

Study of niobium in UO_2 advanced fuel doped with NbO_x

V. Pennisi

▶ To cite this version:

V. Pennisi. Study of niobium in UO_2 advanced fuel doped with NbO_x. 2015 ANS annual meeting - Nuclear Technology: An Essential Part of the Solution", Jun 2015, San Antonio, United States. cea-02489552

HAL Id: cea-02489552 https://cea.hal.science/cea-02489552

Submitted on 18 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

Vanessa PENNISI (CEA/DEN/DEC/SFER/LCU)

<u>PhD supervisors</u> : P. MATHERON (CEA/DEN/DEC/SPUA/LCU) C. RIGLET-MARTIAL (CEA/DEN/DEC/SESC/LLCC) JM. HEINTZ (ENSCBP Bordeaux) JF. SILVAIN (ICMCB - CNRS)

www.cea.fr

E-MRS Fall Meeting 2014 | Symposium G : Materials, processing, and characterization techniques for future nuclear technologies

Study principle

- Context and aim
- > Determination of the range of oxygen potential
- Choice of the redox buffer

Manufacturing conditions

First results

- Microstructural analysis
- Precipitates composition analysis

Niobium speciation study

- Synchrotrons presentation
- Precipitates analysis
- Matrix analysis

Conclusion and future work

Pressurized Water Reactor (2nd generation) → Uranium Dioxide fuel (reference fuel)

In situ control of PO₂ in the nuclear fuel thanks to the buffer capacity of an oxido-reductive dopant present under two different oxidation degrees.
 ➡ Study of the doping and fission products chemistry

DE LA RECHERCHE À L'INDUSTRIE

STUDY PRINCIPLE

Determination of the range of oxygen potential

Fugacity profiles and major gaseous speciation in a UO₂ fuel as a function of oxygen potential – **30 GWd/t U, 1500°C (FactSage 6.2)**

The reactive fission gas speciation depends on PO₂.

Objective : Fuel operating in the most favorable oxygen potential area.

- Two selection criteria :
 - Main : Minimal gaseous fraction of corrosive Fission Products (FP)
 - Secondary : Highest FP immobilization
- Three areas are delimited :
 - An unfavorable area
 - Highest risk of corrosion.

An optimum area

- > Minimal fraction of gaseous corrosive FP.
- Maximal immobilization of the FP.

An intermediate area

Limited risk of corrosion.

STUDY PRINCIPLE Choice of the redox buffer

Criteria for the choice of the redox buffer :

Temperature range, buffering capacity, cross section, final properties of the unirradiated fuel...

Selected dopant : NIOBIUM

Potential redox buffers	Buffering capacity (mole O / mole Nb)		
Nb ₂ O ₅ /NbO ₂	0,5		
NbO ₂ /NbO	1		
Nb ₂ O ₅ /NbO ₂ /NbO	1,5		

- ✓ Redox reactions likely to be thermodynamically activated above 1000°C
- ✓ Liquid phase Nb₂O₅ at T > 1500°C (→ grain growth)

Niobium buffering systems position compared to the stability areas of the corrosive species

MANUFACTURING CONDITIONS

- Batches with different niobium compositions (50/50 wt.% for the redox couples) :
 - UO₂ + 0,8 wt.% (NbO₂ + NbO)
 - UO₂ + 0,8 wt.% (Nb₂O₅ + NbO₂)
- Niobium doped pellets manufacturing process :

ANS | 11.06.2015 | PAGE 6

FIRST RESULTS Microstructural analysis

- Objective: Analysis of the doped pellets state
- → <u>Microstructures</u> :

 $UO_2 + 0.8\%$ wt. (Nb O_2 +NbO) - 1700°C $Td = 10.90 \text{ g.cm}^3$ 95,9%T_{dh}

S2

 $UO_2 + 0.8\%$ wt. $(Nb_2O_5 + NbO_2) - 1700$ °C $Td = 10.86 \ g.cm^3$

- Healthy pellets (no crack)
- Grain coarsening : grain size about 39 μm (10 μm classical)
- Micrometer size Nb oxides precipitates at grain boundaries

39 µm

Objective : Check of elemental composition of NbO precipitates

FIRST RESULTS Precipitates composition analysis

- → <u>SEM + EDX analysis on UO₂ + 0,8%wt. (NbO₂+NbO) pellets</u> Same results observed for UO₂ + 0,8%m.(Nb₂O₅+NbO₂)
- Annealing at 1000°C (same for 1200°C)
 « low temperature » annealing

Observation of a grey contrast

Change of the Nb/O ratio

→ <u>Hypothesis</u>: Presence of two niobium oxide phases or more complex system Annealing at 1700°C (same for 1500°C)
 « high temperature » annealing

Observation of a single grey

No change of the Nb/O ratio

→ <u>Hypothesis</u>: Presence of a single niobium oxide phase

NIOBIUM SPECIATION STUDY

- Objective : Identify the niobium valence state in the precipitates to check the presence of the two NbO_x phases
- → Experiences performed on two Synchrotrons :

4 references : Nb, NbO, NbO₂ and Nb₂O₅

References	Nb	NbO	NbO ₂	Nb ₂ O ₅
E ₀ (eV)	18986,0	18994,1	19001,7	19004,0

ESRF - ID21 beamline

References	Nb	NbO	NbO ₂	Nb ₂ O ₅
E ₀ (eV)	2368,6	2370,1	2371,2	2372,4

cea

NIOBIUM SPECIATION STUDY – PRECIPITATES ANALYSIS μ -XRF and μ -XANES on MARS beamline

→ Study of the sample $UO_2 + 0.8$ wt.% (NbO₂ + NbO)

2 precipitates studied (intensive Nb zone)

NIOBIUM SPECIATION STUDY – PRECIPITATES ANALYSIS µ-XANES on MARS beamline

→ Study of the sample $UO_2 + 0.8$ wt.% (NbO₂ + NbO)

Uncertainties ± 0,03 eV

- \rightarrow Presence of the two phases NbO₂ et NbO
- → Unexpected presence of metallic Nb

NIOBIUM SPECIATION STUDY – PRECIPITATES ANALYSIS µ-XANES on ID21 beamline

→ Study of the sample $UO_2 + 0.8$ wt.% (NbO₂ + NbO)

Point 1 Point 2 Point 3 Point 4

٥

- \rightarrow Presence of the two phases NbO₂ and NbO
- → Unexpected presence of metallic Nb
- → Homogenization of the precipitates for the sample annealed at 1700°C

μ-XRD and μ-XANES analyzes (on MARS and ID21 beamlines)

- Whatever the starting redox couple and the annealing temperature, three niobium phases are present in the precipitates : Nb, NbO and NbO₂.
- > Absence of the Nb₂O₅ species *(initially present)* in UO₂ + 0,8%m. (Nb₂O₅+NbO₂)
- > Unexpected presence of metallic niobium in all the S1 and S2 precipitates.
- Precipitates homogenization at high temperature (1500 and 1700°C).

Reduction of the initially introduced NbO_x species

- \rightarrow Ar/5%H₂ too much reducer
- \rightarrow Change of the annealing atmosphere necessary

- Objective : Characterize the soluble form of Nb in UO₂ matrix
- → Sample UO₂ + 0.8 m.% (NbO₂ + NbO) and UO₂ + 0.8 m.% (Nb₂O₅ + NbO₂) for 1000 and 1200°C annealings

Similar matrix for all the samples \rightarrow The soluble form of Nb in UO₂ matrix is Nb⁵⁺.

NIOBIUM SPECIATION STUDY – MATRIX ANALYSIS μ-XANES ans μ-EXAFS on MARS beamline

- Objective : Characterize the physical form of the matrix and Nb speciation inside UO₂ matrix
- \rightarrow <u>µ-XANES on the matrix :</u>

- Same spectra observed on every sample (S1 and S2, annealed or not)
- Different with known NbO_x <> Different symetry
 E₀ position : between Nb⁴⁺ / Nb⁵⁺

 \rightarrow <u>Hypothesis</u>: Contribution of the matrix and the precipitates

 \rightarrow <u>µ-EXAFS on the matrix :</u>

- \rightarrow signal up to 11,5 Å⁻¹
- Signal from hidden precipitates can not be excluded
- ➔ Work in progress

CONCLUSION

- Influence of the sintering atmosphere (reduction of the dopants during the process)
- Whatever the starting redox couple and the annealing temperature, coexistence of two niobium oxides (NbO₂ and NbO) inside the precipitates Presence of two different valence states

Possible existence of an in-situ oxygen buffer effect due to niobium

FUTURE WORK

- New experiments using less reductive annealing atmospheres
 Preserve the initial redox composition of the dopants
- Solubility limit of niobium in UO₂ (Electronic Probe MicroAnalysis)
 Stablish a solubility model of niobium in UO₂

Thank you for your attention

Commissariat à l'Energie Atomique et aux Energies Alternatives Centre de Cadarache | 13108 Saint Paul Lez Durance Cedex T. +33 (0)4 42 25 70 94 | F. +33 (0)4 42 25 48 86 Nuclear Energy Division Fuel Study Department Plutonium Uranium and Minor Actinides Service

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019