
HAL Id: cea-02494007
https://cea.hal.science/cea-02494007v1

Submitted on 28 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Prototyping Methodology for Rapid System
Validation in HW/SW Co-Design

Arief Wicaksana, Amir Charif, Caaliph Andriamisaina, Nicolas Ventroux

To cite this version:
Arief Wicaksana, Amir Charif, Caaliph Andriamisaina, Nicolas Ventroux. Hybrid Prototyping
Methodology for Rapid System Validation in HW/SW Co-Design. The Conference on Design and
Architectures for Signal and Image Processing 2019 (DASIP 2019), Oct 2019, Montreal, Canada.
�cea-02494007�

https://cea.hal.science/cea-02494007v1
https://hal.archives-ouvertes.fr

Hybrid Prototyping Methodology for Rapid System
Validation in HW/SW Co-Design

Arief Wicaksana, Amir Charif, Caaliph Andriamisaina and Nicolas Ventroux
CEA, List, Embedded Computing Laboratory

91191 Gif-sur-Yvette CEDEX, France
firstname.lastname@cea.fr

Abstract—As the System-on-Chip (SoC) complexity increases,
hardware/software co-design plays an important role to improve
design productivity, reduce time to market, and optimize the
overall results. Consequently, there is a high interest in providing
rapid system validation in such a paradigm to achieve the
aforementioned objectives. There exist in previous works proto-
typing techniques related to the development phase. FPGA-based
prototyping has the benefits of enabling HW/SW integration
and system validation after the Register Transfer Level (RTL)
implementation is available while virtual platforms provide
capabilities to accelerate software development with higher level
functional models, e.g. Transaction Level Modeling (TLM).

In this paper, we propose a hybrid prototyping methodology
which takes advantage of virtual and FPGA-based prototyping
in a single framework. We aim to provide a rapid and flexible
system validation solution for HW/SW co-design at various stages
of development based on the availability of TLM and RTL
implementations. The proposed methodology allows online and
offline performance analysis and debugging for early feedback
in HW/SW architecture exploration. This was evaluated in the
experiments with a neural network processor as a case study.

Index Terms—hybrid prototyping, rapid system validation,
HW/SW co-design

I. INTRODUCTION

System-on-Chip (SoC) architects nowadays are facing
greater challenges in development due to the ever-increasing
size and complexity of SoC design. Hardware architectures
and the software stacks that drive them need to be validated
together for higher productivity and reduced time to market.
Unfortunately, the traditional development process allows inte-
grating and validating hardware/software (HW/SW) only after
hardware development is finished and the first silicon samples
are available [1]. To overcome such a limitation, various
techniques in HW/SW co-design with or without hardware
models were proposed [2]. Each technique differs from the
others in terms of simulation speed, debugging capability,
HW/SW availability, etc.

For years, Field-Programmable Gate Array (FPGA) has
been targeted in physical prototyping to validate systems
based on their Register Transfer Level (RTL) implementations.
It provides accuracy and execution speed close to the real
operation. However, FPGA-based prototypes do not offer the
same level of visibility and control over the design compared
to simulation and emulation environments [3]. Furthermore,
software and hardware designs can only be deployed in FPGA
after the RTL implementations are ready.

Virtual prototyping, on the contrary, offers a simulation
environment before RTL implementations are available. It
allows SoC architects to start software development earlier,

TLM

µP Mem

TLM
Adapter

Virtual platform FPGA

HW
Transactor

User's
design

Mem

periph periph

Fig. 1: Typical system built on a hybrid prototyping framework

thereby shortening the overall schedule. Virtual prototyping
uses SystemC/TLM [4] as the de facto standard to model sys-
tem architecture with different simulation speeds and accuracy
levels. Despite that, the performance of a virtual platform when
building simulation environments close to the real application
is impacted by the degree of the complexity of the models.

This paper presents a hybrid prototyping methodology for
rapid system validation in HW/SW co-design. It combines the
strength of virtual and FPGA-based prototyping in a single
validation framework. Figure 1 describes a typical system built
using such a methodology. Our work enables rapid HW/SW
integration and system validation in SoC development by pro-
viding prototyping solutions at various stages of development
based on the availability of TLM and RTL implementations.
As a result, SoC architects (users) are granted with an opti-
mized and flexible validation flow as well as the possibility of
incremental architecture explorations.

We propose a new method for integrating FPGA prototyping
and virtual prototyping approaches. For this purpose, both
virtual and physical prototypes are executed concurrently in
the framework and synchronized every quantum as per a
loosely timed model in TLM. A TCP-based connection is
used to allow seamless communication and flexible FPGA
implementation. As a result, the use of locally-connected and
remote FPGAs is possible within our solution. Besides the
validation results, the methodology also provides performance
analysis and debugging features which are important in valida-
tion iterations. Component statistics from virtual and physical
prototypes are accessible from a unified debugging interface.
Furthermore, this interface also enables to use breakpoints and
logic analyzers in the FPGA to perform runtime analysis.

The remainder of this paper is organized as follows. Sec-
tion II presents a review of some related works. Section III
describes the proposed system validation flow using our hybrid
prototyping solution. Section IV details the hybrid prototyping
framework and its features. Section V presents the experiments
with a case study of neural network processor validation.
Finally, Section VI presents the conclusion and perspectives.

II. RELATED WORKS

Co-simulation solutions based on virtual prototyping have
been proposed to provide system validation using Sys-
temC/TLM models. An example of a co-simulation framework
which targets multi-processors system on chip (MPSoC) is
presented in [5]. The processor is modeled in a set of In-
struction Set Simulators (ISS) that executes the SW parts of
the system while the hardware is described in SystemC. As
their model is cycle-accurate, it offers visibility close to RTL
simulation but with a very slow performance. Other works
propose to use a processor emulator such as QEMU to provide
an accurate and realistic CPU model [6, 7]. The integration
of QEMU to emulate the processors and TLM to model the
hardware modules results in a fast co-simulation method in
exchange for cycle accuracy.

Both higher performance and cycle accuracy in validation
can be obtained by integrating FPGA-based emulation [8, 9].
In [8], a C/C++ simulator models the processors and an
FPGA emulates their peripherals. This offers a high verifica-
tion accuracy and full synchronization between simulator and
FPGA thanks to its shared register communication. However,
the FPGA utilization in [8] is non-optimal due to the costly
synchronization from the C/C++ simulator every clock cycle.
The work in [9] presents a combination of different abstraction
levels to emulate the entire system in FPGA-based prototyp-
ing. Embedded microprocessors in FPGA are used to run TLM
models while RTL modules are mapped in the reconfigurable
logic arrays. The communication overhead between TLM and
RTL is reduced since they run on the same platform. However,
this solution consumes significant FPGA resources and limits
the SoC design that can be fitted inside the FPGA.

An accurate and much more rapid validation can be
achieved by FPGA-based prototyping [3]. It allows a large
number of verification cycles running at speed much closer
to real time. Despite that, FPGA prototypes lack visibility
and control over the design compared to simulation and
emulation environments. To overcome such limitations, many
works have been done to add debugging capabilities in FPGA.
Logic analyzers [10, 11] are provided by FPGA vendors to
monitor internal signals inside the FPGA in exchange for a
significant amount of memory resources. The work in [12]
presents an internal node probing methodology to dump out
signal activities from FPGAs during co-simulation. However,
this solution requires extensive modification from initial RTL
designs to integrate the probes. [13] presents a less intrusive
method using an FPGA-based trace module to monitor internal
signals and provide activity events, such as the number of
executed instructions and RAM read/write accesses.

The use of virtual prototyping complemented by FPGA
prototyping is by far showing the highest potential in system
validation. Such a combination is presented in [14–16]. The
work in [14] uses a cycle-accurate virtual platform simulator
and IPC (Inter-Process Communication) to communicate with
physical prototypes. [15] shows a platform that integrates
functional simulation and an FPGA for HW/SW verification.
HAPS [16] offers a possibility of using the cycle-accurate
virtual prototyping tool from Synopsys with TLM interface
to manipulate the hardware platform.

Platform Specification User RTL Design

Virtual Platform

SystemC Simulation FPGA

HDL Synthesis

bitstream

Wrapper
Library

HDL

Input

Pre-processing

Runtime

communication
link

Fine-grained
Component
Statistics

Debug

Result

A
rch

ite
ctu

re
 E

x
p

lo
ra

tio
n

Signals
Waveform

Performance
Statistics

Debug

Fig. 2: System validation flow provided by our hybrid prototyping
solution

Our hybrid prototyping solution is distinct from the existing
works in that it uses a loosely-timed model in the virtual plat-
form. The virtual and physical prototypes can concurrently run
and synchronize whenever a communication occurs to reduce
the overhead. We also provide a flexible implementation of the
FPGA thanks to the light TCP-based communication. Finally,
our solution supports runtime debugging and performance
analysis for both virtual and FPGA-based prototypes.

III. HW/SW VALIDATION OVERVIEW

We propose a system validation methodology for HW/SW
co-design using a hybrid prototyping framework. This method-
ology takes advantage of both virtual and FPGA-based pro-
totyping to validate HW/SW architectures. Figure 2 depicts
the validation flow provided in our framework. The proposed
framework takes as an input a platform specification which
describes the full system architecture and software stacks.
It also takes the user’s RTL design for the parts that need
to be validated as prototypes in FPGAs. As the output,
HW/SW validation results and performance statistics of each
component are generated by the framework.

The virtual platform in our framework uses the provided
specification to build the system architecture from Sys-
temC/TLM models and to include software binaries. Then,
the platform is simulated using SystemC. Meanwhile, the
specification also describes a communication wrapper which
is implemented as a HW transactor in the FPGA platform. The
wrapper and the user’s design are then synthesized together to
generate a configuration file (bitstream) for the targeted FPGA.
Afterwards, both the virtual and FPGA-based prototypes are
concurrently executed. During execution, our hybrid frame-
work allows users to debug on specific parts of execution both
in the virtual platform and FPGA using breakpoint addresses.
The detail of this feature will be explained in Section IV. The
runtime debug feature has shown to be very useful in multiple
iterations for rapid HW/SW validation.

Furthermore, the proposed framework offers not only rapid
system validation results, but also performance statistics which
can be used to find errors and optimize the system architecture.
The activity report of each component, whether they be virtual
or physical is accessible from a unified interface during valida-
tion. This interface is provided by the virtual prototyping tool
used in our framework. It allows users to extract fine-grained
component statistics from SystemC simulation for online and

offline analysis, and design statistics from the FPGA through
the communication link. This communication link is built from
the virtual platform’s interface and the wrapper added in the
FPGA. The statistics in the FPGA record the performance of
validated designs, e.g. read/write events, read/write cycles, etc.
For a more thorough offline analysis, the wrapper in the FPGA
enables internal signal monitoring and recording. The selection
process of signals should be done before the synthesis while
the recording process can be controlled by users at runtime.

The high complexity of modern SoC demands hardware and
software parts to be developed and validated together in a
condition close to the real application. The proposed hybrid
prototyping methodology is able to address this challenge. For
instance, developing a Linux driver for a new peripheral device
requires access to specific library and functions. The use of vir-
tual platform enables functional and compatibility verification
of this driver directly on the targeted operating system. The
FPGA integration in the framework allows reusing stable IPs
or incrementally adding new IPs to the architecture. As more
SoCs integrate accelerators, the proposed hybrid prototyping
framework can be an excellent tool in the development of such
a system. The presented methodology can be used throughout
development of complex systems, from the early stage where
the entire system is described only in functional models until
the final prototyping stage before manufacturing. Moreover,
most parts of the flow presented in Figure 2 are automated
and users only need to deal with providing the platform
specification and RTL design. The next section will detail our
hybrid prototyping framework and its features.

IV. HYBRID PROTOTYPING FRAMEWORK ARCHITECTURE

Firstly, we will present the virtual prototyping solution
used in this work. Then, we will detail the communication
architecture between the virtual platform and the FPGA which
enables them to simulate a common system. Finally, we
will describe some features for debugging and performance
analysis in rapid system validation provided by our framework.

A. Virtual Prototyping Tool
In this work, the virtual platform is built using VPSim [7].

VPSim is an existing tool, part of the SESAM EDA frame-
work, which is used for virtual prototyping and Design Space
Exploration (DSE). As a virtual prototyping tool, VPSim is
based on SystemC/TLM simulation. And thanks to its efficient
implementation of loosely-timed TLM models, it exhibits a
very high speed in HW/SW validation. VPSim includes a
large library of CPUs, buses and peripheral models that can be
used to build the required SoC architecture. It is also capable
of integrating third-party SystemC/TLM models and external
FMI systems as proxy components.

The strength of using VPSim lies especially in its ability to
perform dynamic configuration of the modeled platform. VP-
Sim only requires a single compilation at the beginning and is
able to dynamically instantiate the platform before simulation.
This gives a high flexibility in architecture exploration during
iterative validation scenarios. Another advantage brought by
VPSim is that it enables users to perform architecture profiling
and performance analysis. Once the simulation is launched,
it gathers each component activity and provides fine-grained

DUTDebugger

Event
counter
Logic

Analyzer

HW
Transactor

Remote
Process

PCIe
or
AXI

TCP
Socket

Software Hardware

Initiator
Remote
Target

API

Driver

VPSim

Fig. 3: Communication between VPSim and FPGA in the Proposed
Hybrid Prototyping Framework

statistics. These statistics can be viewed either during runtime
via VPSim’s built-in debug and profiling utility or at the end
of simulation.

In this work, the VPSim’s built-in debug and profiling
utility is used as a unified interface for debugging both the
virtual platform and the FPGA. At runtime, users can halt the
entire execution and enter an interactive mode. In this mode,
performance statistics at the current time can be extracted
from each component in the validated system. Furthermore, the
debugging interface allows users to create breakpoints in the
FPGA prototype. The start and end of the signal monitoring
process are also controlled from this interface.

B. Communication between Virtual – FPGA Prototype
In addition to the rich component library offered by VPSim,

a feature that connects the virtual platform and the design
under test (DUT) in FPGAs is necessary in our framework.
From VPSim’s point of view, the DUT in FPGAs is considered
as a TLM remote target. Remote target is a proxy component
that connects VPSim to external prototyping devices, such
as RTL simulators or FPGAs. Figure 3 describes a logical
representation of the connection between VPSim and a DUT in
FPGAs. When a TLM initiator, such as a CPU, needs to access
a peripheral device or accelerator in FPGAs, it communicates
with an instantiated remote target inside VPSim. The remote
target is connected to an external remote process via a TCP
socket. Thanks to the communication using TCP socket,
connecting VPSim to a remote FPGA via Ethernet network
is also possible. The remote process then forwards read/write
accesses from the TLM initiator to the HW Transactor through
a PCIe or AXI interconnect. Finally, the HW Transactor will
perform read and write operation with the DUT based on the
access requests from TLM initiator.

In contrast with the existing works [14, 16] which directly
connect the TLM target to the HW Transactor in FPGAs, we
propose to create a remote process between them. Combined
with the TCP socket used in the communication, our frame-
work gives freedom in connecting the FPGA resources and
sharing them among users. It enables to use either locally
connected or remote FPGAs. Another reason is to allow a
utilization of multiple FPGA resources in the prototyping. As
the number of PCIe/AXI connection that a PC can provide
is limited, expensive prototyping platforms use an FPGA as
a router to the other FPGAs in the system. We provide a
possibility of using several smaller FPGAs connected to the
virtual platform. As more SoC-FPGA platforms with server-
like performance are becoming available in the market, our
solution will provide better flexibility and scalability.

The virtual platform in our proposed hybrid prototyping
framework uses a loosely-timed model for the SystemC/TLM

Target

b_transport (trans)

Call

Return

Initiator Remote Process

b_transport (trans)

FPGA

TCP request

TCP response

FPGA R/W request

FPGA R/W ack

x

Simulation @ 100+x ns

Simulation @ 100 ns

Time t0

Time t + x0

Fig. 4: Communication between VPSim simulation and FPGA
execution in the proposed framework

Algorithm 1 VPSim – FPGA communication mechanism

procedure FPGATRANSPORT
FPGATime← getFpgaTime()
if req = READ then

readFpga()
else if req = WRITE then

writeFpga()

return (getFpgaTime()− FPGATime)

simulation. The communication between TLM initiators and
targets is therefore blocking. We apply this blocking com-
munication to the FPGA-based prototype to ensure consistent
behavior during overall validation. The execution in VPSim
and in the FPGA run in parallel over a certain duration and
perform a synchronization during the communication.

The communication mechanism between the virtual plat-
form and the FPGA is depicted in Figure 4. When using
a loosely-timed model in SystemC, the simulation of TLM
initiators and targets proceeds at every quantum. We extend
this approach for the synchronization between VPSim and
the FPGA in the proposed framework. The time spent by
the FPGA to handle the request is calculated in the VPSim
simulation time. It is extracted from the FPGA each time a
communication occurs. During a read/write request, a TLM
initiator calls b_transport on a target socket. This call
triggers a TCP request to the remote process which is located
outside of VPSim, leading to a R/W request on the FPGA
prototype. After the FPGA handles the request, it sends an
acknowledgment signal to the remote process, which will be
forwarded to the TLM target, and finally returns from the
call to b_transport. The FpgaTransport procedure in
Algorithm 1 shows how the remote process performs a R/W
request and extracts the real execution time.

The FPGA execution proceeds at every quantum, just like a
TLM module. We add a SystemC thread in VPSim to trigger a
’step’ in the FPGA and put it into a ’sleep’ mode in order to let
other threads proceed in the simulation. The FPGA execution
will continue for a quantum and will be blocked until the
next trigger is received from the SystemC thread. Hence, the
execution of VPSim and the FPGA run in parallel with each
local quantum while being synchronized to a global simulation
time. It is worth noting that the FPGA timing can be decoupled
from the rest of the system to obtain higher performance in
functional validation where time accuracy is not necessary.
C. Run-Time Performance Analysis and Debug

In contrast to RTL simulation and emulation, FPGA-based
prototyping does not offer detailed information regarding
circuit activity. Consequently, the ability to perform runtime

performance analysis and debugging is limited in FPGA-
based prototypes. Nevertheless, there are some basic features
which can be added in rapid verification or validation without
incurring a significant penalty to the validation performance.
As presented in Figure 3, the HW Transactor wraps the DUT
and supports the communication with TLM models in VPSim.
In addition to this functionality, we integrate the following
capabilities to offer higher design visibility and control in
system validation.

1) Performance Counter
Performance counters are integrated to measure the
number of read/write operations, read/write cycles,
read/write bandwidth, and access to addresses. These
counters monitor bus activities connected to the DUT
and summarize data activity into a simple statistics
report. The performance counters work throughout vali-
dation except for number of access counters which must
be controlled from the VPSim debugging interface.

2) Breakpoint Debugger
Our framework allows users to assign breakpoint ad-
dresses to the FPGA through VPSim’s interface at
runtime. When there is any activity (read or write)
to a breakpoint address, the execution in VPSim and
the FPGA will freeze at the exact moment. From this
point, users may send a command to show performance
statistics in the FPGA, and view the component states
and CPU registers, check the memory contents, etc.
in VPSim. They can also add another breakpoint and
resume the execution.

3) Logic Analyzer
The ability to precisely monitor signal activities has
proven to be compelling especially during HW valida-
tion. We include a configurable logic analyzer inside
the HW Transactor to monitor more detailed activity in
the FPGA. Selected signals in the FPGA are recorded
during prototyping. The signal selection is done inside
the HW Transactor before synthesis. To minimize hard-
ware overhead that may reduce FPGA performance, the
recorded signal activities are flushed and dumped to a
VCD file. The start and end of recording is controlled
from the debugging interface of VPSim.

V. CASE STUDY

To evaluate our hybrid prototyping methodology, we con-
sidered a case study of HW/SW validation during a SoC devel-
opment. The objective was to validate a real image processing
application which used deep neural network methodology. A
neural network IP core was built to provide high-performance
image classification in the system. Using the proposed hybrid
prototyping methodology, we performed the experiments to
validate the IP and software stacks that drive it.

A. Framework Setup
The setup was built using a PC and a remote server which

contained an FPGA resource. The PC has 8 cores of Intel i7
@ 3.4 GHz and 16 GB of DDR memory. It runs 64-bit Linux
Ubuntu 16.04 LTS as its operating system and has VPSim
installed for virtual prototyping. The remote server has 8 cores
of Intel Xeon @ 2.67 GHz and 16 GB of DDR memory. It runs

RISC-V
Processor ROM

RAM

A
X

I
B

u
s

PNeuro
IP

TLM

V
P
S
im

R
e
m

o
te

Ta
rg

e
t

UART

Fig. 5: Architecture with RISC-V and PNeuro IP

64-bit Red Hat Enterprise Linux 7. In addition, the server is
connected with an FPGA prototyping platform via PCIe.

Due to availability reasons, we used the ProFPGA duo
V7 platform [17] from proDesign to provide the FPGA
resource in the server. ProFPGA duo V7 is a modular pro-
totyping platform with a possibility of integrating multiple
FPGAs and various supporting modules. In this work, we
only used a single XC7V585T FPGA module. It integrates
XC7V585T-1FFG1761 from Xilinx Virtex-7 family which
contains 582 Klogic cells, 29 Mbits of block memory, 1260
DSP slices, etc. The connection between the FPGA and the
PC server use a 4-lane PCIe Gen 2 which can offer up
to 4 GB/s theoretical bandwidth. It is worth noting that the
communication between VPSim and the FPGA is light and
generic which allows a utilization of other commercial FPGAs.
With the increasing popularity of MPSoC-FPGA platforms,
e.g. Zynq Ultrascale+, the remote server can be replaced with
such platforms by adapting the API and drivers used.

B. HW/SW Validation Environment
For this case study, we used the framework to validate the

PNeuro IP [18] and its software stacks. PNeuro is an IP devel-
oped to accelerate deep neural network (DNN) applications,
e.g. image classification. It is a neural network processor which
can be programmed with 32-bit instructions for both control
and computing. The SIMD clusters of PNeuro allows it to
perform all the operations required in DNN (convolutions,
pooling, non-linear functions, etc.) in parallel.

In a real-life scenario, accelerator such as PNeuro IP is
provisioned for machine learning tasks while the rest of
execution and system control is executed by general pur-
pose processors. In the targeted architecture, this role of
the general purpose processor is assigned to a multi-core
RISC-V processor. Figure 5 presents the hardware architecture
of the validated system. Besides the RISC-V and PNeuro,
the architecture integrates a RAM, a ROM, and a UART
controller for peripheral devices. For the software part, the
global application which accesses PNeuro is executed by the
RISC-V processor.

In the experiments, components can be allocated both in the
virtual platform and in the FPGA according to the required
accuracy and model availability. The PNeuro IP was synthe-
sized and programmed in the FPGA to validate its hardware
architecture. Meanwhile, we modeled the RISC-V processor,
memories (RAM and ROM), and UART controller in VPSim.
The image processing software that used PNeuro was also
loaded in the RAM for the validation process. The remote
target, remote process and HW Transactor (cf. Figure 3) are
represented as VPSim remote target in Figure 5. To adapt to
PNeuro’s input/output ports, the HW Transactor implements

TABLE I: Resource Utilization in the FPGA (Place-and-Route)

LUT FF BRAM

HW Transactor 2806 2956 1*
PNeuro 73716 11308 66

Overhead +3.8% +26.1% N/A
* For each 32-bit data record during 1024 cycles

the AXI4 interface. The working frequency of the design
inside FPGA is fixed at 100 MHz.

Table I presents the resource utilization in the FPGA. HW
Transactor and PNeuro IP were synthesized using Vivado
Design Suite 2018.2. The logic and register utilization of
HW transactor in FPGA are relatively constant as they do
not depend on the validated systems. They take less than 1%
of the used resource in the FPGA. When being compared
to PNeuro IP, the HW Transactor generates 3.8% overhead
in logic utilization which is relatively small. The register
overhead is 26.1% due to the resource required for storing
the configuration of event counters, breakpoint, and signal
monitoring infrastructure.

BRAMs are required in HW transactor to temporarily record
signal activities before being dumped to a VCD file. The
amount of BRAM needed in the framework is linear to the
number of signals probed and how often the data are dumped
out. We found that 1 BRAM was required to record 32-bit
data during 1024 cycles. Our framework uses 5 BRAMs at
a minimum to monitor AXI4 channels in the experiments. In
case of a larger quantum in the FPGA prototype, the amount
of used BRAMs in the HW Transactor will increase.

C. Experimental Results

In the experiments, we ran two applications on the PNeuro
IP for HW/SW validation: classification of 1 image and 8
images in parallel. The former application executed 379894
instructions while the latter executed 454153 instructions. The
higher number of instructions in the second application is
due to more image transfers between the RAM and PNeuro.
For comparison purposes, we also validated the system using
the proposed framework with a locally-connected FPGA, and
in RTL simulator Questa 10.6 by Mentor Graphics [19]. To
locally connect VPSim and the FPGA, we installed VPSim in
the remote server (cf. Section V-A).

Table II shows the comparison of validation time using the
proposed hybrid prototyping framework and a RTL simulation.
The RTL simulation only dumps the AXI4 interface signals
for minimum observation and faster execution. Even so, we
can see from the table that the proposed hybrid prototyping
methodology results in a much faster (at least 637 times) val-
idation process compared to RTL simulation. In our solution,
the use of remote FPGAs adds a small overhead compared
to local FPGAs due to the delay in Ethernet communication.
Hence, this overhead increases with communication between
VPSim and the FPGA. In these experiments, the processor
RISC-V was pooling the results from PNeuro throughout
validation which presented an unfavorable condition in the
communication. The performance comparison with other hy-
brid prototyping solutions is unavailable due to few equivalent
system-level validation results in the literature.

TABLE II: PNeuro validation time comparison

Image processing RTL
simulation

Proposed
(local FPGA)

Proposed
(remote FPGA)

1 image 2452 s 3.42 s (×717) 3.85 s (×637)
8 images (parallel) 3188 s 3.92 s (×813) 4.81 s (×662)

================= FPGA Global Statistics =================
Total execution : 4501658 cycles

Write events : 16887
Avg. write bandwidth : 12.01 Mb/s
Write cycles
Typ/Avg : 5 Max : 6 Min : 5
Read events : 54
Avg. read bandwidth : 38.39 Kb/s
Read cycles
Typ/Avg : 6 Max : 7 Min : 6

Fig. 6: FPGA statistics report at the end of HW/SW validation

Both VPSim and the FPGA produces performance statistics
which can be shown at runtime via VPSim debug interface
or in a report at the end of HW/SW validation. Figure 6
depicts an example of the statistics report produced for the
FPGA. The statistics in the FPGA are produced by the
performance counters in HW Transactor. It shows R/W events,
average bandwidth, and cycle required to perform a single
read/write by DUT. Similarly, VPSim also generates a report
of read/write count, instructions count, etc. from SystemC
simulation.

Another feature tested during validation is the logic analyzer
which monitors FPGA internal signals. Figure 7 presents
the output of AXI4 bus signal monitoring exported to a
waveform in gtkwave tool. As explained in Section IV, the
provided signal monitoring has a very small impact on the
validation performance. However, our current implementation
sequentially dumps signals into a file for every monitored
signal, which is not optimized. This is frequently performed
to reduce BRAM utilization which decreases validation speed.
It took 55.81 s to monitor the entire validation at a minimum
amount of BRAMs and it generated a VCD file with a size
of 434 MB. In future works, this monitoring implementation
can be improved with a scan-chain methodology presented in
[20] or statistical sampling method [21].

VI. CONCLUSIONS

We present a hybrid prototyping methodology to provide a
rapid system validation in HW/SW co-design. This method-
ology merges a fast HW/SW validation provided by virtual
prototyping with a rapid and accurate hardware verification
by FPGA. It offers the ability to validate both software and
hardware designs in various stages of SoC development, from
high-level functional description to RTL implementations. In

Fig. 7: Real-time AXI4 bus monitoring results shown in gtkwave

this work, the hybrid prototyping solution is based on VPSim
and a commercial FPGA locally or remotely connected.

The proposed solution is capable of generating performance
statistics reports from both VPSim and FPGA executions.
These statistics can be accessed in the middle or at the
end of validation iterations. In addition, we add runtime
debugging feature which uses breakpoint addresses to freeze
execution and perform a thorough analysis at runtime. For
signal monitoring in FPGA, a logic analyzer is provided for
offline analysis. In future works, we are looking forward
to increasing communication and monitoring speed, and to
add physical statistics during validation, such as dynamic
power consumption. Further measurements with High-Level
Synthesis (HLS) benchmark applications are also considered.

REFERENCES
[1] Soonhoi Ha and Jrgen Teich. Handbook of Hardware/Software Codesign. Springer

Publishing Company, Incorporated, 2017.
[2] James A Rowson. Hardware/Software Co-simulation. In 31st Design Automation

Conference, pages 439–440. IEEE, 1994.
[3] Nitin Gupta and Chethan Harakchand. Embracing the FPGA Challenge for

Processor Design Verification. In 2014 15th International Microprocessor Test
and Verification Workshop, pages 39–43. IEEE, 2014.

[4] John Aynsley et al. OSCI TLM-2.0 Language Reference Manual. Open SystemC
Initiative, 24, 2009.

[5] Stefano Cordibella, Franco Fummi, Giovanni Perbellini, and Davide Quaglia. A
HW/SW Co-simulation Framework for the Verification of Multi-CPU Systems.
In High Level Design Validation and Test Workshop, 2008. HLDVT’08. IEEE
International, pages 125–131. IEEE, 2008.

[6] Marius Monton, Antoni Portero, Marc Moreno, Borja Martinez, and Jordi Carra-
bina. Mixed SW/SystemC SoC Emulation Framework. In Industrial Electronics,
2007. ISIE 2007. IEEE International Symposium on, pages 2338–2341. IEEE, 2007.

[7] Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nicolas
Ventroux. Fast Virtual Prototyping for Embedded Computing Systems Design and
Exploration. In 11th Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools, 2019.

[8] Yuichi Nakamura, Kouhei Hosokawa, Ichiro Kuroda, Ko Yoshikawa, and Takeshi
Yoshimura. A Fast Hardware/Software Co-verification Method for System-on-
a-Chip by using a C/C++ Simulator and FPGA Emulator with Shared Register
Communication. In Proceedings of the 41st annual Design Automation Conference,
pages 299–304. ACM, 2004.

[9] Nobuyuki Ohba and Kohji Takano. An SoC Design Methodology using FPGAs and
Embedded Microprocessors. In Proceedings of the 41st annual Design Automation
Conference, pages 747–752. ACM, 2004.

[10] Xilinx Inc. ChipScope Integrated Logic Analyzer (ILA). https://www.xilinx.com/
products/intellectual-property/chipscope ila.html.

[11] Intel FPGA Inc. Quartus SignalTap II Logic Analyzer. https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/ug/signal.pdf.

[12] Sangjun Yang, Heejun Shim, Wooseung Yang, and Chong-Min Kyung. A new RTL
Debugging Methodology in FPGA-based Verification Platform. In Proceedings of
2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, pages
180–183. IEEE, 2004.

[13] Guillaume Patrigeon, Pascal Benoit, and Lionel Torres. FPGA-based platform for
fast accurate evaluation of Ultra Low Power SoC. In 2018 28th International Sym-
posium on Power and Timing Modeling, Optimization and Simulation (PATMOS),
pages 123–128. IEEE, 2018.

[14] Dionysios Diamantopoulos, Efstathios Sotiriou-Xanthopoulos, Kostas Siozios,
George Economakos, and Dimitrios Soudris. Plug&Chip: A Framework for
Supporting Rapid Prototyping of 3D Hybrid Virtual SoCs. ACM Transactions
on Embedded Computing Systems (TECS), 13(5s):168, 2014.

[15] Zheng Zheng, Xinan Wang, Zhaoyang Guo, and Guoxing Zhang. An auto-
matic software/hardware verification platform prototype for reconfigurable audio
algorithm in media soc. In 2015 IEEE 11th International Conference on ASIC
(ASICON), pages 1–4. IEEE, 2015.

[16] Synopsys Inc. HAPS Prototyping Solutions. https://www.synopsys.com/
verification/prototyping/haps.html.

[17] ProDesign Inc. ProFPGA duo Motherboard. https://www.profpga.com/products/
motherboards-overview/profpga-duo-.

[18] Alexandre Carbon, J-M Philippe, Olivier Bichler, Renaud Schmit, Benoı̂t Tain,
D Briand, Nicolas Ventroux, Michel Paindavoine, and Olivier Brousse. PNeuro: A
scalable energy-efficient programmable hardware accelerator for neural networks.
In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1039–1044. IEEE, 2018.

[19] Mentor Graphics Inc. Questa Advanced Simulator. https://www.mentor.com/
products/fv/questa/.

[20] X Cheng, AW Ruan, YB Liao, P Li, and HC Huang. A Run-Time RTL Debugging
Methodology for FPGA-based Co-simulation. In 2010 International Conference
on Communications, Circuits and Systems (ICCCAS), pages 891–895. IEEE, 2010.

[21] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe.
Statistical Sampling of Microarchitecture Simulation. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 16(3):197–224, 2006.

