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ABSTRACT
This paper presents PaDaWAn, an infrastructure written in Python
to provide loosely coupled in situ capabilities to accelerate file-
based simulation workflows. It provides services for in-memory
data exchange between applications and a simple configuration
model to switch from a file-based workflow to a loosely coupled in
situ workflow. The infrastructure is currently based on CEA-DAM
Hercule parallel I/O library by providing an ABI-compatible library
to intercept simulation data in a transparent way and to facilitate
integration into existing simulation codes and tools. PaDaWAn
implements a producer-consumer pattern with buffering of data in
an in-memory staging service with automatic memorymanagement
and running on dedicated resources. We describe the key design
decisions and main architectural features, and share the lessons
learned from the development of the infrastructure and from setting
up test runs on two production-like workflow cases. We conclude
on the perspectives for our infrastructure.
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• Software and its engineering → Publish-subscribe / event-
based architectures; Software libraries and repositories; •Human-
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1 INTRODUCTION
In this paper we describe PaDaWAn (for Parallel Data Workflow
for Analysis), an experimental infrastructure written in Python to
provide loosely coupled in situ workflow capabilities.

The project was initiated as a software engineering experimen-
tation to address the I/O bottleneck challenges expected on future
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classes of supercomputers. Two specific use cases were identified
for driving the design of the solution: 1) asynchronous I/O and high
resolution movie images processing executed in parallel with an
AMR hydrodynamic simulation, 2) in-memory buffering of data
produced by a multi-physics simulation and consumed by many
parametric instances of a second simulation scheduled in parallel.

The objectives were to 1) alleviate the burden on the I/O subsys-
tem, 2) increase the output data frequency, 3) limit the persistent
storage space used and 4) accelerate studies by reducing the time
spent in I/O operations and by running all applications in parallel.

PaDaWAn infrastructure features an in-memory data staging
service running on a set of dedicated resources, a controller service
managing queues and synchronization between data producer and
consumer applications, and a workflow launching command-line
utility based on a simple configuration model. The infrastructure
client is meant to be lightweight and to integrate seamlessly into
our simulation codes. The whole infrastructure code base is written
in Python with client bindings in C, C++ and Fortran.

Themain contribution of this paper besides providing an overview
of the infrastructure design, architecture and implementation is
to share the lessons learned from setting up in practice an in situ
workflow, to reflect on the design choices made and to expose the
challenges of effectively integrating legacy applications into in situ
workflows in general.

The paper is organized as follows: Section 2 describes our design
decisions and the related works. Section 3 provides an architectural
overview and some implementation details. Section 4 presents the
results obtained. Section 5 details the lessons learned. Finally Sec-
tion 6 provides a conclusion and perspectives for our infrastructure.

2 DESIGN DECISIONS AND RELATEDWORK
2.1 Lightweight loosely coupled in situ
The use cases described in Introduction involve coupling heteroge-
neous applications possibly written in different languages and with
differing needs in terms of resources, environment and execution
runtime. Considering the flexibility required to accommodate these
constraints we adopted a lightweight loosely coupled in situ
approach. Loosely coupled in situ as defined in [10] (also referred
as in transit) consists in extracting data produced by the simulation
and sending it to separate resources for further processing. This
approach is used in DataSpaces [6], GLEAN [18], Damaris [7] and
Decaf [8]. The lightweight aspect comes from the infrastructure
client library which single purpose is to extract and send simulation
data to the staging service as fast as possible without performing
any complex processing.

As advocated by authors of [10], this approach presents several
advantages over the tightly coupled in situ alternative used by
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ParaView Catalyst [2], VisIt Libsim [11] or ALPINE Ascent [13] in
which data processing runs synchronously with the simulation in
the same process. In our case, the key advantages that have driven
this decision are:

Limited impact on the simulation: as data consumer applications
run on separate processes and potentially on distinct nodes, the
impact on the simulation is limited to the infrastructure client
library the simulation links to. When a data array is passed to the
client library, the simulation blocks and a minimum-copy transfer
to the staging area is immediately performed, hence limiting the
amount of share memory used. This allows to provide a lightweight
client library reducing the risk of introducing new potential failure
points into the simulation code.

Resources flexibility: the loosely coupled in situ approach pro-
vides the flexibility to adapt efficiently the resources required by the
different applications in the workflow. In particular, data consuming
applications can run a wider range of in situ processing algorithms
including those requiring persistent state (e.g. multiple time steps,
see Melissa [16]). It also provides the flexibility to accommodate
the future trend of architectural and platform heterogeneity (e.g.
mixing compute, high-memory, GPU and I/O nodes in the same
workflow execution).

Facilitated integration: the infrastructure client library is a light-
weight library to link to. It does not embed any routine execution
runtime thus limiting the risk of dependencies inconsistencies with
the simulation.

2.2 Garbage-collected in-memory data staging
service

Our in situ workflow model can be characterized as a semi-dynamic
batch workflow in which the number of producers and consumers
is statically defined at startup but these can be spawn dynamically
and connect to PaDaWAn infrastructure at any time. To accom-
modate this model and handle late-joining consumers, we adopted
an intermediate in-memory staging area to buffer data streams.
Memory in the staging area is automatically managed through a
simple garbage collection scheme that keeps count of the number
of remaining consumers to process buffered data. This is made
possible by knowing ahead the number of consumers and setting
the maximum count at startup.

We also opted to have this data staging service as a single-user
service co-scheduled with the user workflow applications rather
than being a permanent facility-wide service. The objectives were
to simplify the development and to allow the user to fine-tune the
staging memory required through an option in the configuration
system, see section 3.4.

Similar staging service is used in DataSpaces when combined
with the DART [5] communication library. Memory space in the
staging area is managed differently though, relying on a config-
urable number of data versions with automatic eviction in FIFO
manner and API calls for applications to explicitly manage locks
on data. GLEAN also relies on staging nodes however they are only
used for asynchronous I/O to the file systems.

2.3 Socket-based data transport
Different data transport mechanisms have been used in related
projects. One is based on MPI and uses a global communicator
shared between all applications in the workflow. These applications
are launched either within a single MPI program like Damaris or
throughMPMD launching capabilities of MPI like Decaf. The DART
communication library used in DataSpaces is based on RDMA and
rely on low level access to supercomputer interconnect to seek raw
data movement performances.

Similar to GLEAN and Melissa, our data transport infrastructure
is based on TCP socket communications instead. This decision
allows to simplify the development of distributed applications by
leveraging external libraries to implement reliable patterns and
by the capacity to easily handle connection / disconnection and
manage failure of one task without compromising the whole system
(unlike mostMPI implementations). Performance wise, this decision
was backed by the fact that we expected fairly good performances
using high-speed interconnect through the IP over interconnect
layer (e.g. IPoIB).

Using sockets also presents the advantage of portability and can
ease the integration of non-MPI or non-HPC tools and services to
use the infrastructure with the potential of crossing the barriers
of a compute cluster or a computing facility. This is the case for
GLEAN which staging service is hosted on a separate cluster that
can only communicate with the compute cluster through sockets.

2.4 High level I/O layer coupling
The coupling strategy is based on intercepting and exchanging data
produced by the simulation at the parallel I/O library level. We have
developed a library ABI-compatible with Hercule [4], a contract-
based high performance parallel I/O library developed at CEA-DAM
and used by our main simulation codes and post-processing tools.
This ABI-compatible library captures and transfers simulation data
to PaDaWAn infrastructure. This is intended to facilitate integration
into existing simulation codes and processing tools that use Hercule
but required the development of specificmappings betweenHercule
API and PaDaWAn internal API.

With this strategy it is transparent to the simulation whether
data are written on disks or sent through the network. This is ex-
pected to simplify the setup of an in situ workflow by first testing
the corresponding file-based workflow. Then PaDaWAn aims at
providing a simple configuration and launching utility (see Sec-
tion 3) to execute the workflow in situ without the need to modify
the simulation code.

This strategy also permits to capture and leverage high-level
and metadata-rich description of data arrays (as provided by our
I/O library interface) to allow "smarter" filtering, dispatching and
processing along the data path.

This approach is at the core of ADIOS [14] which decouples
the I/O interface from the data transport implementation. GLEAN
also uses pNetCDF and HDF5 ABI-compatible libraries to facilitate
integration into existing codes.
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2.5 Python as main development language
The key distinguishing design decision was to chose Python as
main development language. The primary objective was to accel-
erate development time and facilitate experimentation of various
implementations by leveraging the large ecosystem and community
surrounding the language.

We also wanted to demonstrate the ability of the language to run
efficiently in an HPC production environment, notably the capabil-
ity of embedding Python through its C API and the ability of Numpy
to wrap arrays without copy. As PaDaWAn is also essentially a data
transfer infrastructure coordinating network I/O operations and
does not perform any complex computation on data nor provide a
routine execution runtime, Python seemed a reasonable choice in
terms of performance.

Last, having an infrastructure natively written in Python (and
using Numpy) allows to deliver more rapidly to a scientific user
community heavily relying on Python/Numpy for accessing and
processing simulation data.

3 ARCHITECTURE AND IMPLEMENTATION
DETAILS

3.1 Data containers and API
The Hercule library uses the concepts of collections and records as
data containers. Simulation codes may produce different collections
(e.g. post-processing output, checkpoints, coupling data) consisting
in a set of records indexed by the MPI rank of the process emitting
the record and by the current simulation time step. Each record is
self-describing and contains data arrays and metadata (properties,
relationships and contract-based semantic information). Hercule
API can be summarized as: open/close_collection, open/close_record,
plus several methods to fill the record with data arrays and meta-
data.

In addition to this API, the provided Hercule ABI-compatible
client library includes a record iterator method for consumer ap-
plications. This additional service requires some modifications in
existing codes when executed as consumers.

This client library is written in C and uses the Python C API
to maps Hercule methods to PaDaWAn Python methods. C++ and
Fortran bindings are also available.

3.2 Data staging service
The data staging service is a distributed in-memory key-value store
running on a dedicated set of cores or nodes. The client and server
codes are written in Python and use ZeroMQ [19] library to handle
TCP communications. The server stores data in memory in a Python
dictionary and features a thread-pool executor to handle multiple
connections. Compression is available in option with blosc [3]. A
composite client can manage multiple server instances by simply
dispatching/fetching record data based on the record index (the
MPI rank of the record producer is used to distribute records evenly
among the server instances). Overall, the implementation requires
less than 500 lines of Python code.

3.3 Producers/consumers coordination
Data exchange and synchronization between producers and con-
sumers is illustrated on Figure 1.

Producer Consumer

PaDaWAn

Staging 
Area

Controller

Delete

Put

Publish

Get

Close

Subscribe

Next

Figure 1: PaDaWAn components coordination

It implements a publisher/subscriber pattern that manages late-
joining subscribers by buffering raw data in the staging area and
managing record queues (one for each subscriber) in a controller
process.

During an I/O step of a particular collection, the simulation opens
a record and fills it with data arrays and metadata. The PaDaWAn
client transfers immediately these data arrays into the staging area
and replaces the array in the record structure by its key in the
staging area. When the simulation closes the record, the client
publishes the record ID to the controller which pushes it in each
consumer’s queue.

On consumer side, applications subscribe to a collection and
retrieve records one by one through the use of an iterator. Data
arrays within the record are only fetched from the staging area if
requested. When processing a record is completed, a call to the close
method notifies the controller which then decrements the consumer
reference count for this record. When this reference count reaches
zero, the controller triggers deletion of all its data arrays in the
staging area.

A simple back-pressure mechanism is implemented through a
configurable fixed-size queue in the controller which blocks the pro-
ducer if the maximum number of elements in the queue is reached.

The controller is written in Python and uses a single-threaded
coroutine-based mechanism provided by the Tornado library [17].

3.4 Workflow configuration and launching
PaDaWAn provides a simple in situ workflow configuration and
launching mechanism. The workflow is described in a configuration
file as illustrated in the example script on Figure 2.

In this illustrating example the configuration file is embedded in
a SLURM sbatch script which concludes by running the PaDaWAn
workflow launcher utility. This utility first launches the staging
service instances and the controller then executes all application
commands.

Note that the collection is uniquely identified by a file system
path even though no file is written during the execution of the in
situ workflow. This way no changes are required in the application
code, its input data or its execution command when run in situ.
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#SBATCH -N 13
#SBATCH --exclusive

cat > workflow.cfg << EOD
[padawan]
staging_instances = 2
collections = output
applications = simulation, processing, writer

[output]
path = /path/to/output.herc
nb_consumers = 2

[simulation]
cmd = /path/to/run_simulation.sh -N 8 -n 256 --output /path/to/output.herc

[processing]
cmd = srun -N2 -n64 /path/to/processing.sh --file /path/to/output.herc

[writer]
cmd = /path/to/hercule_writer --hercule_path /path/to/output.herc
EOD

module load padawan
padawan_launcher workflow.cfg

#!/bin/sh

Figure 2: Example of a PaDaWAn workflow script

4 EARLY RESULTS
The two use cases described in Introduction served as early eval-
uation test runs of PaDaWAn infrastructure. In the following, we
provide details about the first use case that may hint at the potential
of the presented solution. As the second use case was only run on
a low scale for functional testing purpose, we deemed the results
not relevant for the present paper. Even tough these test runs did
not represent large scale runs and we acknowledge that a thorough
scalability study remains to be performed, the process of setting
up these two cases proved to be very valuable in terms of lessons
learned which is one of the main purpose of this paper.

The first use case consisted in executing successive runs of an in
situ workflow composed of 1) a shockwave propagation simulation
using the hydrodynamic AMR code HERA [9], 2) a parallel graphic
processing of the simulation output data to extract iso-surfaces and
produce scripted movie images, and 3) the asynchronous writing of
simulation checkpoint data. The image processing was performed
by LOVE [1], a domain-oriented parallel visualization tool based
on VTK/ParaView developed at CEA-DAM. The writing of check-
point data was done by a parallel writer specifically developed to
interface with PaDaWAn infrastructure and use Hercule file format.
The objective was to assess the capability of the infrastructure to
withstand an order of magnitude increase in the simulation output
frequency compared to the same file-based workflow, thus produc-
ing a movie with a much higher resolution and saving a significant
amount of disk space by not persisting intermediate data.

The in situ workflow was executed on Tera-1000 and used a
total of 97 nodes, including 80 nodes for the simulation, 8 nodes for
LOVE, 1 node for the Hercule writers and 8 nodes for PaDaWAn
in-memory staging (totaling 1TB of aggregated staging memory).
The AMR mesh size grew from approx. 200 million cells to almost
1.3 billion cells at the end of the simulation. At each I/O step, the
simulation normally writes several dozens of field quantities over
the entire mesh.

Compared to the file-based approach, we increased the output
frequency by a factor of 11, totaling 447 saved time steps and about
50TB of intermediate data that were streamed through PaDaWAn

in-memory infrastructure instead of being written on disks. In
terms of output data, only 1.5GB of final images were written on
disks. We also observed a x2.5 speed up on average for the time
spent in I/O by the simulation. This can be explained by faster data
transfers to the distributed staging area than parallel writes in a
small set of files that necessarily incurs additional synchronization
and communications between simulation processes.

Even though this workflow was not optimized and filtering on
the simulation side could save a large amount of data transfer, this
test run demonstrated the potential of the infrastructure to sustain
a fairly decent load.

5 LESSONS LEARNED AND DISCUSSION
5.1 Design decisions
Python as main development language. The use of Python and its
large and versatile ecosystem proved to be very convenient for
development and allowed to deliver functional solutions quickly. A
good example is the distributed in-memory staging service devel-
oped with less than 500 lines of code and which sustained almost
1TB of data in distributed Python dictionaries. In terms of perfor-
mance, as the infrastructure only manages data transport, staging
and synchronization (no computation) the overhead due to inter-
pretation had no noticeable impact in our cases.

However, the use of Python in this context presents several
downsides. For larger scale workflows, performance issues may
arise at startup when many processes hit the NFS at the same
time to import Python modules, several solutions exists though
(e.g. see [12]). A single Python server may also not scale for larger
simulations (expected 10,000+ clients) without re-designing (e.g.
tiering). On client side, the use of Python adds a dependency that
may interfere with other Python versions that the simulation code
may use. Also, embedding Python in a compiled library makes
debugging harder.

Socket-based data transport. The use of TCP sockets through the
ZeroMQ library and using IPoIB proved to be an efficient solution
in terms of development time over performance ratio. The observed
speed up on I/O steps was satisfying enough to retain this solu-
tion for our use cases. This choice would also allow to manage
disconnections and failures of distributed components though de-
velopments remain to be done in PaDaWAn to implement these
specific fault tolerance capabilities.

5.2 Architecture
One may argue that separating staging resources from processing
resources incurs data movements that may not be sustainable at
exascale era. This architecture choice is a trade-off to have the
flexibility required to accommodate any kind of application, not
restricted by the staging service runtime or its allocated resources.
We plan to limit data movement upstream by implementing "smart"
filtering on producer-side. This is particularly relevant for batch
workflows in which datasets produced by the simulation but not
consumed downstream are known a priori and thus can be dis-
carded. Combined with an access to high-level data and metadata,
powerful filtering may be introduced.

It would also be possible as an option to request the job scheduler
to place consumer tasks on the same nodes as the staging service
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and implement some form of inter-process or shared-memory com-
munication to exchange data. An alternative could be to attach
a pool worker processes to the staging service to localize certain
processing tasks with the data. However, the adopted architectural
approach also promotes modularity by isolating functionalities as
independent services, thus simplifying development, experimenta-
tion and deployment. It may also anticipate future trend of mixing
heterogeneous hardware in a job (e.g. mixing large memory nodes,
compute nodes or GPU nodes).

With respect to scalability, even though the test runs presented
before proved to be satisfying and will allow a fair amount of
production workflows to be run, a thorough scaling investigation
remains to be performed to identify bottlenecks in the architecture
and extend PaDaWAn’s capabilities to the largest simulation and
workflow scales. Some potential contention points have already
been identified in our current use of Python for instance. The use of
a single controller process to manage the infrastructure metadata
may also be a point of concern depending on the types of workload.

5.3 In situ workflows in practice
Although the infrastructure was designed to facilitate integration,
not all applications readily fit with the in situ paradigm. In file-based
workflows, applications are black boxes with distinct and sequen-
tial input-compute-checkpoint-output steps. For in situ workflows
which are distributed and concurrent by nature, applications must
accommodate data streams and interleave the execution of these
steps for efficiency. For instance in our two test cases, the down-
stream applications (the visualization tool and the second simula-
tion code) had to be refactored to use the record iterator described
in section 3.1 to ingest records streams.

Stateful applications must also coordinate their checkpointing
to allow globally consistent checkpoints accross the workflow. The
basic strategy employed in our second test case (the graphic pro-
cessing in our first test case was stateless) was to have the upstream
simulation to add a checkpoint flag in its output data and have
downstream applications react to this flag and trigger checkpoint-
ing.

Another set of challenges originated from the inability of the
supercomputer job scheduler to co-schedule multiple and isolated
jobs. Instead a global allocation must be estimated (adding new
source of errors) based on the requirement of each in situ workflow
application and PaDaWAn service. These services and applications
are then run as steps within this single global job. In our test cases,
this generated multiple runtime errors as simulation codes were
originally meant to run as the main job application. Modifications
were required in some codes and in their execution scripts to iso-
late their use of shared space on the file system (for instance, to
use a step-specific temporary folder rather than muddling in the
job-wide temporary folder provisioned by the scheduling service).
The placement of tasks on the globally allocated resources also
happened to be an issue which required further adaptation of some
simulation execution scripts. Debugging these runtime errors was
made difficult due to the distributed nature of in situ workflows
and required a heavy and hygienic use of logs.

One takeaway is that, despite the apparent user-friendliness of
the approach, branching existing simulation codes and tools to such

infrastructure and setting up the first time an in situ workflow may
still be a complex task involving some development and debugging
skills. However, once this initial phase is achieved, simulation end
users would be able to compose themselves their in situ workflows
from existing file-based workflows using the simple configuration
mechanism provided.

6 CONCLUSIONS AND PERSPECTIVES
PaDaWAn is a software infrastructure providing services to run
file-based workflows in a loosely couple in situ way. Its originality
is the use of Python as main development language and the simple
means provided to configure and switch from a file-based workflow
to an in situ workflow. It has been successfully tested on some
production-like workflow use cases.

It is still in development stage and requires further evaluation
and proofing, in particular with respect to scalability to larger
simulation and workflow scales. We also want to explore alter-
native service implementations, for instance leveraging existing
in-memory stores like REDIS [15] for the staging infrastructure.
We plan to extend its compatibility with other I/O libraries such
as HDF5, NetCDF or ADIOS and develop writers in different file
formats. Finally, as PaDaWAn is currently a write-oriented infras-
tructure (pipeline/streaming mode), we plan to extend it to provide
accelerated read capabilities by using the in-memory staging in
cache mode and explore "smart" data loading mechanisms.
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