

Thermodynamic assessment of platinoid and molybdate phases in nuclear waste glasses

S. Gosse, S. Bordier, C. Gueneau, N. Dupin, J. Rogez, P. Benigni

► To cite this version:

S. Gosse, S. Bordier, C. Gueneau, N. Dupin, J. Rogez, et al.. Thermodynamic assessment of platinoid and molybdate phases in nuclear waste glasses. CALPHAD XLIV - International Conference on Computer Coupling of Phase Diagrams and Thermochemistry, May 2015, Loano, Italy. cea-02489475

HAL Id: cea-02489475 https://cea.hal.science/cea-02489475

Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

S. Gossé¹, S. Bordier¹, C. Guéneau¹, N. Dupin², J. Rogez³ P. Benigni³

¹ DEN,DANS,DPC,SCCME,LM2T CEA Centre de Saclay – 91191 Gif-sur-Yvette Cedex, France

² Calcul Thermodynamique, 3 rue de l'avenir, 63670 Orcet, France ³ IM2NP, Faculté des Sciences et Techniques, Marseille, France

Background of the study: Vitrification of the nuclear high level wastes

Fission products and actinides arising from the spent UOX fuel To consider the formation of molybdates, the CaO-MoO₃ and the Na₂Oreprocessing are vitrified in borosilicate glasses. Among the fission MoO_3 pseudo-binary systems are assessed. The modeling of the Na_2O_3 products, platinum-group metals (Pd-Rh-Ru) exhibit very low solubility SiO₂, MoO₃-SiO₂ and of the ternary SiO₂-Na₂O-MoO₃ system was carried and partly precipitate as metal or oxide phases in the melt, molybdenum out based on the literature and on new experiments in order to consider interacts with the glass frit to form molybdate phases known to a simplified glass melt. Furthermore, the developed database includes precipitate as a complex phase called "yellow phase". These platinoid the metallic and oxide complex platinoid system and some of the and molybdate phases may induce modifications of the physico- interactions with selenium and tellurium: Pd-Rh-Ru-Se-Te-(O). chemistry of the glass melt and alter the final glass confinement Using this tool, the thermodynamic behavior of the platinoid and properties. To understand the relative stability of these phases molybdate phases is calculated as a function of temperature and depending on both temperature and oxygen potential of the melt, a thermodynamic database is being developed using the Calphad method.

composition. This study throws new light on the interactions between poorly soluble fission products and the glass melt during the vitrification process of high level nuclear wastes.

Results of the modeling

Molybdate and simplified glass melt phase diagrams

Molybdate/Glass melt phase separation: the ternary system CaO-Na₂O-SiO₂-MoO₃

Demixing phenomena of molybdate phases in a glass melt **Courtesy of Sophie Schuller, CEA Marcoule**

The CaO-Na₂O-SiO₂-MoO₃ system is a simplified melt representative for the industrial glass melt.

Thermodynamic calculations will make predict possible the high to temperature behavior of molybdate phases during the vitrification process of nuclear wastes

Conclusions and prospects

The modeling of CaO-MoO₃, Na₂O-MoO₃, Na₂MoO₄-CaMoO₄ and of SiO₂- The Pd-Se and Pd-Te systems have been modeled. An assessment of Na₂O-MoO₃ systems has been carried out. This study makes it possible the Pd-Se-Te system will be available soon. In parallel, the Rh-Ru-O to predict the formation of the molybdate phases in the simplified glass database enables to calculate the speciation of the platinoids in the melt. The next step will focus on the introduction of B_2O_3 in the glass as a fuction of oxygen potential and temperature. database to get closer to the real industrial glass composition.

This work will help to predict the high temperature interactions between some poorly soluble fission products (Mo, Pd, Rh, Ru) and the glass melt during the vitrification process, of nuclear wastes

CALPHAD XLIV – May 31 – June 5, 2015 | Loano, Italy