

PuCrO_3 compound synthesis, structural and thermodynamic studies

J. Léchelle, R. C. Belin, P. M. Martin, C. Martial, A. Pieragnoli, R. Thomas, G. Cecilia, P. Valenza, J. C. Richaud, M. Reynaud, et al.

▶ To cite this version:

J. Léchelle, R. C. Belin, P. M. Martin, C. Martial, A. Pieragnoli, et al.. PuCrO_3 compound synthesis, structural and thermodynamic studies. JdA2015 - 45èmes Journées des actinides, Apr 2015, Prague, Czech Republic. cea-02489490

HAL Id: cea-02489490 https://cea.hal.science/cea-02489490

Submitted on 19 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FROM RESEARCH TO INDUSTRY

<u>Ceaden</u>

JDA2015 - Section: New compounds III

PuCrO₃ COMPOUND: SYNTHESIS, STRUCTURAL AND THERMODYNAMIC PROPERTIES

Journées des Actinides <u>J.Léchelle,</u>¹ R.C. Belin¹, P.M. Martin¹, C. Martial¹, A.Pieragnoli¹, R. Thomas¹, G. Cécilia¹, P.J. Valenza¹, J.C. Richaud¹, M. Reynaud¹, Y. Marc¹, A.C. Scheinost², J.M. Heintz³

¹ CEA, DEN, MAR, DTEC, SECA, LCC and CEA, DEN, CAD, DEC, SESC, LLCC , 13108 Saint-Paul-lez-Durance, France, e-mail: Jacques.lechelle@cea.fr

² Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, D-01314 Dresden, Germany

³ ICMCB – CNRS, UPR9048, 87 Avenue du Docteur Schweitzer, 33608 PESSAC cedex, France

APRIL 19th 2015

CONTEXT: FUEL HOMOGENIZATION DURING FABRICATION

(U_{0,89}Pu_{0,11})O_{2-x} doped with 3000 ppm Cr₂O₃ (sintered with µ(O₂)=-445kJ/mol) Thomas R. PhD Thesis, University of Bordeaux I, 2013

Ceaden

OUTLINE

1. Introduction

Synthesis conditions

2. Crystal chemistry

XRD and XAS studies

3. Thermodynamic and physical properties

Dilatometry, DSC studies

4. Conclusion

Phase change to be considered for thermodynamic databases

Ceaden Introduction: Synthesis conditions

Experimental Synthesis of PuCrO₃ from PuO₂ and Cr₂O₃

1. **L.E. Russell**, J.D.L. Harrison, and N.H. Brett. Perovskite-type compounds based on plutonium. Journal of Nuclear Materials 2, n°. 4 (1960),310-320

2. **A. Pieragnoli**, Influence de l'adjuvant de frittage Cr₂O₃ sur l'homogénéisation de la répartition en plutonium au sein d'une pastille MOX hétérogène. Matériaux Céramiques et Traitements de Surface, Thèse de l'Université de Limoges, 2007

3. *R. Thomas*, MOX dopé chrome : optimisation du dopage et de l'atmosphère de frittage, Thèse de l'Université de Bordeaux 1, 2013

	Formation Temperature of PuCrO ₃ (°C)	Densification Temperature (°C) of the compact	
Ar*	1600-1700	1300 ———	PuO ₂ sinters
Ar + 5 vol.% H ₂ + 850 vpm H ₂ O	1350 up to 1400	1520	PuCrO ₃
Ar* + 5 vol.%H ₂	1250-1300	1470	Sinters

(*: Ar is not pure but contains trace amounts of $O_2 \sim 10$ vpm)

<u>Ces den</u>

Simple way: hard spheres

$$r_{O2-} = 1.40$$
Å
 $r_{Pu^{3+}} = 1.09$ Å Coordination Number = 12
 $r_{Cr^{3+}} = 0.64$ Å Coordination Number = 6
 $R_A + R_O = t\sqrt{2} (R_B + R_O)$

Ideal lattice: t=1

Structure with these ions: t=0.84

PHASE STABILITY JUSTIFICATION (2/2)

Structure stability computations

M.L. Fullarton, Structure, properties and formation of PuCrO₃ and PuAIO₃ of relevance to doped nuclear fuels, J. Mater. Chem. A, 2013, 1, 14633-14640

- → Context of the assumption of in-pile PuCrO₃ formation although :
 - \rightarrow In-pile conditions are oxidizing
 - → In oxidizing conditions reactor temperature is not high enough for the formation of such a compound It would be more stable than ½ Pu₂O₃ +1/2 Cr₂O₃ but Pu^{+III} is not stable in such conditions
- → Among all possible space groups (R3c, Pnma, Pm-3m, R-3c, R-3m, C2/c) for the perovskite the most stable is Pnma, as observed in our study

2 methods:

22 den

- DFT calculations with GGA-PBE exchange correlation and a Mott-Hubbard correction applied to Pu,
- Empirical potentials core-shell interaction for O²⁻ polarisability, Buckingham potential

→ Possible Cr and Pu point defects: interstitials, no vacancy

CRYSTAL CHEMISTRY (1/3)

<u>XRD Rietveld refinement</u>: Cu K_{α_1} radiation, λ =1.5406Å

Ceaden

XANES and EXAFS : ESRF ROBL beamline

- Cr K-edge (5989 eV) and plutonium L_2 (22256 eV) edges collected in fluorescence mode, comparison with $\rm Cr_2O_3$

XANES and EXAFS : ESRF ROBL beamline

- Pu L₃-edge (18057 eV) and Pu L₂-edge (22226 eV) transmission mode.

THERMODYNAMIC AND PHYSICAL PROPERTIES (1/4)

<u>Dilatometry</u>: Synthesis of a pure $PuCrO_3$ from PuO_2 and Cr_2O_3 followed by dilatometry \rightarrow interpretation of the cooling behavior

Fit results:

22 den

- Signature of a critical phenomenom @ $\rm T_{c} = 272.7 \rm K$
- Critical exponent a=0.244

Close to: $(La_{1-x}Ca_x)_{1-y}Mn_{1-y}O_3$ Zhao PRL 78,5, 1997 with Tc= 270K

CEA | 19 AVRIL 2015 | PAGE 10

THERMODYNAMIC AND PHYSICAL PROPERTIES (2/4)

Ceaden

ČEA | APRIL 19th 2015 | PAGE 11

<u>Ceaden</u>

THERMODYNAMIC AND PHYSICAL PROPERTIES (3/4)

<u>Results:</u>

(b)

(in Metallic oxides, Goodenough, 1971)

- Possibility of Cr³⁺ spin coupling along a and b directions
- Role of Pu³⁺ which is 5f⁵?

CEA | 19 AVRIL 2015 | PAGE 12

THERMODYNAMIC AND PHYSICAL PROPERTIES (4/4)

<u>DSC:</u> Heat capacity measurement of a 95 w% of $PuCrO_3$ and 5 w% of PuO_2 sample

Fit results:

- Debye Temperature

- Energy of creation of defects at high temperature

θ_D=562.7 K E_D=3987.5 J Possibility of porosity formation around $PuCrO_3$ (always located at grains boundaries of $(U,Pu)O_2$) during cooling down after fabrication, *i.e.* loosening of $PuCrO_3$ from its matrix

 \rightarrow due to the abnormal thermal coefficient behaviour at room temperature

→ it is necessary to control $\mu(O_2)$, T, the material for addition of Cr_2O_3 (master blend or matrix), and Cr_2O_3 amount to avoid residual PuCrO₃ precipitates

Integration of PuCrO₃ data into the TAF-ID database

→Needs to take into account this phase transition in order to make Cr-O and Pu-Cr-O data consistent

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives	DEN
Centre de Cadarache 13108 Saint-Paul-Lez-Durance	DEC
T. +33 (0)4 42 25 70 00	SESC

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

APPENDIX 1

(R. Thomas PhD Thesis, Bordeaux 1 University, 2013)

FROM RESEARCH TO INDUSTRY

APPENDIX 2

CEA | APRIL 19th 2015 | PAGE 17