCTION

Traditional neutron noise analysis addresses the description of small time-dependent flux fluctuations
induced by small global or local periodic perturbations of the macroscopic cross sections, which may
occur in nuclear reactors due to stochastic density fluctuations of the coolant, to vibrations of fuel
elements, control rods, or any other structures in the core [1]. Neutron noise techniques are widely
used by the nuclear industry for non-invasive general monitoring, control and detection of anomalies
in nuclear power plants [2]. They are also applied to the measurement of the properties of the coolant,
such as speed and void fraction [3].

In power reactors, ex-core and in-core detectors can be used to monitor neutron noise with the aim of
detecting possible anomalies and taking the necessary measures for continuous safe power production.
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Noise analysis relies upon the possibility of numerically simulating the behaviour of neutron noise and
computing the changes in the neutron field produced by different representative sources of noise in
reactor cores.

The general noise equations are obtained by assuming small perturbations around a steady state in the
neutron field and by subsequently taking the Fourier transform in the frequency domain. The analysis
is performed based on the neutron kinetic equations including the coupling with neutron precursors.
The outcome of the Fourier transform analysis is a fixed-source equation for the perturbed neutron
field, which can then be solved so as to predict noise measurements at detector locations. For each
frequency, the neutron field is a complex function having an intensity and a phase.

Until recently, neutron noise equations have been only solved by analytical techniques [4, 5] and by
resorting to diffusion theory [6, 7]. It is therefore necessary to validate them via Monte Carlo simu-
lations. In 2013, a Monte Carlo algorithm was first proposed by Yamamoto in [8] in order to solve
the transport equation in neutron noise theory. This algorithm is a cross-over between fixed-source
and power iteration methods and uses a weight cancellation technique developed by the same author
for neutron leakage-corrected calculations or higher order mode eigenvalue calculations [9–11]. This
method gives good results but has some shortcomings, such as the need of introducing a “binning pro-
cedure” for the weight cancellation : each fissile region must be divided into a large number of small
regions (called bins) where positive and negative weights are summed up and cancelled.

In this paper, we present a new Monte Carlo method that does not need any weight cancellation tech-
nique. This method is inspired by a recent technique developed in [12] for alpha eigenvalue calcu-
lations. In section 2, the general noise theory will be briefly introduced and the new Monte Carlo
method will be presented. In section 3, we will compare our Monte Carlo method and the method
proposed in [8] to the deterministic methods (diffusion and transport) in the case of a heterogenous
one-dimensional rod geometry. In section 4, we will discuss the figures of merit of each stochastic
method and the respective advantages and disadvantages. Finally, conclusions will be presented in
section 5.

2. MONTE CARLO CALCULATION IN NEUTRON NOISE THEORY

2.1. Neutron noise equation

In this section, we recall the general theory of neutron noise. The generalization of these equations
to diffusion theory is straightforward. Note that the zero power noise (fluctuations inherent to the
branching process) is neglected in power reactor noise theory. We assume small perturbations of the
macroscopic cross-sections around the critical steady state following :

B0(r,Ω, E)Ψ0(r,Ω, E) = 0,∀r ∈ D, (1)



whereB0 = Ω.∇+Σ0−H0−P0 is the initial steady-state Boltzmann operator with Σ0 the steady-state
total cross-section, H0 the steady-state scattering operator, P0 the steady-state production operator, Ψ0

the initial steady-state angular flux and D the geometric domain. For the steady state, the effective
multiplication factor is assumed to be k = 1. We impose a temporal perturbation of the cross-sections,
which yields the kinetic equation :

[
1

v
∂t +B(r,Ω, E, t)]Ψ(r,Ω, E, t) = 0,∀(r, t) ∈ D × R, (2)

where v is the neutron velocity and B = Ω.∇+ Σ−H−P the kinetic Boltzmann operator with Σ the
total cross-section, H the scattering operator, P the production operator and Ψ the angular flux. We
impose a periodic perturbation of the kinetic operator with a period T0 :

B(r,Ω, E, t) = B0(r,Ω, E) + δB(r,Ω, E, t). (3)

This perturbation is supposed to start at t = −∞, so that we can reasonably assume that the asymptotic
perturbation regime is attained. As for the kinetic operator B, we split the flux into :

Ψ(r,Ω, E, t) = Ψ0(r,Ω, E) + δΨ(r,Ω, E, t). (4)

The term δΨ is called “noise flux”. Finally, plugging expressions (3) and (4) into Eq. 2 leads to a
kinetic source equation for the noise flux :

[
1

v
∂t +B(r,Ω, E, t)]δΨ(r,Ω, E, t) = −δB(r,Ω, E, t)Ψ0(r,Ω, E). (5)

The second order term δBδΨ will be neglected, so that we obtain the traditional linearized kinetic
equation :

[
1

v
∂t +B0(r,Ω, E)]δΨ(r,Ω, E, t) = −δB(r,Ω, E, t)Ψ0(r,Ω, E). (6)

We want to determine the unique periodic solution of this equation. We apply the Fourier transform
and we obtain the traditional noise equation :

B0,ω(r,Ω, E)δΨ(r,Ω, E, ω) = −δB(r,Ω, E, ω)Ψ0(r,Ω, E),∀ω ∈ R, (7)

where B0,ω = iω
v

+ Ω.∇ + Σ0 − H0 − P0,ω is a modified (complex) Boltzmann operator. Because
of the delayed neutrons, the production operator P0,ω depends on the frequency. For each frequency,
the field δΨ(r,Ω, E, ω) has an intensity and a phase and it is therefore a complex function. The real
and imaginary components of the noise flux are coupled by two terms: iω

v
and the production operator

P0,ω. The right hand side of Eq. 7 represents a (known) “noise source”.

For a system with one precursor group, the critical steady-state Boltzmann equation is :

(Ω.∇+ Σ0(r, E)) Ψ0(r,Ω, E) =

∫∫
Σ0,s(r,Ω

′ → Ω, E ′ → E)Ψ0(r,Ω
′, E ′)dE ′dΩ′

+
1

k

χ(E)

4π

∫∫
ν(E ′)Σ0,f (r, E

′)Ψ0(r,Ω
′, E ′)dE ′dΩ′. (8)



and the noise equation is :(
Ω.∇ + Σ0(r, E) + i

ω

v

)
δΨ(r,Ω, E, ω) =

∫∫
Σ0,s(r,Ω

′ → Ω, E ′ → E)δΨ(r,Ω′, E ′, ω)dE ′dΩ′

+
1

k

1

4π

[
(1− β)χp(E) +

(
λ2

λ2 + ω2
− i λω

λ2 + ω2

)
βχd(E)

] ∫∫
ν(E ′)Σ0,f (r, E

′)δΨ(r,Ω′, E ′, ω)dE ′dΩ′

+ S(r,Ω, E, ω), (9)

with i the imaginary unit, ω = 2πf the angular frequency and S the noise source. All other notations
are standard. In this paper we shall work with positive frequencies.

2.2. A new Monte Carlo method for the noise equations

To solve the fixed source problem described by Eq. 9, a stochastic method has been provided by
Yamamoto in [8] based on the simulation of particles carrying complex weights. Here, we sketch our
Monte Carlo method and detail the differences with respect to [8]. Only the modifications with respect
to traditional Monte Carlo algorithms for particle transport will be discussed.

In [8], it was proposed to solve the neutron noise equations by Monte Carlo method by introducing
particles having complex weights w(ω) = {w<(ω), w=(ω)}. The signs of the real and imaginary parts
of particle weights can be positive or negative. According to the algorithm in [8], the complex “noise
total cross-section” Σ0 + iω/v appearing in Eq. 9 is dealt with by modifying the flight length kernel
and the particle weights change continuously during each travel. Thus, the track length estimator for
the flux for the jth flight path with distance sj obeys :

TLj =

∫ sj

0

wje
− iω

v
rdr = wj

v

ω
[sin(

ω

v
sj) + i(cos(

ω

v
sj)− 1)]. (10)

In the present work, we choose instead to deal with the modified total cross-section Σ0 + iω/v by
changing the collision kernel of Eq. 9. By analogy with the strategy discussed in [12], we add a term
η−i
η
η ω
v

with η > 0 to both sides of Eq. 9. Then, the equation becomes :(
Ω.∇ + Σ0(r, E) + η

ω

v

)
δΨ(r,Ω, E, ω) =

η − i
η

η
ω

v
δΨ(r,Ω, E, ω)

+

∫∫
Σ0,s(r,Ω

′ → Ω, E ′ → E)δΨ(r,Ω′, E ′, ω)dE ′dΩ′

+
1

k

1

4π

[
(1− β)χp(E) +

(
λ2

λ2 + ω2
− i λω

λ2 + ω2

)
βχd(E)

] ∫∫
ν(E ′)Σ0,f (r, E

′)δΨ(r,Ω′, E ′, ω)dE ′dΩ′

+ S(r,Ω, E, ω), (11)

In this case, we work with a real modified total cross-section Σ̃0(r, E, ω) = Σ0(r, E)+Σω(E,ω) ∈ R+

where Σω(E,ω) = ηω/v. Hence, flight lengths are sampled as in standard Monte Carlo calculations,



provided that Σ̃0 is used instead of Σ0. For this algorithm, the track length estimator for the flux
calculation is therefore defined as customary, and obeys :

TLj =

∫ sj

0

wjdr = wjsj. (12)

Because of the structure of Eq. 11, the collision operator is now different from that of the regular
Boltzmann equation, and we have to treat two types of productions : regular production with probability
Σ0,f/Σ̃0 and ω-production with probability Σω/Σ̃0. We treat the regular fission as in [8], i.e., the
number of fission neutrons is calculated as Int(ν + ε) with Int(.) the integer part and ε a uniform
random number. Because of the factor appearing in front of the delayed fission production term in Eq.
11, the weight w∗d of each new delayed particle created by the regular fission is modified by :

w∗d =
w

kχ(E)

(
λ2

λ2 + ω2
− i λω

λ2 + ω2

)
βχd(E), (13)

with w the weight before the fission event. The term representing the ω-fission production consists in
a copy of the incident neutron with a new weight w∗∗ given by :

w∗∗ = w
η − i
η

. (14)

Implicit capture (with forced fission) and Russian roulette can be used as in standard Monte Carlo
methods. In the case of implicit capture, after each collision event, the complex weight is modified by
Σ0,s/Σ̃0. Then, as in [8], the Russian roulette game is applied separately to the absolute value of the
real and imaginary parts of the particle weight. The particle is killed only if the real and the imaginary
parts are both killed by the Russian roulette. If only the real or the imaginary part is killed, the particle
survives. When the real or the imaginary part survives, its value is updated to±1 according to its sign
before Russian roulette.

2.3. Weight cancellation

At low and high frequencies (more precisely far from the plateau region of the zero-power transfer
function of the system), if we use the conventional algorithm for fixed source problems with implicit
capture, the Monte Carlo methods described above will lead to the production of a huge number of
particles and the calculations will never come to an end. To overcome this problem, the “binning
procedure” was proposed in [8] for the weight cancellation. Note that several weight cancellation
techniques exist but few of them seem adapted to the noise problem [13]. In order to implement this
cancellation technique, for each independent batch, we apply an algorithm very similar to the power
iteration method for criticality simulations, i.e., each particle created by fission during a generation is
stored and initializes the fission sources of the next generation. Fissile regions are divided into a large
number of small spatial bins where complex fission sources with positive and negative weights are
stored during each generation and are summed at the end of each generation. After cancellation, the
new number nf of fission sources in each bin is determined by Int(max(<(

∑
w)),max(=(

∑
w)), 1)



and, for the next generation, fission neutrons are assumed to be uniformly distributed within the bin
(this stems from fissions being isotropic in the method proposed in [8]) with an identical new weight
equal to 1

nf

∑
w. The batch ends when nf = 0 for all bins. Thus, the number of fission sources changes

from generation to generation until a generation does not produce fission after weight cancellation.

Contrary to [8], we will not use this weight cancellation technique because our ω-fission production
depends on the angular distribution of the particles, so that an angular mesh would be also required. We
simply use the fission bank, where we store all particles produced by regular and ω-fissions, to initialize
the fission sources of the next generation. As in [8], the batch ends when a generation does not produce
fission sources, i.e., when the fission bank is empty. We make several independent batches in order to
estimate the statistical uncertainties. We will see that it is possible to overcome the problem of particle
explosion at low and high frequencies by removing implicit capture and at very hight frequencies by
adapting as well the η value (it is necessary to adapt the η factor only at very high frequencies).

3. ANALYSIS AND COMPARISONS

In this section, we compare the two Monte Carlo methods with the deterministic methods (diffusion
and transport with isotropic scattering) for a heterogenous one-dimensional rod geometry with 4 energy
groups and 6 precursor groups. Note that in a rod geometry, particles can only flight in two directions
[14]. Our system is composed of 17 fuel pins of 1.08 cm (the inter-pin size is 0.36 cm so one cell size
is 1.44 cm) and we impose vacuum boundaries. The noise source is equal to −1 for the real part of
group 4 (the thermal group) in the third pin and zero for other groups. All Monte Carlo calculations
were performed with 3 000 independent batches of 10 000 particles. Note that in [8] the author uses
only one batch of 1 000 000 particles for his examples so no statistical uncertainties were available. In
this paper, we make several independent batches, even with the method of [8], so that we can estimate
the statistical uncertainties for both Monte Carlo calculations. The eigenvalue of the steady state is
k = 0.999.

3.1. The zero-power transfer function

First, we determine the shape of the zero-power transfer function of our system (see Figure 1). This
transfer function G0 is defined by [1, 15] :

G0(ω) =
1

iω(Λeff +
βeff

λ+ iω
)

, (15)

with Λeff the mean generation time, βeff the effective yield fraction (weighted by the steady-state adjoint
flux) and λ the averaged decay constant. We can differentiate the low frequency (<0.015 Hz), the
plateau and the high frequency regions (>250 Hz). The boundaries between these three regions depend



on the kinetic parameters : ωl = λ (rad/s) for the low frequency region and ωh = λ + βeff/Λeff (rad/s)
for the high frequency region.

Figure 1. Modulus of the zero-power transfer
function of our system.

Figure 2. Evolution of the regular fission prob-
ability and the ω-fission probability versus η at
2.5 kHz in group 4 and without implicit capture.

3.2. Comparison with deterministic methods

Figures 3 and 4 illustrate, respectively, the moduli of the noise flux for groups 1 and 4 at 0.01 Hz
(low frequency), 1 Hz (in the plateau region) and 2.5 kHz (very high frequency). For our method, we
activate implicite capture only at 1 Hz. Moreover, η = 100 at 2.5 kHz and η = 1 at 0.01 Hz and 1 Hz.
For the method in [8], we always use the “binning procedure” (with 302 bins) and implicit capture.

(a) 0.01 Hz (b) 1 Hz (c) 2.5 kHz

Figure 3. Moduli of the fast noise flux (group 1) at 0.01 Hz, 1 Hz and 2.5 kHz. Monte Carlo results
(track length estimator) are plotted with the 3σ error bars (barely visible).

As shown in Figs 3 and 4, these two Monte Carlo methods give good results for the moduli of the noise
fluxes and allow validating deterministic calculations.



(a) 0.01 Hz (b) 1 Hz (c) 2.5 kHz

Figure 4. Moduli of the thermal noise flux (group 4) at 0.01 Hz, 1 Hz and 2.5 kHz. Monte Carlo results
(track length estimator) are plotted with the 3σ error bars (barely visible).

3.3. Influence of implicit capture and of the η factor

As described previously, we have to remove implicit capture in order to perform our method at low and
high frequencies. Note that the method proposed in [8] without the “binning procedure” works and
gives also good results provided that we remove implicit capture at low and high frequencies. So the
problem of the explosion of particle number outside the plateau region is due to implicit capture. Let
us note that we have tested implicit capture followed by Russian roulette but, regardless of the value
of the minimum weight of this latter (by default 0.25 in our simulations), we were not able to perform
calculations at low and high frequencies. Thus, the most straight forward choice is to remove implicit
capture.

Unfortunately, at very high frequencies (� ωh), removing implicit capture in our method is necessary
but not sufficient. We also have to adjust the η value. Figure 2 presents the evolution of the regular
fission probability and the ω-fission probability versus η at 2.5 kHz in group 4 without implicit capture
(and so without forced fission). Knowing that νregular

group 4 ≈ 3 and νω-fission
group 4 = 1, we notice that with a large

η value we can decrease the total number of fission sources. In our case, we note that a η equal to 100
is sufficient to perform all our calculations at very high frequencies. Similar results have been obtained
for several other systems (not presented here).

4. DISCUSSION

The figures of merit of the Monte Carlo calculations are reported in Tab. I : our method shows better
performances than [8] except at very high frequencies. The method proposed in this paper uses a real
total cross-section and not a complex one; hence, since we do not have to bias weights during each
travel, the flight path and the track length estimator calculations are numerically less expensive than
in [8]. Moreover, our method does not suffer from the explosion of the CPU time at low frequencies,
contrary to [8] (see Fig. 10 of [8]). Nevertheless, our method is not faster at very high frequencies
because, via the η factor, we artificially increase the ω-fission probability which becomes close to 1.



Thus, for each system, we have to find the best η factor which allows performing calculations at very
high frequencies but without significantly deteriorate performances. However, we note that only the
region between 0.01 Hz and 100 Hz are physical relevant and experimentally viable [3]. Thus, in the
frequency region of interest, our method shows better performances and it is not necessary to adapt the
η factor.

We can summarize the advantages and disadvantages of both Monte Carlo methods in four points :
implicit capture can be used for all frequencies with the method proposed in [8] and only in the plateau
region with our method; a weight cancellation technique is essential at low and high frequencies if
implicit capture is activated with the method in [8], whereas our method does not need any weight
cancellation technique; except at very high frequencies, our method is faster than the method developed
in [8]; finally, our method is easier to implement because all modifications concern only the production
term in the collision operator.

Table I. Figures of merit of the Monte Carlo calculations
0.01 Hz 1 Hz 2.5 kHz

Method in [8] 1.00 3.21 9.45
New method 2.78 7.88 7.69

5. CONCLUSIONS

In this paper we have presented a new Monte Carlo method that solves neutron noise equations in the
frequency domain. Contrary to the method developed in [8], our method does not need any weight can-
cellation technique (instead, we remove implicit capture at low and high frequencies) and it is based on
a real total cross-section and a modified collision kernel. We compared the two Monte Carlo methods
in a heterogeneous one-dimensional rod geometry with the deterministic methods for several frequen-
cies. The comparisons showed that, except at very high frequencies, our Monte Carlo method is faster
than the method developed in [8]. Our method is also easier to implement because no weight cancel-
lation technique is used and all complex operators and modifications with respect to standard Monte
Carlo codes concern only the production term in the collision operator.

Future work will concern the optimisation of the algorithm proposed in this paper in view of a possible
implementation in the reference Monte Carlo code TRIPOLI-4r developed at CEA [16].
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