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Abstract. In this paper, a new constitutive law aiming at describing the quasi-brittle behavior
when subjected to cyclic loading is presented. The proposed model is formulated within the
framework of isotropic continuum damage mechanics. The Cauchy stress tensor is split into
two contributions: one related to the matrix (without cracks) behavior the other related to
the crack behavior. This strategy allows accounting for both the crack closure effect and the
hysteretic effect in an efficient way making possible large-scale computations. In addition, a
specific attention is paid to the way of identifying the material parameters, often requiring
complex experimental tests not always easy to carry out. A virtual testing approach based on
the use of a discrete element model is used for this purpose.
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1 INTRODUCTION

Recent events that occurred in the world have once again shown the importance to predict
accurately the structural behavior of reinforced concrete structures when subjected to cyclic
loadings. The numerical description of the complex cyclic behavior of quasi-brittle materials
remains an open question and for this reason, this issue keeps on feeding an intense research
field. Toward the completion of the simulation of three-dimensional structures made of con-
crete subjected to cyclic loading, phenomenological models have inherent advantages. However,
the constitutive equations complexity increases rapidly when trying to capture consequences of
mechanisms induced under uniaxial cyclic loading. Indeed even recently developed models are
either not robust enough to simulate the complete response of structures subjected to cyclic
loading, or do not reproduce accurately phenomena related to cracks closure and friction, as
outlined by results of the ConCrack benchmark. Indeed, a low regularity of the constitutive
laws (discontinuous stiffness variations at stress sign changes) due to the consideration of stiff-
ness recovery under reverse loading leads to numerical robustness issues [1]. In addition, the
inaccurate description of hysteresis loops induces poorly estimated hysteretic dissipation and
therefore, specific issues when dealing with dynamic loadings. The first purpose of this study
is to enhance the efficiency of the model proposed in [2] to achieve structural simulations. A
specific attention is paid to phenomena observed under cyclic loading. Issues encountered with
the actual model are partly induced by a lack of experimental data, preventing from establishing
a finer mechanical description of the material’s behavior. Experimental data on quasi-brittle
materials Representative Volume Element (RVE) subjected to reverse cyclic loading are sparse
due to control and repeatability issues. Therefore the replacement of part of laboratory experi-
mentation by virtual testing is investigated. A RVE is considered here to be approximately of
a 0.1 m characteristic length, such as the material can be considered homogeneous with respect
to different phases. The second purpose of this paper is thus to illustrate the use of virtual
testing as a complement to laboratory experimentation to develop a regularized and accurate
macroscopic constitutive model for quasi-brittle materials fitted for cyclic loading. A microscopic
model based on the Discrete Element Method (DEM) is used as a virtual testing machine.

2 CONSTITUTIVE LAW FORMULATION

The phenomenological macroscopic model is formulated using a rather classic decomposition
of the total stress in the RVE. It is considered that the total stress σ can be split in two
independent parts:

σ = σm + σf (1)

with the stress in the cracked continuous media σm, neglecting any interaction between the

cracks, classically modeled with a damage model; and the stress in the cracks when closed σf .

Free energies Ψm and Ψf respectively associated to the two stress tensors are defined, and
compose the total free energy of the specimen:

Ψ = Ψm +Ψf (2)

At this point, both thermodynamic potentials remain completely unspecified. The free energy
Ψm is completely detailed in the next paragraph based on existing models. In contrast, the free
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energy Ψf is only roughly introduced since it is not totally determined already, a virtual testing
step will be required to complete its formulation.

2.1 CRACKING PROCESS

Fracture processes are modeled by means of the continuum damage theory. The simpler the
damage variable is kept, the more robust the proposed macroscopic model is. Therefore, in view
of the structural applications of the proposed model, an isotropic damage model is formulated,
implying a unique scalar damage variable. The free energy associated to the cracked continuous
media simply writes:

Ψm =
1

2
(1−D) ǫ : C : ǫ+Ψm,D(z) (3)

with D the isotropic damage variable, ǫ the second-order total strain tensor, C the fourth-order

Hooke’s tensor, z the isotropic hardening variable, and Ψm,D the free energy related to damage.
The formulation of the non-associated pseudo-potential of dissipation ϕm is based on the Mazars
failure criterion and expressed in terms of thermodynamical variables.

ϕm = Ȳ − (Y0 + Z) (4)

where Z stands for the thermodynamic force associated to z, Ȳ the energy rate Ȳ = 1
2Eǫ0ǫ

eq

which is written as a function of Mazars equivalent strain ǫeq =
√

〈ǫ〉+ : 〈ǫ〉+, ǫ0 the elastic

limit strain, and Y0 the elastic limit energy rate written in a similar fashion Y0 = 1
2Eǫ20. The

asymmetry between traction and compression loading is only considered through its consequence
on the peak load and the softening behavior of the material, and is introduced in the damage
variable evolution law derived from Ψm,D. An additional variable κ is introduced to consider
the effect of a confining pressure on cracks propagation, namely a higher peak load value and a
more ductile behavior:

dΨm,D

dz
(z) = −

κ

B0
ln

[

Y0

Ȳ
(1 + z)

]

(5)

where B0 stands for a parameter controlling the softening behavior and κ computed as follows:

κ = 1 + k0

(〈

σm
〉

−
:
〈

σm
〉

−
(

σm
)

:
(

σm
)

)1/2

= 1 + k0

(〈

C : ǫ
〉

−
:
〈

C : ǫ
〉

−
(

C : ǫ
)

:
(

C : ǫ
)

)1/2

(6)

where k0 stands for a parameter measuring the influence of the confining pressure, and therefore
only influences the failure behavior when cracks are induced indirectly (e.g. in compression).
The direct tension behavior remains uninfluenced, indeed κ is then equals to 1. Based on
consistency conditions, the damage variable evolution law finally writes:

D = 1−
Y0

Ȳ
exp

[

−
B0

κ

(

Ȳ − Y0

)

]

(7)

3



B. Richard, M. Vassaux, F. Ragueneau and A. Millard

2.2 CRACK CLOSURE EFFECT

2.2.1 STIFFNESS RECOVERY

Cracks mechanical behavior described by the stress tensor σf is first considered elastic. σf

is defined as non-linear function of the strain tensor ǫf = D × ǫ, which could be called the
homogenized contribution of cracks opening to the total strain of the RVE. Such strain tensor
definition is found as well in [3]. The following assumption is made on the evolution of σf with

respect to ǫf :

σ̇f = ϑ
(

ǫ̇f
)

C : ǫ̇f (8)

The function ϑ is scalar, in other words, the tangent modulus of the cracks stress-strain relation-
ship is proportional to the undamaged Hooke’s elastic tensor. Therefore ϑ represents the part of
the lost stiffness due to cracking which is recovered thanks to cracks closure, and can only take
values ranging from 0, when cracks are completely opened, to 1, when cracks are completely
closed. Since ϑ evolves according to the materials solicitation, it is considered to be dependent
on ǫ̇f . Set aside its physical meaning, ϑ can be considered as a numerical regularization of the
multiple Signorini’s contact problem induced by cracks closure. ϑ should then be formulated to
evolve from 0 to 1 in sufficiently regular manner to avoid discontinuities of the constitutive laws
or of their derivatives. The final formulation of ϑ is proposed and physically justified in the next
section by means of a virtual analysis of the evolution of the proportion of closed cracks during
a uniaxial cyclic test. The elastic part of the free energy associated to cracks behavior is then
written as:

Ψf,e =

∫
(
∫

ϑ
(

ǫf
)

C : dǫf
)

dǫf (9)

A first condition on ϑ can be set, in order to ensure continuity of the free energy Ψf,e, such
condition would be that ϑ be at least of class C0.

2.2.2 HYSTERETIC LOOPS

The explanation of hysteresis effects relying on frictional sliding occurring at the cracks sur-
faces justifies a modeling method based on plasticity theory. In consequence, a perfect plasticity
model along with a Drucker-Prager criterion is utilized. Because of perfect plasticity, the free
energy Ψf is reduced to an elastic part Ψf,e and introduces a single internal variable, the plastic
strain accumulated through sliding between the cracks ǫf,p, defined as ǫf = ǫf,e + ǫf,p:

Ψf = Ψf,e
(

ǫf − ǫf,p
)

=

∫
(
∫

ϑ
(

ǫf − ǫf,p
)

C : d
(

ǫf − ǫf,p
)

)

d
(

ǫf − ǫf,p
)

(10)

Yet ǫf,p is independent on ǫf . In addition, ǫf,p as a plastic strain refers to an isochoric transfor-

mation, therefore its first invariant is null. Then ϑ
(

ǫf − ǫf,p
)

= ϑ
(

ǫf
)

, hence:

Ψf =

∫
(
∫

ϑ
(

ǫf
)

C : dǫf
)

dǫf −
1

2
ϑ
(

ǫf
)

ǫf,p : C : ǫf,p (11)
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Thus:

Ψf = Ψf,e
(

ǫf
)

−
1

2
ϑ
(

ǫf
)

ǫf,p : C : ǫf,p (12)

Conditions of continuity of the free energy Ψf are not changed when introducing frictional
sliding, it is still required that ϑ be C0. The pseudo-potential of dissipation is a Drucker-Prager
criterion:

ϕf =
√

J2
(

σf
)

+ µ0I1

(

σf
)

(13)

where µ0 stands for a parameter which could be assimilated to a friction coefficient. Regarding
the physical significance of the chosen criterion, the J2 part refers directly to shear occurring in
the cracks, while I1 rather refers to cracks surface normal pressure. In consequence, when J2
exceeds µ0I1, frictional sliding is observed. Furthermore, the J2 part depends on ϑ through σf ,
therefore depends on the proportion of closed cracks. Thus when all the cracks are open the J2
is negligible and as expected no frictional sliding is observed.

3 IDENTIFICATION BY VIRTUAL TESTING

3.1 UNILATERAL EFFECT

The formulation of the continuum model accounting for cyclic effects has almost fully been
presented, only remains the function ϑ to be defined. Its physical sense has already been
explained, namely the evolution of the proportion of closed cracks with respect to the cracks
strain tensor ǫf . However, ϑ remains to be characterized. This process is undertaken using the
virtual testing machine aforementioned and the discrete simulations of the uniaxial cyclic test
[4]. The function ϑ, as the proportion of closed cracks, represents the proportion of cracks in
which forces transit and contribute to the stiffness recovery of the specimen. The evolution of
ϑ is characterized analyzing the evolution of the ratio of number of contacts detected and the
number of cracks initiated in the virtual material sample during the simulation of the uniaxial
cyclic test. The analysis is led for different damage levels, that is different maximal cracks
strains ǫfmax. The maximal cracks strains tensor is defined as ǫf

max
= ǫf,tm , where tm stands for

the pseudo-time such as I1
(

ǫf,tm
)

= max
∀t

[

I1
(

ǫf,t
)]

. The figure 1 shows the evolution of the

proportion of closed cracks during unloading phases.
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Figure 1: Dependency of the proportion of closed cracks to ǫ
f
max evaluated with the microscopic

model.

Independently of ǫ
f
max, the proportion of closed cracks follows a sigmoidal evolution with

respect to ǫf . To determine an analytic expression for ϑ let us consider the probabilistic event
”a crack closes”, ϑ is the distribution function of this event. From the results obtained with the
microscopic model, it appears that this event follows a symmetrical distribution centered in ǫf =
0, therefore it could be assumed that the event ”a crack closes” follows a Gaussian distribution
of zero mean. ϑ is then expressed as the distribution function of a Gaussian distribution:

ϑ = 1−
1

1 + exp
[

−f × I1
(

ǫf
)] (14)

where the function f is associated to variance of the Gaussian distribution. The maximal cracks
strain ǫ

f
max affects the evolution of the proportion of closed cracks (see figure 1). The more

damaged the specimen, the bigger the variance of the event ”a crack closes”. The function f is
finally chosen to account for this dependency:

ϑ = 1−
1

1 + exp

[

− α0

I1
(

ǫf
max

) I1
(

ǫf
)

] (15)

where α0 stands for a parameter controlling a reference variance of the event ”a cracks closes”.
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Figure 2: Dependency of the proportion of closed cracks to ǫ
f
max evaluated with the function ϑ

for α0 = 6.5.

The formulated expression of ϑ is a sigmoidal function, therefore it is at least of class C0.
Continuity of the total free energy is therefore ensured.

3.2 HYSTERETIC EFFECT

Even though, unlike cracks closure, efficient and robust modeling techniques already exist to
reproduce frictional sliding at the macroscopic scale, based on plasticity theory, the parameters
introduced remain to calibrated. As the Drucker-Prager criterion for the initiation of sliding
between the cracks has been presented beforehand (see equation 13), the parameter µ0 has
to be evaluated. Instead of calibrating the value of µ0 arbitrarily, a methodology based on
the virtual testing machine is once again proposed. By means of the microscopic model it is
possible to estimate the dissipated energy specific to frictional sliding, among other dissipation
mechanisms. Therefore, the parameter µ0 is calibrated in order to observe an identical friction
specific dissipation in concrete RVEs modeled using the microscopic model and the macroscopic
continuum model (i.e a Gauss point). The comparison of both models is realized during the
simulation of a complete cycle of uniaxial cyclic test, namely loading, unloading, reloading. The
amplitude of the cycle is arbitrarily chosen to vary from ǫ

f
max = 2.0×10−4 to ǫ

f
max = −1.0×10−4

back to ǫ
f
max = 2.0 × 10−4. Friction related dissipated energies are respectively computed from

the following formulations:

� for the microscopic discrete model, the dissipated energy is incrementally computed as the
sum of the variations of dissipated energies for every contact between particles i and j

detected, thus:

Ed,t+1
µ = Ed,t

µ +
∑

i=1,...,nparticules




∑

j=1,...,ni
contact

1

2

(

T
(

F t+1
fric,ij + F t

fric,ij

)

.
(

∆δus,ijtc,ij
)t+1

)



 (16)
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where F fric,ij and ∆δus,ij respectively stand for the friction force and the increment of
relative sliding displacement between particles i and j, t the current time-step, and ni

contact

the amount of contacts detected on the particle i;

� for the macroscopic continuum model, the dissipated energy is incrementally computed as
the integral over the representative volume Ω of the tensor product of the cracks stress σf

and the increment of plastic cracks strain ∆ǫf , thus:

Ec,t+1
µ = Ec,t

µ +

∫

Ω

[

1

2

(

σf,t+1 + σf,t
)

: ∆ǫf,p,t+1

]

dV (17)

Evolutions of the computed energies during the aforementioned loading cycle are presented in
figure 3. Both dissipated energies remain null during the loading step, cracks are completely
open. Then, an important growth is observed during unloading, while cracks progressively
close. During reloading, both energies evolutions stagnate first since cracks are completely
closed, before opening progressively leading to another growth of the dissipated energy related
to friction.
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Figure 3: Sensitivity of the friction related dissipated energy of the continuum model to the
parameter µ0.

The parameter µ0 is then evaluated at µ0 = 2.82. It might added that the friction related
dissipated energies computed with both models present similar trends, which comforts the choice
of the perfect plastic modeling, along with a Drucker-Prager criterion, of the cracks frictional
sliding mechanism.

4 LOCAL RESPONSE

The continuum model has been implemented in the finite element software Cast3M [5], devel-
oped by the French Sustainable Energies and Atomic Energy Commission (CEA). Parameters of
the continuum media part of the model are calibrated by equivalence with macroscopic reference
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results provided by the virtual testing machine on a square sample of 0.1 m side length. The
tension resistance, the tension fracture energy, and the compression resistance are respectively
utilized to calibrate ǫ0, B0 and k0 (see table 1). In the whole section results plotted with dashed
lines refer to the results provided by the virtual testing machine, and plain lines refer to results
obtained with the continuum model.

E (GPa) ǫ0 B0 (kJ−1.m3) k0 α0 µ0

37 1.0× 10−4 4 (Gf = 56 J.m−2) 4.5 6.5 2.82

Table 1: Calibrated values of the continuum model’s parameters for the local validation.

The uniaxial reverse cyclic test response obtained with the macroscopic model is fairly close
to the reference response obtained with the virtual testing machine. First, the addition of the
non-linear model of cracks behavior to a classic model, utilized to describe continuum media’s
behavior, allows to reproduce the progressive stiffness recovery as well as residual strains which
disappear in compression (see figure 4a). Second, the addition of the plastic model of cracks
behavior, enables the emergence of the hysteretic behavior, crescent-shaped hysteresis loops are
observed at accurate stress levels (see figure 4b). Thus, dissipative mechanisms are activated for
appropriate loading amplitudes.
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Figure 4: Uniaxial reverse cyclic response of the continuum model.

A uniaxial cyclic compression test is simulated. Friction between loading supports and the
sample influences highly the inelastic compression response. Therefore, so as to ease the com-
parison, for both models, no friction in between the sample and the loading supports has been
considered. The overall compression response, peak-value and softening behavior, obtained with
the continuum model is similar to the response obtained with the virtual testing machine. Such
results are interesting, knowing that a single scalar damage variable is introduced in the con-
tinuum model. It is also quite interesting to note the contribution of the cracks behavior to the
compression response. Hysteresis loops can be observed as well as in tension. But above all,
cracks behavior increases the value of the compression resistance, due to the formulation of the
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function ϑ, which depends on the first invariant of the cracks strain tensor.
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Figure 5: Uniaxial compression cyclic response of the continuum model.

5 STRUCTURAL CASE STUDY

The structural validation is undertaken simulating the response of a reinforced concrete wall
submitted to horizontal shear forces. This structure has been tested in the ConCrack benchmark
as part of the CEOS.fr project. The simulation of this case study allows the testing of two aspects
of the continuum model: (i) its numerical robustness, because the setup implies local shear
loading, multiple cracking locations, structural size dimensions, besides few accurate numerical
results are available according to conclusions drawn from the ConCrack benchmark and (ii) its
representativeness with respect to phenomena observed under cyclic loading, because alternate
cyclic loading is simulated. The concrete structure is modeled using eight-nodes cubic finite
elements. Top and bottom massive parts of the wall are considered to remain elastic (in green,
see figure 6). The central thinner part of the wall is modeled with the proposed model (in gray,
see figure 6). Inelastic parameters are entirely calibrated from results provided by the virtual
testing machine, with the exception of the elastic strain limit, along with elastic parameters,
which were given in the benchmark’s report. Calibrated parameters value are given in the table
2. A regularization of the fracture energy depending on elements size is implemented.

E (GPa) ǫ0 B0 (kJ−1.m3) k0 α0 µ0

22 1.5 × 10−4 4 4.5 6.5 2.82

Table 2: Calibrated values of the continuum model’s parameters for the member-scale simula-
tions.

10



B. Richard, M. Vassaux, F. Ragueneau and A. Millard

Figure 6: Mesh of the shear-wall (with hc = 0.1 m).

The global response obtained with the proposed model is satisfactory on the two aforemen-
tioned aspects. The complete response to the prescribed load has been successfully simulated
(see figure 7b), which confirms the inherent numerical robustness of the continuum model. The
achieved robustness is mostly explained by the continuity of the established constitutive laws,
to which can be added to a fully explicitly local integrated continuum model with the exception
of plasticity. Enhanced representativeness is also noticed. Regarding the fracture mechanisms,
simulated results show that the global response is well estimated, either the elastic limit or
the stiffness of the cracked structure, are accurately evaluated. Regarding the cyclic effects,
the global response is symmetrical, indeed stiffness recovery is accurately observed when the
horizontal loading direction is inverted and peak loads are identical on both loading directions.
This observation implies that the crack closure mechanism is accurately accounted for and re-
produced even for member-scale simulations. Because of the isotropic damage description, if
stiffness recovery had not been accurately reproduced, a symmetrical global response could not
have been observed. This consists in a first validation of the chosen ϑ formulation. The global
response presents hysteresis loops, yet the steel-concrete interface is non-degradable and steel
rebars have remained elastic during the whole simulation. Consequently, the observed hysteresis
loops are induced by the continuum model and confirms that frictional sliding is reproduced in
member-scale simulations.
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Figure 7: Global response of the shear-wall to alternate loading.
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6 CONCLUDING REMARKS

The purpose of the present paper was to propose a continuum model for quasi-brittle materials
able to reproduce phenomena observed under cyclic loading, while remaining sufficiently robust
to simulate the behavior of massive structures. The formulation of macroscopic constitutive
laws has been established using a virtual testing approach. A model framework, quasi-brittle
materials submitted to cyclic loading has been proposed on the basis of the model proposed in [2].
The continuity of the original model has been improved introducing the distribution function of
a statistical Gaussian process to regularize the homogenized contact problem of closing cracks.
Such smoothing function introduction has been physically justified by the analysis of micro-
cracks opening and closure with the microscopic model. An homogenized cracks stress tensor,
on which a perfect plastic model has been applied, to reproduce phenomena related to frictional
sliding of cracks surfaces. Such modeling choices led to satisfying results, namely crescent-
shaped and accurately positioned hysteresis loops. Quality of the resulting and identified model
has been verified at the RVE scale and validated at the member scale by the simulation shear
wall under alternate loading. The simulation of the complete loading path has been achieved.
This simulation served as a validation of the numerical robustness of the proposed continuum
model. The accurate consideration of cracks closure and friction has also been observed at the
member scale which served as a validation of the cyclic effects modeling.
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