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Abstract

The microstructure evolution in irradiated materials can be conveniently mod-

elled, at large scale, by cluster dynamics (CD). In this approach, the effect of

the local environment of defect clusters is neglected. In this article, we first

check the validity of this assumption by comparing CD to object kinetic Monte

Carlo (OKMC) simulations. We show that for microstructures produced under

irradiation, taking into account in CD only the average dependency of clusters’

growth rate on volume fraction does not permit to reproduce reference OKMC

results. Accordingly, the sink strength dispersion, quantified using OKMC, is

introduced in CD, using a new formalism depending on the Voronoi volumes of

defect clusters. CD calculations including sink strength dispersion are shown

to be in better agreement with reference OKMC simulations and experimental

observations than are classical CD calculations.

Keywords: Cluster dynamics ; object kinetic Monte Carlo; diffusional

interactions; spatial correlations

1. Introduction1

Long term evolution of microstructures containing second phase particles or2

defect clusters can be efficiently simulated by cluster dynamics (CD). Its raw3
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output consists in size distributions at a desired time, and this approach can4

be applied, for example, to the description of precipitates [1, 2, 3], voids and5

dislocation loops [4, 5, 6]. Its mean field character makes it particularly efficient6

compared to other methods which describe the position of clusters and thus take7

into account spatial correlations naturally, such as atomistic and object kinetic8

Monte Carlo (A/OKMC) methods. Under thermal aging, CD reproduces well9

AKMC results provided it is carefully parametrized with the same atomistic10

data [2, 3] and that potential corrections are added to the classical formalism11

to handle concentrated alloys [7, 8]. For materials under irradiation, it has12

been shown that provided input parameters in CD and OKMC are consistent,13

cluster size distributions are very similar for low volume fractions, even if dis-14

tributions obtained with OKMC can be slightly broader than those obtained15

with CD [9]. Tests at higher volume fractions have not been performed, to our16

knowledge. Comparison of CD and experimental results show that the mean17

field approach becomes less precise at larger dose, the experimental distributions18

being broader [4].19

Such discrepancies in particle size distributions have been extensively stud-20

ied in the context of Ostwald ripening [10]. Indeed it is known that experimen-21

tal distributions can be broader than the prediction of Lifshitz-Slyozov-Wagner22

(LSW) theory, which is itself in overall good agreement with CD [2]. LSW ap-23

proach and CD in its simplest form both neglect the effect of volume fraction of24

particles. However, the diffusion field around a particle can be modified by the25

presence of other particles in the surroundings, thereby modifying the growth26

rate of the particle [11, 12]. For Ostwald ripening, numerous attempts have been27

made to determine the average growth rate of particles, taking into account the28

presence of other particles [10]. The dependency of the average growth rate29

of particles on volume fraction can be rationalized in terms of microstructure-30

dependent “sink strengths” [13]. Such dependency has been early recognized31

in the simulation of radiation-induced clusters such as voids and dislocation32

loops [14]. However, CD calculations with sink strengths depending on the vol-33

ume fraction of second phase particles remain rather scarce [2, 15]. Beyond the34
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effect on the average growth rate, the variety of local environments of particles35

can lead to a dispersion of sink strengths for a given particle size. This disper-36

sion is neglected in CD and to our knowledge, the validity of this assumption37

has never been checked.38

In this article we investigate the effect of local neighborhood on the sink39

strengths of dislocation loops in microstructures generated by OKMC. We show40

that using the average growth rate for a given cluster size in CD is not sufficient41

to reproduce reference cluster distributions determined by OKMC. It is therefore42

necessary to introduce explicitly the sink strength dispersion in CD due to the43

neighborhood effects. For this purpose, a simple sink strength expression is44

proposed, which reproduces the dispersion. The CD formalism is modified to45

introduce the sink strength dispersion.46

The paper is organized as follows. In section 2, we start by describing the47

method used to generate microstructures in OKMC simulations, and to calcu-48

late the sink strengths in these microstructures. By comparing microstructures49

produced by equivalent OKMC and CD simulations, volume fraction effects and50

the influence of sink strength dispersion are quantified. Then a sink strength51

expression is derived in section 3 to reproduce the dispersion obtained in mi-52

crostructures. In section 4, we present a new method to introduce the sink53

strength dispersion in CD. Extension of the method to more complicated cases,54

in particular if elastic interactions between sinks and point defects are consid-55

ered, is discussed in section 5. This model is then used to simulate electron56

irradiation experiments performed on aluminum thin foils (section 6).57

2. Volume fraction effects and sink strength dispersion in microstruc-58

tures59

In order to quantify the sink strength dispersion and show its link with neigh-60

borhood effects, sink strengths are evaluated in dislocation loop microstructures61

using OKMC. To consider microstructures as realistic as possible, the forma-62

tion of dislocation loops by agglomeration of self-interstitial atoms (SIAs) is also63
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simulated by OKMC. Cluster distributions thus obtained can be compared to64

distributions given by equivalent CD calculations, relying on some classical sink65

strength expressions which describe volume fraction effects at different levels of66

accuracy. This enables us to quantify the effect of non-zero volume fraction and67

sink strength dispersion on cluster distributions.68

2.1. Creation of microstructures69

The microstructures are created by OKMC simulations [16, 17], starting70

from a simulation box containing no defects. SIAs are introduced with a given71

creation rate G. They migrate by atomic jumps until reacting with another SIA,72

thus creating a dislocation loop, or with a loop. We consider immobile Frank73

loops in {111} planes with Burgers vector b of type 1/3〈111〉. The orientation74

is randomly chosen among the four variants when the loops are created.75

Two models are considered for the absorption of SIAs. In the simplest model,76

which is studied in detail in this article, an SIA is absorbed by a loop containing77

n SIAs when it enters the sphere which encloses the loop, i. e. if the distance78

d between the loop center and the SIA verifies79

d ≤ rL,n + rPD, (1)

where rPD is the point defect radius, set to the atomic radius, and rL,n is the80

loop radius. The loop radius is related to n through81

rL,n =

√
nVat

πb
, (2)

with Vat the atomic volume and b the norm of the Burgers vector. We also82

assume that SIAs do not interact elastically with the sink. The choice of the83

absorption on an encapsulating sphere instead of a torus, without elastic inter-84

actions, enables us to use CD with a larger number of sink strength expressions.85

In section 5, we consider a more realistic model. Absorption of SIAs by86

loops occurs on the torus of radius rL and pipe radius rp = 2b. This means that87

a point defect is absorbed by the loop when the distance d between the point88
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defect and the dislocation line verifies89

d ≤ rp + rPD. (3)

Some calculations have been performed with elastic interactions in this case.90

In OKMC simulations, the computation time increases with the number of91

defects. To decrease the computation time, one way is to reduce the box size92

as much as possible. However, two difficulties can arise. The first one is related93

to the potentially large fluctuations of cluster distributions from one simulation94

to another, due to the moderate number of clusters. To obtain well-converged95

cluster distributions, we average cluster distributions over a large number of96

independent simulations. In this study, approximately a thousand of simulations97

are used. The second problem is that the limited box size can itself lead to a98

distortion in the cluster distribution. Indeed, in insufficiently large boxes, a99

single cluster rapidly absorbs all the migrating point defects and remains alone.100

Moreover, the periodic boundary conditions force the point defects to interact101

with each other or with the remaining cluster. Therefore clusters can become102

abnormally large and final cluster size distributions, obtained by averaging over103

several simulations, vary with the box size for too small boxes. An example is104

given in Fig. 1, with boxes of side length l = 50 nm, l = 100 nm and l = 200 nm,105

a creation rate G = 10−1 dpa.s−1 and a physical time t = 10−3 s. It can be106

seen that the smallest box size gives an inconsistent distribution, while the box107

sizes l = 100 nm and l = 200 nm give similar results. The convergence has been108

checked for all the studied cases and sufficiently large boxes have been chosen.109

In this work we have considered three different creation rates: 10−3 dpa.s−1,110

10−2 dpa.s−1 and 10−1 dpa.s−1. We only report the results forG = 10−1 dpa.s−1,111

since similar results are obtained for the other dose rates. The case G =112

10−3 dpa.s−1 can be found in the Supplementary Material and all results are113

available in Ref. [18]. The high creation rates considered here and in the rest of114

this work are to simulate high doses with the short simulation times accessible115

with the OKMC simulations. Other parameters are provided in Table 1. Given116

the low temperature and high binding energies of clusters [19], thermal emission117
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Figure 1: Example of cluster size distributions obtained with OKMC simulations, with G =

10−1 dpa.s−1, t = 10−3 s and with the simulation conditions described in Table 1, for different

box side lengths l.

of SIAs by loops is negligible.118

2.2. Cluster dynamics without dispersion of sink strengths119

The OKMC simulation of SIA agglomeration is reproduced by CD simula-120

tions using the CRESCENDO code [6]. The following equations are solved:121

dCn
dt

= βn−1Cn−1C1 − βnCnC1 n ≥ 2 (4)

dC1

dt
=

G

Vat
− β1C1C1 −

∑
n≥1

βnCnC1, (5)

where Cn is the concentration of clusters containing n SIAs and βnC1 is the122

absorption rate of SIAs by these clusters. The sink strength of clusters of size123

n is defined by124

k2
n =

βn
D1

Cn, (6)

where D1 is the diffusivity of SIAs, which means that the loss rate of SIAs, by125

unit volume, to clusters of size n is126

φn = k2
nD1C1. (7)
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Temperature T = 300 K

Material: pure aluminum

Lattice parameter a0 = 0.405 nm
[19]

Atomic volume Vat = 1.66 10−2 nm3

Poisson’s ratio ν = 0.35
[17]

Shear modulus µ = 25.91 GPa

SIA properties

Relaxation volume (for elastic interactions) ∆V = 2.35Vat [17]

Diffusion prefactor 5 10−6 m2.s−1 [19]

Migration energy 0.105 eV [19]

Point defect radius rPD = 0.1503 nm

SIA loop properties

Norm of the Burgers vector b = 0.2338 nm

Table 1: Parameters for the OKMC and CD simulations of SIA agglomeration. The relaxation

volume is used in CD, it corresponds to the elastic dipole at stable point used in OKMC, which

was computed by density function theory calculations (see Ref. [17]).

We also define the absorption efficiency by127

κn = k2
n/Cn. (8)

Various expressions for sink strengths, or equivalently absorption efficiencies,128

exist in the literature, especially when the absorption occurs on a sphere. We129

consider three of them:130

� “Laplace” expression [20]:131

κn = 4πrn, (9)

where rn = rL,n+ rPD. This formula is derived by assuming that the loop132

is isolated in an infinite medium, i. e. the volume fraction is zero.133

� Wiedersich expression [20]:134

κn = 4πrn
1− η3

1− 9
5η + η3 − 1

5η
6
, (10)
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where η = rn/R and R is the average half-distance between sinks. This135

distance is determined at each time step of the CD calculation by136

1
4π
3 R

3
=
∑
n≥2

Cn. (11)

This absorption efficiency is obtained by relating the flux to the loop to137

the average concentration, assuming a homogeneous production rate of138

defects and zero flux for r = R.139

� Effective medium approach [14]:140

κn = 4πrn
1 + ktotR

1 + ktot(R− rn)

[
1 +

k2
tot(R− rn)

6(1 + ktotR)

(
(3 + ktotR)(R+ rn)− 2ktotr

2
n

)]
,

(12)

where k2
tot is the total sink strength:141

k2
tot =

∑
n≥2

k2
n =

∑
n≥2

κnCn. (13)

In practice, κn is calculated by iterating until self-consistency is obtained.142

Starting with Laplace expression for κn (ktot = 0), a converged value is143

obtained in a few iterations. This kind of approach has been used in the144

context of Ostwald ripening to account for the dependency of growth rate145

of particles on the particle’s volume fraction [13]. A simpler, approxi-146

mate expression [14], derived from Eq. (12), is also used in the context of147

irradiation [21, 22], but it will not be considered here.148

Using the same parametrization as for OKMC (Table 1), the cluster size149

distributions obtained in CD are compared to the OKMC distribution, with150

G = 10−1 dpa.s−1 and t = 10−3 s, in Fig. 2 (a). In OKMC simulations, point151

defects are absorbed when they enter the encapsulating sphere, which is the same152

absorption condition as in CD with the three above-mentioned sink strengths.153

These results illustrate the fact that the OKMC distributions are broader154

than the CD ones, whatever the sink strength model. With the Laplace model,155

the density and mean radius are close to the ones obtained in OKMC, but156

the distribution is less spread. With the Wiedersich model, which takes into157
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account the effect of the loop density, a difference with the OKMC distribution158

is still observed. This model overestimates the mean radius. The effective159

medium approach also includes the effect of the surrounding environment on160

the sink strength, but fails to reproduce the OKMC distribution. Even though161

the average loop radius is less overestimated than with the Wiedersich model,162

the distribution is not as broad as the OKMC distribution. Similar but less163

pronounced discrepancies were obtained for lower doses (lower values of G) [18].164

These results indicate that taking into account only the average effect of particle165

volume fraction on sink strength is probably not sufficient to reproduce OKMC166

results. Sink strength dispersion also needs to be included in the CD formalism.167

2.3. Calculations of sink strengths values168

In order to calculate the sink strengths of loops in the OKMC microstruc-169

tures, the previously obtained microstructures are frozen: loops do not grow170

when SIAs are absorbed and SIAs do not form new loops. Once created, an SIA171

diffuses in the matrix until it is absorbed by a loop. It is then removed from the172

simulation and the number of SIAs absorbed by this loop is incremented. The173

aim of this procedure is to evaluate the loss rate of SIAs to the different sinks174

of the microstructure, which is directly related to the sink strength.175

In practice, a given number M of simulation boxes containing microstruc-176

tures of loops are selected, typically 10 boxes for each value of G, and the new177

simulation step begins. The SIA creation rate, noted Γ in this context, is set to178

ensure a sufficiently large number of point defects in each box at steady state179

(typically 50 point defects). The average number N1 of SIAs is calculated as180

an average over time and over the boxes. The number Nabs
i of SIAs absorbed181

by each loop i, during the simulation time t, is recorded. The simulated time is182

chosen to ensure good statistics. The point defect loss rate ϕi to the loop i is183

then given by184

ϕi =
Nabs
i

t
. (14)

Following Eq. (7), the sink strength of each loop is then calculated according to185
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186

k2
i =

ϕi

D1N1

. (15)

The sink strength is therefore defined with respect to a global SIA concen-187

tration, in agreement with its definition in the CD formalism. From the sink188

strength values k2
i , we compute the absorption efficiency κi according to (see189

Eq. (8))190

κi =
k2
i

1/l3
, (16)

where l is the edge length of the cubic simulation box. We note that since ϕi191

is the point defect loss rate to a single loop i, the concentration of loops which192

has to be used in Eq. (8), to define κi (a quantity attached to a single sink), is193

1/l3. It is not the concentration of all loops which have the same size as i, i.e.194

of the class corresponding to i.195

The values computed in the microstructures obtained with G = 10−1 dpa.s−1
196

and t = 10−3 s are presented in Fig. 2 (b). They are compared to the sink197

strength models previously mentioned, which were used to obtain the CD cluster198

distributions (Fig. 2 (a)).199

The sink strength values obtained in the microstructures are dispersed: loops200

having the same radius can have very different sink strengths. The values are201

globally lower than the value given by the Wiedersich model, but can also be202

below the value given by the Laplace model. The dispersion of sink strength203

values for loops of same radius but with different environments clearly indicates204

an environmental effect. We will show in the next sections that this dispersion205

is responsible for the difference observed on the cluster size distributions.206

Similar results were obtained for lower values of G [18]. In that case, the207

loop density is lower, and the dispersion is also less important. Thus, it seems208

that the dispersion is reduced when the sink density diminishes. To illustrate209

this fact on comparable microstructures, the simulation boxes studied above are210

dilated to reduce the loop density. The box dimensions and distances between211

the loops are increased while the loops radii are preserved. The absorption212

efficiencies obtained for different densities are shown in Fig. 3. It is clear from213
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Figure 2: (a) Cluster size distributions obtained from OKMC simulations and equivalent CD

simulations, using various sink strength models (see text), obtained with G = 10−1 dpa.s−1

and t = 10−3 s. (b) Absorption efficiencies calculated for the loops in the OKMC microstruc-

tures and sink strength models used in CD.
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this figure that the dispersion increases with the loop density.214

3. A model to represent sink strength dispersion215

To analyze the correlation between the sink strength value and the environ-216

ment of loops, we determine the Voronoi cells of all loops in OKMC microstruc-217

tures, using the Qhull program [23]. The Voronoi cell of a loop contains all218

points which are nearer to the loop than to any other loop. It gives a first ap-219

praisal of the local environment around a loop: the sink density around a loop220

increases as the volume of the Voronoi cell of the loop decreases.221

Results for the microstructures obtained in OKMC with G = 10−1 dpa.s−1
222

and t = 10−3 s are shown in Fig. 4. They unveil a correlation between the223

volumes and the sink strength values: loops with higher sink strengths tend to224

have bigger Voronoi volumes. Similar results are obtained for other simulated225

doses, especially for lower values of G [18]. One can also see in Fig. 4 that the226

bigger loops tend to be in bigger cells. This can be understood by the mechanism227

of loop growth: a loop in a big cell has no loop in its close neighborhood.228

Hence, it can grow more rapidly. Inversely, a big loop easily absorbs neighboring229

mobile point defects, preventing any loop nucleation in its neighborhood, so230

its Voronoi cell remains large. The correlation between the sink strength and231

the Voronoi volume is however not perfect. Indeed, we checked that the sink232

strength values are also influenced by the shape of Voronoi cells and the loop233

position in its cell [18]. However, the cell size remains the prevalent effect in the234

cases considered here.235

The Voronoi volumes therefore seem to be key elements to understand the236

sink strength dispersion. In order to be able to use these parameters as input237

data for CD calculations, the distributions of normalized Voronoi volumes in238

the OKMC microstructures are calculated. The results are shown in Fig. 5239

at different times, for G = 10−1 dpa.s−1. They are compared to the so-called240

“Poisson-Voronoi distribution”, which refers here to the distribution of volumes241

obtained for a Voronoi tessellation of points randomly distributed in space. An242
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Figure 3: (a) Absorption efficiencies calculated in the OKMC microstructures obtained with

G = 10−1 dpa.s−1 and t = 10−3 s, loop density of ρ = 2.23 1022 m−3 (l = 200 nm) (b)

Absorption efficiencies obtained in dilated boxes ensuring a loop density of ρ = 1.76 1021 m−3

(l = 466 nm) (c) Absorption efficiencies obtained in dilated boxes ensuring a loop density of

ρ = 2.00 1020 m−3 (l = 962 nm). The error bars represent the statistical error [18], they are

displayed on all data.
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Figure 4: Correlations between the absorption efficiencies and Voronoi volumes (colorbar).

Values are obtained in OKMC microstructures with a creation rate of G = 10−1 dpa.s−1 and

for a simulated time of t = 10−3 s.

accurate approximation of the Poisson-Voronoi distribution is given by the ex-243

pression proposed by Kumar et al. [24], whose parameters have been determined244

by Lazar et al. [25]. It can be seen that the distribution of normalized Voronoi245

volumes obtained in OKMC remains unchanged with time and that it is in246

very good agreement with the Poisson-Voronoi distribution. Therefore, it can247

be inferred that the loops are randomly distributed in the box. In addition,248

the expression of Kumar et al. can be used to give the distribution of Voronoi249

volumes, which is the main physical ingredient for sink strength dispersion.250

The correlation of sink strengths with Voronoi volumes can be understood251

the following way. A cluster i in a small Voronoi volume Vi is surrounded by252

a density of clusters larger than the average density. The local sink strength253

around i, k2
i,loc, is therefore higher than the average total sink strength k2

tot.254

Since as a first approximation, the local monomer concentration around i is255

related to the local sink strength through256

Ci,loc =
Γ

VatD1k2
i,loc

, (17)
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Figure 5: Distribution of normalized volumes of Voronoi cells v = V/V̄ , where V̄ is the

average Voronoi volume, at different times, in OKMC microstructures with a creation rate of

G = 10−1 dpa.s−1.

we see that it is lower than the average SIA concentration C̄, given by257

C̄ =
Γ

VatD1k2
tot

. (18)

In other words, the local concentration of point defects around sink i is lower258

than the average concentration because there is a larger number of sinks in its259

vicinity to absorb point defects. Therefore the loss rate to the sink, which is re-260

lated to the local concentration of point defects available for absorption, appears261

to decrease as the Voronoi volume decreases. In the CD mean field formalism,262

the sink strength relates the loss rate to a sink to the point defect concentration263

averaged over the whole system (C̄, or equivalently, N1, see Eq. (15)). It means264

that for a small Voronoi volume, the low loss rate is equivalent to a low sink265

strength.266

A simple calculation permits to relate more precisely the sink strength to267

Voronoi volumes. Let ϕi be the loss rate of SIAs to sink i. For a spherical sink,268

it can be written, to lowest order, as269

ϕi = 4πriD1Ci,loc. (19)
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Using Eqs. (17) and (18) in Eq. (19) yields270

ϕi = 4πriD1
k2

tot

k2
i,loc

C̄. (20)

Assuming that the average radius of clusters surrounding i is r̄ and the local271

volume is Vi,loc, the local sink strength is approximately272

k2
i,loc = 4πr̄

1

Vi,loc
. (21)

Since k2
tot = 4πr̄/V̄ , we finally obtain273

ϕi = 4πriD1
Vi,loc

V̄
C̄. (22)

The local volume Vloc associated with each loop remains to be determined.274

A simple approach is to use the average Voronoi volume of its nearest neighbors.275

To determine an expression of this volume, a Poisson-Voronoi tessellation of 105
276

points is generated. For each Voronoi cell of volume Vi, the average volume of277

nearest neighbors is calculated (Fig. 6). Nearest neighbor cells are defined as278

neighbors which share a face. The average volume of neighbors is well fitted by279

the following expression:280

Vloc

V̄
=

(
V

V̄

)α
+ β, (23)

with α = 0.25 and β = 0.07. It is not clear if the volume itself should be included281

in the average. In principle it affects the local concentration, so taking it into282

account may be more correct. As shown in the figure, including it marginally283

impacts the average volume, due to the large number of neighbors [26]. In the284

following this contribution will not be considered.285

The normalized local volumes Vloc/V̄ have also been extracted from the286

OKMC simulations, using Eq. (22). They are displayed in Fig. 7 as a function287

of normalized Voronoi volumes v = V/V̄ , for G = 10−1 dpa.s−1. These OKMC288

results are in good agreement with Eq. (23). OKMC values are still dispersed289

around the analytical formula. This dispersion comes from the fact that sink290

strengths not only depend on Voronoi volume, but also on the shape of the291

Voronoi cell and the sink position in its cell [18].292
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Figure 6: Average Voronoi volume of neighbors in a Poisson-Voronoi tessellation (blue sym-

bols). For the orange symbols, the cell itself is included in the average. The distribution

contains 105 Voronoi volumes.
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Figure 8: (a) Absorption efficiencies calculated in the OKMC microstructures obtained with

G = 10−1 dpa.s−1 and t = 10−3 s. (b) Absorption efficiencies calculated from the loop radii

and Voronoi volumes using Eqs. (22) and (23).

Finally, for the conditions G = 10−1 dpa.s−1 and t = 10−3 s, absorption293

efficiencies calculated by OKMC and predicted by Eqs. (22) and (23), using the294

Voronoi volumes from OKMC simulations, exhibit almost identical distributions295

(Fig. 8). This means that Voronoi cell shape and sink position in Voronoi cell296

are probably second order effects compared to the volume of the Voronoi cell297

itself, when we focus on the sink strength. We note, however, that since the sink298

strength dispersion is observed to increase with density, the proposed approach299

tends to overestimate the dispersion for low sink densities and to underestimate300

it for large sink densities.301

To summarize, the absorption efficiencies in the microstructures can be re-302

produced by the expression303

κ = 4πr
Vloc

V̄
, (24)

where Vloc is the average Voronoi volume of loops in the neighborhood. It304

depends on the Voronoi volume of the loop according to Eq. (23), with α = 0.25305

and β = 0.07. The normalized Voronoi volume V/V̄ follows the distribution306

corresponding to a Poisson-Voronoi tessellation. An analytical form of this307
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distribution is given by Kumar et al. [24], and the parameters can be found in308

Ref. [25].309

4. Introducing sink strength dispersion in cluster dynamics simula-310

tions311

In previous sections we characterized the sink strength dispersion and de-312

rived an expression to reproduce this dispersion, based on the distribution of313

Voronoi volumes. Now we introduce the sink strength dispersion in the classical314

CD equations (4) and (5). To do so, the absorption coefficient βn is assumed315

to depend on the normalized Voronoi volume v for a size larger than n∗, with316

n∗ ≥ 2:317

βn(v) = 4πrn (vα + β)D1. (25)

The cluster concentration of a given class n now also depends on v, so it is318

noted Cn(v). As reported in Section 2, large clusters are present more fre-319

quently in large Voronoi cells than in small ones. This means that the change320

of neighborhood of a cluster, or in other words the change of its Voronoi cell,321

due to the creation of a cluster nearby, must happen over timescales which are322

sufficiently large with respect to the growth process. Accordingly, we do not323

include any coupling term between Cn(v) and Cn(v′): the neighborhood of a324

cluster is assumed to remain the same. Therefore a cluster in a large Voronoi325

volume, whose sink strength is large, remains in a large Voronoi volume. In326

reality, depending on the irradiation conditions, some clusters may nucleate in327

its vicinity, leading to a reduction of its Voronoi volume and of its sink strength.328

This approximation can be checked a posteriori on cluster distributions.329
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Equations (4)–(5) become330

dCn
dt

= βn−1Cn−1C1 − βnCnC1 2 ≤ n ≤ n∗ − 1 (26)

dCn(v)

dt
= P (v)βn−1Cn−1C1 − βn(v)Cn(v)C1 n = n∗, v ∈]0,∞[ (27)

dCn(v)

dt
= βn−1(v)Cn−1(v)C1 − βn(v)Cn(v)C1 n > n∗, v ∈]0,∞[ (28)

dC1

dt
= −β1C1C1 −

∑
1≤n≤n∗−1

βnCnC1 −
∫ ∞

0

∑
n≥n∗

βn(v)Cn(v)C1P (v) dv.

(29)

In these equations, P (v) is the Poisson-Voronoi distribution in normalized Voronoi331

volumes.332

To solve these equations numerically, two methods can be used. The first333

one consists in discretizing the values of v, so concentrations can be noted334

Cn,i = Cn(vi), where i = 1, . . . , N and N is the number of equally spaced335

possible normalized Voronoi volumes (see Fig. A.14 in Appendix A). The nu-336

merical cost can increase substantially, since the number of equations is roughly337

multiplied by N compared to a classical calculation involving a single popula-338

tion. A more elegant way to solve equations (26)–(29) is to resort to a hybrid339

deterministic-stochastic scheme recently developed for cluster dynamics equa-340

tions [27]. In this method, small clusters (n < n∗) are treated deterministically,341

while cluster dynamics equations are solved stochastically for larger sizes. The342

deterministic and stochastic regions are separated by a buffer region where the343

transfer between deterministic cluster density and stochastic particles is per-344

formed. Sink strength dispersion can be naturally introduced in this method.345

Each time a stochastic particle is created, due to the flux of clusters from the de-346

terministic region to the stochastic region, a normalized Voronoi volume, drawn347

in the Poisson-Voronoi distribution, is associated to this particle. The particle348

then evolves according to the value of the absorption coefficient corresponding349

to the normalized Voronoi volume. To ensure good performance and accuracy350

of the hybrid algorithm, the deterministic region must contain at least a few351

tens of classes. Here, n∗ is set to 20.352
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Results are compared to OKMC simulations for t = 10−3 s, t = 2 10−3 s and353

t = 10−2 s for the highest dose rate (G = 10−1 dpa.s−1), which corresponds to354

the highest cluster density (Figs. 9 and 10; see Supplementary Material for the355

case G = 10−3 dpa.s−1 and t = 10−2 s). The fully deterministic calculations356

with dispersion were performed with N = 50. It was checked, by varying this357

value, that in the conditions considered the cluster distributions are accurately358

simulated. For too low values of N (N . 30), cluster distributions become359

distorted at the largest dose. Two values for n∗ were considered in these calcu-360

lations: n∗ = 2 and n∗ = 20. The latter corresponds to the value used in the361

hybrid method.362
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Figure 9: Cluster distributions at t = 10−3 s, t = 2 10−3 s and t = 10−2 s, obtained with

OKMC and different CD models: deterministic calculation without dispersion and Laplace ex-

pression for sink strengths (CD-no-d), deterministic calculation with sink strength dispersion

based on Eqs. (A.1)–(A.4) with N = 25 and two values for n∗ (CD-d), hybrid deterministic-

stochastic calculation using sink strength dispersion in the stochastic region (CD-d, hybrid).

Hybrid calculations were performed with 2 million stochastic particles.
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Figure 10: Cluster distributions at t = 10−3 s, t = 2 10−3 s and t = 10−2 s, obtained with

OKMC and different CD models, in logarithmic scale. See Fig. 9 for more information.
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We first see that the results obtained with the hybrid and the deterministic363

solving, for n∗ = 20, perfectly match, which validates the two numerical meth-364

ods. However, the large number of equations to solve deterministically at high365

doses (∼ 5×105) makes the deterministic method computationally intensive, so366

the hybrid method should be preferred. CD calculations including sink strength367

dispersion are all in much better agreement with OKMC than is the classical368

CD calculation using Laplace expression for sink strengths, which leads to ex-369

cessively peaked distributions. To compare more quantitatively the agreement370

between CD and OKMC distributions, we calculate the “distance” between CD371

and OKMC distributions C̃CD and C̃OKMC by using the L2 norm:372 ∥∥∥C̃CD − C̃OKMC
∥∥∥ =

√∑
n≥2

(CCD
n − COKMC

n )
2
. (30)

The ratio of the distance involving the CD distributions with sink strength dis-373

persion to that involving the standard CD distributions without dispersion is374

0.32, 0.21 and 0.33 at times t = 10−3 s, t = 2 10−3 s and t = 10−2 s, respec-375

tively. This shows that at all times the improvement is significant. Distributions376

obtained with n∗ = 2 are slightly broader than with n∗ = 20, due to the larger377

number of classes where dispersion is present. However, this difference tends378

to decrease with time, since the flux of clusters in the region of cluster space379

containing small clusters becomes lower (the nucleation rate decreases).380

At short time (t = 10−3 s), especially for n∗ = 2, the CD cluster distribu-381

tions are broader than the OKMC distributions. As discussed previously, sink382

strength dispersion increases with cluster density (so with time) and Eq. (23)383

with α = 0.25 and β = 0.07 reproduces well the dispersion for t = 10−3 s,384

but overestimates the dispersion for shorter times. This overestimation can ex-385

plain why the distributions are slightly too broad. The choice n∗ = 20, due386

to numerical constraints in the hybrid method, improves the agreement with387

OKMC results. This is due to the fact that no dispersion is taken into account388

for n < n∗, which compensates for the overestimation of dispersion at short389

times. At t = 2 10−3 s, the discrepancy with OKMC increases if no dispersion390

is taken into account, whereas CD simulations including dispersion remain very391
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close to OKMC. Finally, if the calculation is continued up to t = 10−2 s, we392

see that CD cluster distributions without sink strength dispersion are far too393

peaked, whereas distributions with sink strength dispersion tend to be slightly394

narrower than OKMC distributions. Here again, this is due to the absence of395

dependence of Eq. (23) on cluster density. Despite this limitation, the overall396

good agreement for times t = 2 10−3 s and t = 10−2 s is rather encouraging397

concerning the generality of the approach, inasmuch as no data were fitted at398

these times. In the following, we use the hybrid approach and thus we consider399

only calculations with n∗ = 20.400

The absorption efficiencies of the stochastic particles κ is shown in Fig. 11401

as a function of the cluster radius, for t = 10−3 s. The overall shape of the402

distribution is very similar to the one in Fig. 2 (b), with large clusters mostly403

present in large Voronoi cells. This is consistent with the fact that clusters with404

large Voronoi cells grow faster and that the environment of particles does not405

change with time in CD calculations. The similarity of sink strength distribu-406

tions in CD and OKMC validates this approximation. A more refined model407

could be envisaged, by resampling some of the absorption rates of stochastic408

particles depending on the nucleation rate of clusters. For the present case, this409

additional complexity proved to be unessential.410

5. Extension to toroidal geometry and effect of elastic interactions411

The aim of this part is to show that the new CD formulation can be ex-412

tended to a more realistic situation in which absorption by a loop is realized on413

a torus and in which elastic effects are taken into account. SIAs are absorbed414

on the torus of radius rL,n (see section 2.1). Using the same method as previ-415

ously described, we determine the cluster size distributions, with or without the416

strain fields generated by the loops. The strain field of loops can be taken into417

account in OKMC simulations using the method described in [17], and the an-418

alytical strain field expression given in [28, 29]. Values of elastic dipole tensors419

determined in Ref. [17] by density functional theory calculations at stable and420
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Figure 11: Normalized sink strengths at t = 10−3 s, extracted from the values ascribed to

stochastic particles in CD hybrid calculations.
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saddle positions are used in the present OKMC simulations.421

The corresponding CD models used here are described in Ref. [15]. When the422

strain fields are neglected, the absorption can be represented by expression (18)423

of Ref. [15], combined with expression (17) of Ref. [15] to include the effect of424

non-zero volume fraction. To take into account the strain fields, the pipe radius425

is replaced by an effective radius reff
p depending on the material and point defect426

properties, according to expressions (19) and (20) of Ref. [15]. In this expression427

SIAs are considered to be isotropic defects with the same relaxation volume at428

stable and saddle points (see Table 1).429

The cluster size distributions obtained in OKMC are compared to the corre-430

sponding CD distributions in Fig. 12, for an SIA creation rate ofG = 10−1 dpa.s−1
431

and a simulated time of t = 10−3 s. The first thing to note is the large influence432

of elastic interactions on the cluster distributions. As for the spherical clusters433

studied above, one can see that the OKMC distributions are wider than the CD434

ones when no dispersion is taken into account.435

The same analysis of the sink strengths in OKMC microstructures has been436

performed, and similar results were obtained regarding the sink strength disper-437

sion and Voronoi volume distributions. To reproduce the sink strength disper-438

sion, we use the same approach as the one described above. In agreement with439

what was done for the absorption on spheres, we choose to disperse the values440

of sink strengths around the value for the infinite medium. The absorption441

efficiency reads:442

κ = 2πrLZ
loopVloc

V̄
, (31)

where Vloc is given by Eq. (23), and Z loop is defined in Ref. [15] and depends443

on rp if strain fields are neglected or reff
p if they are taken into account.444

Following section 4, the dispersion is introduced in CD using the absorption445

coefficient βn, which reads446

βn = 2πrL,nZ
loop (vα + β)D1. (32)

The results obtained using this model are shown in Fig. 12. As for the case447

of spherical clusters, the introduction of dispersion in CD leads to a much better448
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Figure 12: Cluster size distributions obtained when the absorption occurs on the dislocation

line (a) without elastic interactions and (b) with elastic interactions. The CD models without

dispersion are given in Ref. [15] (see text).
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agreement with OKMC distributions. Therefore the proposed method can be449

extended to more realistic systems, assuming that the absorption occurs on the450

torus and taking into account the effect of elastic interactions.451

6. Comparison between experimental and simulated loop distribu-452

tions453

The effect of sink strength dispersion on cluster distributions has been tested454

up to limited doses (10−3 dpa) because we wanted to compare the CD results to455

reference cluster distributions obtained by OKMC simulations. In this section,456

we describe CD simulations to much higher doses (1 dpa). Since no comparison457

can be made with OKMC in this case, simulations are compared to experimen-458

tal measurements of cluster distributions. Results obtained by Chen et al. [30]459

for dislocation loops in aluminum thin foils were chosen for several reasons. In460

this experiment, the damage was produced by electron irradiation. Under these461

conditions, only Frenkel pairs are generated, so point defect clusters are created462

by the successive agglomeration of point defects. Frenkel pair accumulation is463

known to be more easily simulated than displacement cascade conditions with464

mean field CD [31, 32], especially at high doses where cascade overlap occurs.465

The foils considered in the experiment by Chen et al. are relatively thick (around466

500 nm), which, here again, is relatively favorable for mean field approaches.467

Finally, cluster distributions are provided at several times. This permits to de-468

termine some simulation parameters with more confidence. While comparing469

simulations to experiments, it should be kept in mind that rather large bins (5470

nm on loop diameter) were used to determine the cluster distributions experi-471

mentally.472

Equations used to simulate the experiments are based on Eqs. (4) and (5)473

(Eqs. (26)-(29) if the dispersion of sink strengths is taken into account). In474

addition, vacancies and vacancy clusters are taken into account. Single vacancies475

can be absorbed by point defect clusters and recombine with SIAs. Point defects476

can also be absorbed by surfaces. Emission of point defects by point defect477
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clusters is taken into account in the model. However, the binding energies of478

point defects to dislocation loops are so high that at the temperature considered,479

emission can be neglected. Although vacancy clusters are included in the model480

for the sake of generality, they do not form since the di-vacancy is not stable [33],481

so they do not play any role in the simulations. A more detailed description of482

the equations can be found, for example, in Ref. [6].483

In the simulations, surfaces are taken into account by a specific sink term [34],484

for the sake of simplicity and computational efficiency. Such an approach leads485

to similar results as spatialized calculations [35], but avoids to perform averages486

of cluster distributions over the depth to make a comparison with experiments,487

which could introduce artificial oscillations in the distributions’ shape if the488

number of slices was too low. The initial dislocation density is set to zero, since489

micrographs show the absence of dislocations in the region of observation before490

irradiation [30]. The temperature is set to 300 K. Based on a displacement cross-491

section of 15 barns [36], the damage rate is estimated to 3 × 10−4 dpa.s−1. It492

has been shown by Chen et al. that the production of defects depends on the493

orientation of the foil, the 〈111〉 direction being one where it is the highest.494

In addition, the fraction of freely migrating defects (FMDs) is not precisely495

known. Only FMDs must be taken into account in CD models, since other496

defects quickly recombine with each other and do not participate to loop growth.497

Therefore, there is some uncertainty on the production rate of defects to use in498

CD. We chose a fraction of FMDs equal to one, to reflect the high production499

rate of defects along 〈111〉 direction and the probably small proportion of close500

pairs in this material [30]. This means that the actual creation rate of SIAs and501

vacancies in the model is 3×10−4 dpa.s−1. More work at atomic scale would be502

necessary to determine the damage rate precisely, but this is beyond the scope503

of this application.504

Experiments were first simulated with the deterministic CD model described505

in Ref. [15] (Eqs. 18 – 20) and used in the previous section, without sink506

strength dispersion. Some parameters were adjusted to obtain a reasonable507

agreement with the experimental densities and average sizes of loops (Tab. 2).508
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The saturation in loop density observed after 10 min of irradiation indicates that509

loop nucleation has stopped at this time. This behavior is not observed if the510

recommended value for the vacancy migration energy (0.61 eV, see Ref. [19])511

is taken. A slightly higher value must be adopted to increase the vacancy512

concentration and suppress loop nucleation from a certain time, i. e. the system513

must enter the recombination regime. The value 0.7 eV has been adopted. The514

migration energy of SIAs has also been increased to 0.19 eV, to produce loop515

densities similar to the experimental values. The recommended value (0.11516

eV) produces far too low cluster densities. These two parameter modifications517

may point to an effect of impurities, as suggested in the experimental study.518

Finally, the relaxation volume of the vacancy was changed from -0.4 Vat [19]519

to -0.8 Vat. The resulting increase of the elastic interactions between vacancies520

and loops may reflect the effect of saddle point anisotropy of vacancies on the521

sink strength [17]. This anisotropy has been shown to increase significantly the522

sink strength of loops [18].523

Loop distributions are shown at three different times in Fig. 13. As discussed524

previously, although the densities and average sizes are correctly reproduced,525

cluster distributions obtained experimentally and with CD without sink strength526

dispersion are markedly different. Experimental distributions are much broader.527

Simulations were also performed with the new formalism, which includes528

the effect of sink strength dispersion. This effect was taken into account for529

the absorption of both SIAs and vacancies. Since the sink strength dispersion530

only depends on Voronoi volumes, which are not related to the properties of the531

absorbed defect, the approach is the same for vacancies as for SIAs.532

Introducing the sink strength dispersion slightly shifts the peak position to533

larger sizes, since the average value of Vloc/V̄ in Eq. (23) does not equal 1 (it534

is the case for β = 0.01687). It also significantly broadens the distribution and535

improves the agreement with experiments, which shows the importance of taking536

into account the dispersion. The ratio of distances between cluster distributions537

(see Eq. (30)) is 0.47, 0.43 and 0.31 at 15, 30 and 60 min. Although a clear538

improvement is obtained, the agreement with experimental results is still not539
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Parameter Value Reference

Temperature 300 K

Damage rate 3× 10−4 dpa s−1

Thickness of the foil 500 nm

Network dislocation density 0

Lattice parameter 0.405 nm

Diffusion prefactor for vacancies 10−5 m2 s−1 [19]

Diffusion prefactor for SIAs 5× 10−6 m2 s−1 [19]

Migration energy of vacancies 0.7 eV adjusted

Migration energy of SIAs 0.19 eV adjusted

Relaxation volume of SIAs 1.9 Vat [19]

Relaxation volume of vacancies -0.8 Vat adjusted

Recombination radius 2a0 [37]

Binding energy of two vacancies 0 [33]

Binding energy of two SIAs 0.8 eV

Table 2: Parameters for CD simulations of electron irradiation of aluminum thin foils.
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perfect. Among the possible sources of discrepancy, the absence of dependence540

of Eq. (23) on cluster density is a probable one. Trends are consistent with541

the fact that CD distributions with sink strength dispersion tend to be slightly542

narrower than OKMC distributions at the largest simulated dose (t = 10−2 s, see543

Figs. 9 and 10). Other sources of discrepancy include the simplified treatment544

of the effect of vacancy anisotropy at saddle position on the sink strength,545

effects of impurities which have been taken into account in an effective way546

and surface effects. Even if the foil thickness is large, surfaces may have some547

effects on the loop distributions which are not properly handled in mean field548

calculations. In particular, our analysis on Voronoi volume implicitly assumes549

that the considered sink is surrounded by other sinks, which is not the case when550

it is close to a surface. Larger spreading of growth rates may arise because of551

the presence of this additional sink.552

7. Discussion553

In the previous sections we have shown that it is possible to obtain a good554

agreement between CD results and OKMC results at high volume fraction, pro-555

vided that the sink strength dispersion is introduced in CD. This dispersion is556

primarily due to the variation of local sink density around sinks. To our knowl-557

edge, sink strength dispersion has not been much studied for microstructures558

obtained under irradiation; however, there is a vast amount of theoretical and559

experimental results for the effect of local surroundings in Ostwald ripening. In560

this context, most of the works have focused on much higher volume fractions561

(of the order of percent or more) and theoretical works have introduced a de-562

pendency of the particle’s average growth rate on volume fraction (for a review,563

see Ref. [10]). Although some laws can be transposed to the microstructures564

under irradiation (see for example Refs. [13] and [14]), the simulation of Ostwald565

ripening has its own peculiarities. Evolution of particles is due to the Gibbs-566

Thomson effect, so the dependency of the growth rate on local surroundings can567

result not only from different local densities, but also from different particle’s568
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Figure 13: Experimental and simulated loop distributions for electron irradiated aluminum

thin foils at different times. CD simulations are performed without (CD-no-d) and with (CD-

d) sink strength dispersion. Loop densities ρno-d, ρd and ρexp are shown at each time.
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radii. Under irradiation, at sufficiently low temperature, the large supersatu-569

ration makes Gibbs-Thomson effect negligible. Both effects (local density and570

particule radius) are included in the sink strength dispersion highlighted in the571

simulation of Ostwald ripening (see Fig. 4 in Ref. [11]), but their respective572

contribution remains unknown. In the case of microstructures produced under573

irradiation, we have seen that introducing only the average effect of volume574

fraction, as it is done classically for Ostwald ripening, is not sufficient: the sink575

strength dispersion must also be included. The large effect of local density on576

the particle’s growth rate seems rather surprising, compared to the simulations577

of Ostwald ripening. More in-depth investigation would be needed to explain578

these seemingly different results.579

The inability of models based only on volume fraction-dependent average580

growth rate to reproduce OKMC cluster distributions is visible in Fig. 2. One581

of these models (effective medium), proposed by Brailsford et al. [14], is shown in582

this figure. Although the average values measured by OKMC reasonably agree583

with this law, the associated cluster distributions are markedly different. Sink584

strengths obtained by OKMC can even be lower than the Laplace solution, which585

is below the values given by the volume fraction-dependent laws. The inability586

of these laws to reproduce such dispersed data explains why cluster distributions587

obtained with OKMC are much broader than those obtained using standard CD.588

We have chosen to introduce dispersion around the Laplace law, since it fairly589

represents the average value of the sink strengths for all cases considered in this590

study and it can be efficiently implemented in CD. Additional data should be591

collected, especially at larger doses, to see if this choice is always relevant.592

To ensure that the correction is general, more complex cases should be con-593

sidered. For example, the dispersion is assumed to be independent of the volume594

fraction. Fig. 3 shows, however, that the dispersion tends to increase with vol-595

ume fraction. In addition, we have only considered one type of defect in our596

simulations where OKMC and CD are compared. A more realistic case would597

be to consider vacancies and SIAs at the same time. Concerning vacancies, our598

model including elastic interactions remains to be tested: analytical expressions599
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for sink strengths all rely on the description of defects as isotropic defects with600

the same relaxation volume at stable and saddle points [38, 39, 15]. Although601

this approximation is deemed correct for SIAs, it may be too crude for vacancies602

which are highly anisotropic at saddle position. It may be one of the reasons of603

the remaining discrepancy between our simulations and experiments by Chen et604

al. [30] reported in Section 6. As discussed in this section, additional sinks such605

as surfaces and grain boundaries may also change the sink strength dispersion606

of clusters if their density is appreciable.607

8. Conclusion608

Using a combination of CD and OKMC simulations, we have studied the609

effect of local surroundings on particle size distributions for microstructures610

under irradiation. Distributions obtained by OKMC are shown to be broader611

than those simulated by CD, even if the average effect of finite volume fraction612

is introduced in the sink strengths used in CD. We have shown that the sink613

strength dispersion must be included in CD in order to reproduce OKMC results.614

To come to this conclusion, we used a two-step procedure:615

� Simple laws for the sink strengths were proposed to reproduce the sink616

strength dispersion measured with OKMC in realistic microstructures.617

These laws depend on the solution in infinite medium (Laplace solution),618

multiplied by a factor which depends on the Voronoi volume associated619

with the sink.620

� A new formalism of CD was developed in order to integrate the sink621

strength dispersion. Cluster classes not only depend on the cluster size,622

but also on the normalized Voronoi volume of the cluster.623

Using this new approach, we showed that it is possible to obtain a satisfactory624

agreement between the cluster distributions simulated by CD and OKMC in625

all cases considered, although CD distributions become slightly narrower at626

the largest doses. A comparison was then made with experimental dislocation627
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loop distributions obtained by electron irradiation of aluminum thin foils up628

to 1 dpa. It was shown that the agreement is much better with sink strength629

dispersion than without, but that differences still exist. Sources for this residual630

discrepancy were discussed. More complex cases, involving for example two631

kinds of point defects and the presence of other sinks, should now be considered.632
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Appendix A. Deterministic solving of the CD equations including642

sink strength dispersion643

The deterministic solving of Eqs. (26)–(29) can be done by discretizing the644

values of v (Fig. A.14), noted vi, where i = 1, . . . , N and N is the number of645

equally spaced possible normalized Voronoi volumes. Values vi between 0 and 5646

are sufficient to accurately sample the Poisson-Voronoi distribution (Fig. 5). The647

spacing between two values of v is noted ∆v. We use the notations βn,i = βn(vi)648
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and Pi = P (vi). This leads to the set of equations to solve:649

dCn
dt

= βn−1Cn−1C1 − βnCnC1 2 ≤ n ≤ n∗ − 1 (A.1)

dCn,i
dt

= ∆vPiβn−1Cn−1C1 − βn,iCn,iC1 n = n∗, i ∈ [1, N ] (A.2)

dCn,i
dt

= βn−1,iCn−1,iC1 − βn,iCn,iC1 n > n∗, i ∈ [1, N ] (A.3)

dC1

dt
= −β1C1C1 −

∑
1≤n≤n∗−1

βnCnC1 −
N∑
i=1

∆vPi
∑
n≥n∗

βn,iCn,iC1. (A.4)

Figure A.14: Schematics of the deterministic solving of CD equations including sink strength

dispersion.

This set of equations can be readily introduced in the CD code CRESCENDO,650

which enables the use of different cluster populations coupled together only651

through the mobile species [6]. Here, the different cluster populations actually652

correspond to the same clusters, but in different environments.653

References654

[1] M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, C. H.655

de Novion, J. Nucl. Mater. 245 (1997) 224.656

37



[2] E. Clouet, A. Barbu, L. Lae, G. Martin, Acta Mater. 53 (2005) 2313.657

[3] T. Jourdan, F. Soisson, E. Clouet, A. Barbu, Acta Mater. 58 (2010) 3400.658

[4] S. I. Golubov, B. N. Singh, H. Trinkaus, Philos. Mag. A 81 (2001) 2533.659

[5] A. Hardouin-Duparc, C. Moingeon, N. Smetniansky-de-Grande, A. Barbu,660

J. Nucl. Mater. 302 (2002) 143.661

[6] T. Jourdan, G. Bencteux, G. Adjanor, J. Nucl. Mater. 444 (2014) 298.662
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on cluster size distributions simulated by cluster dynamics”
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In this supplementary material we present the cluster distributions obtained with a lower damage rate
(G = 10−3 dpa.s−1), in the case of the absorption on spheres without elastic interactions. The reference
distribution could not be obtained with OKMC due to CPU time constraints, so event-based kinetic Monte
Carlo (EKMC) was used instead. This method does not permit to take into account elastic interactions but in
the conditions considered here, it is faster than OKMC and yields identical results.

The same results as in the article are obtained (Fig. S1). The cluster distribution without sink strength
dispersion (CD-no-d) is too peaked. Introducing sink strength dispersion through our hybrid approach (CD-
d) leads to a much better agreement with the reference calculation.
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FIG. S1: Cluster distributions at t = 10−2 s, obtained with EKMC and two di�erent CD models: deterministic
calculation without dispersion and Laplace expression for sink strengths (CD-no-d), hybrid deterministic-
stochastic calculation using sink strength dispersion in the stochastic region (CD-d).
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