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Abstract

The behaviour of Monte Carlo criticality simulations is often assessed by examining the convergence of the so-called entropy
function. In this work, we shall show that the entropy function may lead to a misleading interpretation, and that potential issues
occur when spatial correlations induced by fission events are important. Additional information can be extracted from the analysis
of the higher-order moments of the entropy function, or from the center of mass of the neutron population. Within the framework
of a simplified model based on branching processes, we will relate the behaviour of the spatial fluctuations of the fission chains to
the key parameters of the simulated system, namely, the number of particles per generation, the reactor size and the migration area.
Numerical simulations of a fuel rod and of a whole core suggest that the obtained results are quite general and hold true also for
real-world applications.
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1. Introduction

Monte-Carlo simulation is often used in criticality calcula-
tions to assess the asymptotic distribution of the neutron pop-
ulation within a system, which corresponds to the fundamen-
tal eigenmode of the Boltzmann critical equation (Lux and5

Koblinger, 1991). The most widely used and simplest nu-
merical method allowing the neutron population to converge
to the fundamental eigenmode is the power iteration (Lux and
Koblinger, 1991; Rief and Kschwendt, 1967; Brown, 2005): in
Monte Carlo methods, an initial arbitrary source particle dis-10

tribution is transported until all neutrons have been either ab-
sorbed or leaked (forming a so-called generation). The sec-
ondary neutrons coming from the fission events within a gen-
eration g are banked and provide the source for the following
generation g + 1. The algorithm is then iterated over many gen-15

erations, until the fission sources for a sufficiently large g statis-
tically attain a spatial and energetic equilibrium, as ensured by
the power iteration method. The effects of higher eigenmodes
on the neutron population are expected to fade away, and even-
tually the neutron population will be distributed according to20

the fundamental eigenmode. The ratio between the population
size at generation g + 1 and the population size at generation
g converges to the fundamental eigenvalue keff for large g (Lux
and Koblinger, 1991).

In this context, two key issues are known to affect the neutron25

population during power iteration and have therefore attracted
intensive research efforts: fission source convergence and cor-
relations.
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Concerning the former, a slow exploration of the viable phase
space by the population implies a poor source convergence. In30

particular, it has been shown that the convergence of keff might
be faster than that of the associated fundamental eigenmode,
which is expected on physical grounds, the former being an in-
tegral property of the system and the latter being a local prop-
erty (Lux and Koblinger, 1991). The rate of convergence de-35

pends on the separation between the first and the second eigen-
value of the Boltzmann equation, the so-called dominance ratio:
the closer to one the dominance ratio becomes, the poorer the
convergence (Lux and Koblinger, 1991; Ueki et al., 2004; Du-
monteil and Malvagi, 2012). If Monte-Carlo tallies are scored40

before attaining equilibrium, biases on the estimation of the
variance may appear, and monitoring the convergence of keff

might be insufficient so as to determine the convergence of the
whole population (Ueki and Brown, 2003; Dumonteil et al.,
2006; LAbbate et al., 2007; Ueki, 2005).45

Several tools have been proposed to assess the spatial conver-
gence of fission sources, among which, one of the most popu-
lar, is the entropy of the fission sources (Ueki et al., 2003; Ueki,
2012; Ueki and Brown, 2003; Ueki, 2005). The idea behind the
entropy function is to superimpose a regular Cartesian mesh to
the viable space and to record the number of fission sites for
each cell of the mesh, at each generation. This allows com-
puting the so-called Shannon entropy S (Li and Vitany, 1997),
which is defined as

S(g) = −
∑
i, j,k

pi, j,k(g) log2[pi, j,k(g)], (1)

where pi, j,k(g) is the (statistically weighted) number of fission
source particles in the cell of index i, j, k at generation g divided
by the total number of source particles in all cells at generation
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g. The entropy function is expected to provide a measure of the
phase space exploration as a function of the number of gener-
ations (Li and Vitany, 1997; Cover and Thomas, 1991): when
the neutron distribution attains its stationary shape, the entropy
S converges. A prominent advantage of the entropy is that S
is a single scalar value whose evolution condenses the required
information on the spatial repartition. Moreover, as apparent
from Eq. (1), the entropy S of the source distribution at gener-
ation g is bounded, namely,

0 ≤ S(g) ≤ log2 B, (2)

where B is the number of cells of the spatial mesh. This
property ensures in particular that the variations of S will be
bounded, and that the highest value of the entropy will be
reached in the case of a perfect equipartition. The entropy func-
tion is nowadays a standard tool for most production Monte50

Carlo codes, although some concerns have been raised about
possible issues related to its use in convergence diagnostics
for loosely coupled multiplying systems (see, e.g., the analy-
sis in (Shi and Petrovic, 2010a,b; Ueki, 2005)).

The latter issue with power iteration in Monte Carlo simu-55

lation concerns the impact of correlations induced by fission
events: physically speaking, a neutron can only be generated
in the presence of a parent particle, which induces generation-
to-generation correlations (Lux and Koblinger, 1991; Sjenitzer
and Hoogenboom, 2011). This is a widely recognized prob-60

lem, which is expected to affect the convergence of Monte
Carlo scores and in particular make the applicability of Cen-
tral Limit Theorem questionable (Ueki, 2012; Brown, 2009;
Ueki, 2005). Correlations between generations have been of-
ten studied within the mathematical framework provided by the65

eigenvalue analysis of the Boltzmann critical equation (Brown,
2005; Sutton, 2014). Further work on correlations has con-
cerned techniques aimed at improving the standard deviation
estimates of Monte Carlo scores (Gelbard and Prael, 1990; Ueki
et al., 2003, 2004; Dumonteil and Malvagi, 2012; Ueki, 2005).70

More recently, it has been pointed out that, due to the asymme-
try between correlated births by fission and uncorrelated deaths
by capture and leakage 1, neutrons initially prepared at equilib-
rium will be preferentially found clustered close to each other
after a few generations (Dumonteil et al., 2014). This pecu-75

liar phenomenon, named neutron clustering, might induce a
strongly heterogeneous spatial repartition of the neutron popu-
lation, which randomly evolves between generations (Dumon-
teil et al., 2014; Zoia et al., 2014; de Mulatier et al., 2015).
The impact of neutron clustering has been determined to be80

inversely proportional to the number of neutrons per genera-
tion (Dumonteil et al., 2014).

In this paper, we will show that neutron clustering, not sur-
prisingly, also affects the convergence of the fission sources:
because of fission-induced correlations, the entropy function85

1This phenomenon has been first investigated in the context of theoretical
ecology, especially in relation to the evolution of biological communities: see,
e.g., (Young et al., 2001; Houchmandzadeh, 2008), and can be better under-
stood in the framework of branching random walks (Athreya and Ney, 1972;
Williams, 1974; Pazsit and Pál, 2008; Zoia et al., 2012).

might in turn be ineffective at detecting potential deviations of
the neutron population with respect to the expected equilibrium.

This manuscript is organized as follows. In Sec. 2, we will
initially consider a simplified reactor model where exact ana-
lytical results can be established, and show that in some cases90

the convergence of the entropy is achieved, although the neu-
tron population is still affected by strong spatial fluctuations.
Then, in Sec. 3, we will refine our analysis based on the spa-
tial moments of the entropy function and on the center of mass
of the neutron population: these statistical tools can be used95

together with regular entropy so as to extract information con-
cerning the simulated system, and thus improve the diagnosis
of fission source equilibrium. In Sec. 4 we will then relate the
behaviour of such spatial fluctuations to the key system parame-
ters, namely, the reactor size, the number of neutrons per gener-100

ation, and the migration area, based on the theory of branching
processes. In Sec. 5 we will numerically explore the behaviour
of a fuel rod and a full core with detailed geometry and com-
positions and continuous-energy treatment, and show that the
theoretical findings for the simple reactor model actually apply105

more generally to realistic configurations. Conclusions will be
drawn in Sec. 6.

2. Neutrons in a box and the behaviour of the entropy

In order to assess the behaviour of the entropy function in
the presence of fission-induced correlations, we will work out110

an example that is simple enough for exact results to be ana-
lytically derived and compared to the Monte Carlo simulations,
and yet retains the key physical features of a real system (Miao
et al., 2016).

Let us therefore consider a prototype model of a reactor core
consisting of a collection of N neutrons undergoing scattering,
capture and fission within a box of volume V = L3. To simplify
the matter, we will assume that neutrons can only be reflected
at the boundaries. The random displacements of the neutrons
will be modelled by branching exponential flights with constant
speed v; scattering and fission will be taken to be isotropic in the
center of mass frame. The physical parameters of this prototype
reactor will be the following:

Σs = 0.27, Σc = 0.02, Σ f =
Σc

ν̄ − 1.0
, (3)

where Σs is the scattering cross section, Σc is the capture cross
section, and Σ f is the fission cross section (in cm−1). The pa-
rameter ν̄ denotes the average number of secondary neutrons
per fission. Observe that on the basis of the cross sections de-
fined above the system is exactly critical, i.e.,

keff =
ν̄Σ f

Σc + Σ f
= 1, (4)

for any choice of ν̄. For our simulations, we have set ν̄ = 2.5.115

The fundamental eigenmode associated to keff = 1 corresponds
to an equilibrium distribution that is spatially homogeneous
over the box, as expected on physical grounds.
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Figure 1: Distribution of fission sites during Monte Carlo power
iteration as a function of generations g, for three different reac-
tor sizes L. The guess source at g = 0 consists of N = 104

neutrons located at the center of the cube. Power iteration is
run for 1000 generations. Top: L = 100 cm; center: L = 200
cm; bottom: L = 400 cm.

This prototype reactor model can be easily implemented and
solved by power iteration within a Monte Carlo code. In order120

to probe the effects of neutron clustering on the convergence of
power iteration, we have performed several Monte Carlo crit-
ical simulations of such system by varying the number N of
particles per generation and the size L of the box, the other
physical parameters being unchanged. For all configurations,125

we have assumed that the power iteration is started with a point
source consisting of N neutrons located at the center of the box.
As the number of generation increases, the neutron population
spreads over the whole box, and is forced to converge towards
the fundamental eigenmode by the power iteration. However,130

this spread is counter-reacted by the spatial correlations induced
by fission chains, and clustering might then come into play.

The distribution of the fission sites as obtained during the
power iteration for a fixed number N = 104 of initial particles
and different box sizes L is displayed in Fig. 1. When the neu-135

tron density is high (i.e., L is small for a given N), the fission
sites converge to an equilibrium configuration where neutrons
are homogeneously spread over the whole volume, with mild
fluctuations mostly due to scattering. As L increases, spatial
fluctuations due to the competing mechanisms of fission, ab-140

sorption and scattering become more apparent. For even larger
L, the neutron population displays patchiness, with neutrons
randomly moving around the box grouped into a large cluster.
Previous investigations based on the diffusion theory approxi-
mation have indeed shown that spatial clustering is quenched145

when L2 � NM2, whereM2 is the migration area (de Mulatier
et al., 2015). Fluctuations due to correlations are therefore ex-

Figure 2: Homogeneous cube reactor. The behaviour of the
measured Shannon entropy S(g) during Monte Carlo power it-
eration as a function of generations g, for three different reactor
sizes L and fixed number N of neutrons per generation. The
guess source at g = 0 consists of N = 104 neutrons located
at the center of the cube. Power iteration is run for 1000 gen-
erations. Upper red curve: L = 100 cm; central green curve:
L = 200 cm; lower blue curve: L = 400 cm. The dashed red
line represents the expected entropy value SN as in Eq. (6), and
the solid black line is the ideal expected entropy S∞ for an infi-
nite number of particles per generation as in Eq. (5).

pected to decrease for decreasing box size L when keeping N
constant, which is coherent with our numerical findings.

It is instructive to compute the Shannon entropy S(g) for the
power iteration simulations examined here. To fix the ideas, we
will assume that each box side L is partitioned into 8 spatial
meshes, which implies B = 83 = 512. For the simple model
considered in this Section, the theoretical ideal entropy asso-
ciated to the fundamental eigenmode, i.e., the expectation of
log(p) corresponding to a uniform spatial distribution, can be
exactly computed, and reads

S∞ = log2(B) = 9. (5)

Actually, for a finite number N of particles per generation, the
theoretical expected Shannon entropy is always lower than the
ideal value S∞. For the homogeneous reactor, the expected
Shannon entropy at finite N can be explicitly computed (deriva-
tion is provided in Appendix A) and reads

SN = log2(N) −
B1−N

N

N∑
k=0

(
N
k

)
(B − 1)N−kk log2(k), (6)

which depends on the number of spatial meshes B and of the150
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Figure 3: Homogeneous cube reactor. Distribution of fission
sites during Monte Carlo power iteration as a function of gen-
erations g, for three different initial population sizes N and fixed
L = 400 cm. The guess source at g = 0 consists of N neutrons
located at the center of the cube. Power iteration is run for 1000
generations. Top: N = 105; center: N = 104; bottom: N = 103.

number of particles N. It can be shown that SN < S∞; when
the number of neutrons N is very large, the expected entropy
converges to the ideal reference value, namely, SN → S∞. In
the following, we will compare the measured entropy S(g) as a
function of generations to the expected value SN .155

The behaviour of the measured entropy S(g) corresponding
to the reactor configurations presented in Fig. 1 is displayed
in Fig. 2. The number m of generations taken by the neutron
population to achieve spatial convergence (i.e., to explore the
whole reactor) starting from a point source can be roughly esti-160

mated by m ' L2/`2, `2 being the mean square displacement of
a particle per generation. The quantity `2 can be estimated dur-
ing the Monte Carlo simulation, and for the example discussed
here we have `2 ' 175 cm2 for L = 100 cm, `2 ' 185 cm2 for
L = 200 cm, and `2 ' 190 cm2 for L = 400 cm, which yields165

m ' 57 for L = 100 cm, m ' 215 for L = 200 cm, and m ' 830
for L = 400 cm, respectively. This is consistent with the num-
ber of generations taken by the measured entropy S(g) to attain
convergence, as shown in Fig. 2.

When L = 100 cm, the computed S(g) asymptotically con-170

verges to the expected value SN for large g: in this case, the
entropy function correctly mirrors the equilibrium attained by
the neutron population. As L increases by keeping N fixed,
spatial clustering strongly affects the neutron population dur-
ing the power iteration: the neutron population still attains a175

stationary equilibrium distribution, which is nonetheless quite
different from the flat fundamental eigenmode. In particular, a
larger fraction of empty cells is observed. The measured en-
tropy S(g) consequently converges to an asymptotic value for

Figure 4: Homogeneous cube reactor. The behaviour of the
measured Shannon entropy S(g) during Monte Carlo power it-
eration as a function of generations g, for different initial popu-
lation sizes N and fixed L = 400 cm. The guess source at g = 0
consists of N neutrons located at the center of the cube. Power
iteration is run for 1000 generations. Upper red curve: N = 105;
central green curve: N = 104; lower blue curve: N = 103.
The dashed lines represent the expected entropy value SN as in
Eq. (6) (red: N = 105, green: N = 104 and blue: N = 103,
respectively), and the solid black line is the ideal expected en-
tropy S∞ for an infinite number of particles per generation as in
Eq. (5).

large g which is lower than the expected SN and decreases with180

increasing L. Numerical analysis shows that the ratio between
the measured and the asymptotic value of the Shannon entropy
scales as S(g)/SN ∝ 1/L for fixed N.

For the homogeneous reactor examined here, where SN can
be exactly determined, measuring the discrepancy between185

S(g) and SN at convergence allows in principle the anomalous
behaviour of the fission source convergence to be detected. In
general, however, it is not possible to compute the expected
entropy value SN , which means that in the presence of strong
spatial clustering assessing the convergence of the Shannon en-190

tropy may turn out to be insufficient to ensure a proper spatial
convergence of the fission sources.

We have carried a similar analysis for the power iteration
by varying the number N of initial neutrons per generation at
fixed reactor size L. The results are displayed in Figure 3. The195

pattern followed by the neutron population during convergence
is similar to that discussed in the analysis carried out above.
When the neutron density is high (i.e., N is large for a given L),
the fission sites converge to a spatial equilibrium with neutrons
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homogeneously distributed over the whole volume, with mild200

fluctuations mostly due to scattering. As N decreases, spatial
fluctuations become more apparent, and for even smaller pop-
ulations neutron clustering eventually sets in. On the basis of
the argument discussed above, fluctuations due to correlations
are expected to increase for decreasing population size N when205

keeping L constant, which is coherent with our numerical find-
ings.

The behaviour of the measured Shannon entropy S(g) for the
configurations presented in Fig. 3 is displayed in Fig. 4. The
expected entropy value SN depends on the number of particles210

per generation, whereas the ideal asymptotic value S∞ is un-
changed and reads S∞ = 9. The number m of generations taken
by the neutron population to achieve spatial convergence start-
ing from the point source is again m ' L2/`2, with `2 ' 190
cm2 and L = 400 cm, which yields m ' 830, independently of215

the number of simulated neutrons. This is consistent with the
number of generations taken by the measured entropy S(g) to
attain convergence, as shown in Fig. 4.

When the number of initial neutrons N is sufficiently large,
the Shannon entropy converges to an asymptotic value that is220

very close to SN . As the relevance of the spatial clustering in-
creases for decreasing N, the fraction of empty cells at equi-
librium increases, and the asymptotic value of S(g) attained at
convergence becomes progressively lower than SN . Numeri-
cal analysis shows that the ratio between the measured and ex-225

pected entropy scales as S(g)/SN ∝ 1/N. Similarly as observed
above, the Shannon entropy may thus become ineffective in di-
agnosing fission source convergence in the presence of spatial
clustering.

One might wonder whether the results discussed in this Sec-230

tion are specific to exactly critical configurations (i.e., to hav-
ing chosen keff = 1). Actually, this is not the case. We have
performed several other Monte Carlo power iteration simula-
tions for super- or sub-critical reactors by varying the system
parameters, and the outcomes are qualitatively similar to those235

presented here. Finally, the behaviour of the entropy function
with respect to the mesh number B is presented in Fig. 5. The
convergence to the asymptotic value SN for any fixed N de-
creases for increasing B, which is clearly understood on phys-
ical grounds. Indeed, when the number of mesh B is larger,240

the number of particles N required to smooth out the effects
of correlations in each spatial bin must be also larger. In par-
ticular, we have numerically observed that we have the scaling
(SN − S(g))/SN ∝ B1/3 for fixed N and L.

3. Beyond entropy: extracting information from spatial245

moments

The main drawback of the entropy function as a tool for the
statistical analysis of Monte Carlo power iteration is that the
spatial fluctuations of the neutron population are somehow av-
eraged out by the sum over all cells in Eq. 1: an asymptotic con-250

vergence can be ultimately attained even if neutrons are subject
to strong (but statistically stationary in space) patchiness. Clus-
tering effects will then go undetected when using the standard
definition of S(g) during power iteration, unless the theoretical

Figure 5: Homogeneous cube reactor. The behaviour of the
measured Shannon entropy S(g) during Monte Carlo power it-
eration as a function of generations g, for different mesh num-
ber B, and fixed L = 400 cm. The guess source at g = 0 con-
sists of N neutrons located at the center of the cube. Power
iteration is run for 2 × 104 generations. Upper red curves:
B = 16 × 16 × 16; central green curves: B = 8 × 8 × 8; lower
blue curve: B = 4 × 4 × 4. For any fixed B, N is progressively
increased, i.e., N = 5 × 103, N = 104, N = 5 × 104, N = 105.
For reference, the corresponding theoretical entropy values S∞
are displayed as solid lines.

value SN is known in advance, so that the ratio S(g)/SN can255

be computed. Generally speaking, this is however not possible
but for the simplest reactor configurations, such as the homoge-
neous cube considered above.

In order to explicitly include the effects of spatial correla-
tions in our statistical analysis, a convenient choice consists in
generalizing the entropy function defined in Eq. 1 as follows:

S∗u,v,w = −
∑
i, j,k

Lu(ξi)Lv(ξ j)Lw(ξk)pi, j,k log2[pi, j,k], (7)

where Lq(ζ) are the Legendre polynomials (other basis sets
could also be used) of order q and argument ζ, and ξi is the260

x-coordinate (ξ j is the y-coordinate, and ξk is the z-coordinate,
respectively) of the center of the cell i, j, k, normalized to the
interval [−1, 1]. When u = v = w = 0, we recover the reg-
ular Shannon entropy function, namely, S∗0,0,0(g) = S(g). For
q = 1, we have L1(ζ) = ζ, so that the quantity S∗1,0,0(g) can be265

interpreted as the first spatial moment of the entropy function
along the x direction (S∗0,1,0(g) in the y direction and S∗0,0,1(g) in
the z direction, respectively). In other words, the function S∗u,v,w
weights the fluctuations in the number of particles at a cell i, j, k
of the mesh along each spatial axis by the regular Shannon en-270

tropy defined on the same mesh.
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By construction, the generalized entropy function S∗u,v,w(g)
is better suited than S(g) in detecting spatial fluctuations dur-
ing the Monte Carlo power iteration. In order to illustrate our
argument, let us revisit the homogeneous cubic reactor of the275

previous Section, with a fixed number of meshes B = 512. The
behaviour of S∗1,0,0(g) for the reactor configurations obtained
by keeping the number of neutrons N fixed and varying the
box size L is illustrated in Fig. 6 (top). The first spatial mo-
ment of the entropy along the x direction is expected to be zero280

due to the symmetry of neutron distribution. Since the source
for the power iteration is initially placed at the center of the
box, there is no appreciable convergence phase for S∗1,0,0(g), as
opposed to S(g). Fluctuations of S∗1,0,0(g) around zero clearly
mirror the spatial correlations: as L increases, correlations be-285

come stronger and the fluctuations of S∗1,0,0(g) become wilder.
A similar behaviour is found when decreasing the number N of
simulated neutrons per generations at fixed reactor size L, as
shown in Fig. 7 (top). When N is large, the S∗1,0,0(g) is again
close to zero, and the fluctuations increase by decreasing N.290

For symmetry reasons, the results for S∗0,1,0(g) and S∗0,0,1(g) are
(statistically) identical to those obtained for S∗1,0,0(g) and will
thus not be shown here.

A second, and perhaps more intuitive, approach to the anal-
ysis of spatial fluctuations during power iteration consists in
computing the center of mass rcom(g) of the neutrons as a
function of generations g, as recently suggested for instance
by (Wenner and Haghighat, 2007, 2008). To be more precise,
for a collection of N particles having coordinates {x1, y1, z1, · · ·
xi, yi, zi, · · · xN , yN , zN} at the fission sites, the center of mass is
defined as

rcom(g) =

∑
i wiri∑
i wi

, (8)

where ri is the vector of components ri = {xi, yi, zi}, and wi are
the statistical weights of the neutrons. The components of the
center of mass along each direction are defined as

xcom(g) =

∑
i wixi∑

i wi
, ycom(g) =

∑
i wiyi∑
i wi

, zcom(g) =

∑
i wizi∑
i wi

. (9)

Observe that by construction the center of mass rcom(g) does
not depend on the number of spatial meshes.295

The analysis of the center of mass estimator for the reactor
configurations obtained by keeping the number of neutrons N
fixed and varying the box size L is illustrated in Fig. 6 (bot-
tom), where we display xcom(g). Since the source for the power
iteration is initially placed at the center of the box, there is no300

appreciable convergence phase for xcom(g). The evolution of
xcom(g) clearly mirrors the spatial fluctuations of the neutron
population: when L is small, and the population is uniformly
distributed within the box, xcom(g) fluctuates around the sym-
metry center (here, x = y = z = 0), and the fluctuations305

are rather mild. As L increases, the effects of spatial correla-
tions becomes stronger, and the evolution of xcom(g) becomes
increasingly erratic. The qualitative behaviour of xcom(g) is
closely related to that of S∗1,0,0(g), apart from the normalizing
factor that is imposed by construction in the Legendre polyno-310

mials for S∗u,v,w(g).

Figure 6: Homogeneous cube reactor. Monte Carlo power iter-
ation as a function of generations g, for three different reactor
sizes L and fixed number N of neutrons per generation. The
guess source at g = 0 consists of N = 104 neutrons located at
the center of the cube. Power iteration is run for 1000 genera-
tions. Top. The behaviour of the generalized Shannon entropy
S∗1,0,0(g). Red curve: L = 100 cm; Green curve: L = 200 cm;
Blue curve: L = 400 cm. Bottom. The behaviour of the center
of mass xcom(g). Red curve: L = 100 cm; Green curve: L = 200
cm; Blue curve: L = 400 cm.

A similar behaviour is again found for xcom(g) when decreas-
ing the number N of simulated neutrons per generations at fixed
reactor size L, as shown in Fig. 7 (bottom). The fluctuations
of xcom(g) increase by decreasing N, and the qualitative evo-315

lution of xcom(g) is strikingly similar to that of S∗1,0,0(g). For
symmetry reasons, the results for ycom(g) and zcom(g) are (sta-
tistically) identical to those obtained for xcom(g) and will thus
not be shown here.

4. The impact of clustering on the spatial moments320

A deeper understanding of the qualitative behaviour of the
generalized entropy and by the center of mass that we have
observed in the previous Section can be achieved by relating
the features of these estimators to the key physical parameters
that govern the evolution of the Monte Carlo power iteration.325

This is actually possible by resorting to the theory of branching
stochastic processes. Since the features of the generalized en-
tropy are almost identical to those of the center of mass, for our
analysis in the following we will focus on this latter.

The nuclear reactor model described above can be conceptu-330

ally represented as a collection of N particles undergoing scat-
tering, reproduction and absorption within a homogeneous box
of finite volume V , with reflecting (mass-preserving) bound-
aries. In order to keep notation simple, and yet retain the key
ingredients of the model, we will approximate the exponential335
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Figure 7: Homogeneous cube reactor. Monte Carlo power itera-
tion as a function of generations g, for three different initial pop-
ulation sizes N and fixed L = 400 cm. The guess source at g = 0
consists of N neutrons located at the center of the cube. Power
iteration is run for 1000 generations. Top. The behaviour of the
generalized Shannon entropy S∗1,0,0(g). Red curve: N = 105;
green curve: N = 104; blue curve: N = 103. Bottom. The
behaviour of the center of mass xcom(g). Red curve: N = 105;
green curve: N = 104; blue curve: N = 103.

paths of the neutrons by regular Brownian motion with a con-
stant diffusion coefficient D (in other words, we are assuming
that the diffusion approximation holds). For the same reason,
instead of working with discrete generations we will introduce a
continuous time t. The diffusing walker undergoes a birth-death340

event at rate β = vΣ f : the neutron disappears and is replaced by
a random number k of descendants, distributed according to a
law qk with average ν̄ f =

∑
k kqk. We will assume that exactly

two neutrons are emitted at fission.
In the Monte Carlo power iteration, some population control345

mechanisms are typically applied (such as Russian roulette and
splitting), and the neutron population is typically normalized at
the end of each generation in order to prevent the number of
individuals from either exploding or shrinking to zero. For our
aims, the effect of such population control mechanisms on our350

model can be mimicked by imposing that the total number N of
neutrons in V is preserved. The simplest way to ensure a con-
stant N is to correlate fission and capture events (Zhang et al.,
1990; Meyer et al., 1996): at each fission, a neutron disappears
and is replaced by 2 descendants, and 1 neutron is simultane-355

ously captured (i.e., removed from the collection) in order to
ensure the conservation of total population 2.

2This mechanism has been first introduced in the theoretical ecology (Zhang
et al., 1990; Meyer et al., 1996), where similar large-scale constraints have been
shown to quench the wild fluctuations in the number of individuals that are
expected for an unconstrained community.

Analysis of this model shows that the evolution of the neu-
tron population is governed by two distinct time scales: a mix-
ing time τD ∝ V2/3/D and a renewal time τR ∝ N/β. The360

quantity τD physically represents the time over which a parti-
cle has explored the finite viable volume V by diffusion. The
emergence of the time scale τD is a distinct feature of confined
geometries having a finite spatial size: for unbounded domains,
τD → ∞. The quantity τR represents the time over which the365

system has undergone a population renewal, and all the individ-
uals descend from a single common ancestor. When the con-
centration N/V of individuals in the population is large (and
the system is spatially bounded), it is reasonable to assume that
τR > τD.370

Consider then a collection of N such particles moving around
randomly, whose vector positions ri(t), i = 1, · · · ,N, are
recorded at time t. The spatial behaviour of the individuals
can be characterized in terms of several moments, namely, the
square center of mass

〈r2
com〉(t) ≡

〈 1
N

∑
i

ri(t)

2〉
, (10)

the mean square displacement

〈r2〉(t) ≡
1
N

∑
i

〈r2
i (t)〉, (11)

and the mean square distance between pairs of particles

〈r2
p〉(t) ≡

1
N(N − 1)

∑
i, j

〈
|ri(t) − r j(t)|2

〉
. (12)

Brackets denote the expectation with respect to the ensemble of
possible realizations.

By construction, these three quantities are related to each
other. By developing the series in the definitions above, we
can in particular express the center of mass as a function of
the mean square displacement and of the particle pair dis-
tance (Meyer et al., 1996), namely,

〈r2
com〉(t) = 〈r2〉(t) −

1
2

N − 1
N
〈r2

p〉(t). (13)

In the following, we will explicitly compute the center of mass
for the homogeneous reactor and relate its behaviour to the
model parameters.375

4.1. Neutron density and correlations

Let us denote by n(x, t) the instantaneous density of neutrons
located at x at time t. For a critical reactor, the average neutron
density at a point x reads

〈n(x, t)〉 = Nρ(xi, t), (14)

where we have set

ρ(x, t) =

∫
dx0Q(x0)G(x, x0, t). (15)

7



Here Q is the spatial probability distribution function of the
neutrons at time t = 0, and the Green’s function G(x, x0, t) sat-
isfies the backward diffusion equation

∂

∂t
G(x, x0, t) = D∇2

x0
G(x, x0, t), (16)

with the appropriate boundary conditions (de Mulatier et al.,
2015). Assuming that the initial neutron population has a
uniform spatial distribution, we have Q = 1/V , and the av-
erage neutron density at any time will be spatially uniform,380

namely, 〈n(x, t)〉 = N/V . For arbitrarily distributed sources at
t = 0, the neutron density will asymptotically converge towards
〈n(x, t → ∞)〉 = N/V for long times.

The spatial inhomogeneities of the neutron population due
to clustering can be probed by resorting to the pair correlation
function h(x, y, t) between positions x and y, namely, the aver-
age density of pairs with the former particle in x and the latter
in y (de Mulatier et al., 2015). This quantity is proportional to
the joint probability density for x and y (Meyer et al., 1996).
The spatial shape of h(x, y, t) conveys information on the corre-
lation range, whereas its amplitude is proportional to the corre-
lation strength. A flat shape implies that the correlations have
the same intensity everywhere; on the contrary, the presence of
a peak at x ' y reflects the increased probability of finding par-
ticles at short distances of each other, which is the signature of
spatial clustering (Zhang et al., 1990; Meyer et al., 1996). For
the ideal case of N independent random walkers in the absence
of branching and death we would have

hid(x, y, t) = N(N − 1)ρ(x, t)ρ(y, t). (17)

In particular, if the particles are uniformly distributed at time
t = 0, hid(x, y, t) = N(N − 1)/V2.385

For the homogeneous reactor model defined above, the pair
correlation function h can be exactly computed by resorting to
the approach originally proposed in (Meyer et al., 1996) for in-
finite domains and later refined by (de Mulatier et al., 2015) for
bounded domains. The calculations are developed in Appendix
B, and yield

h(x, y, t) =
N (N − 1)

V2 e−βpt

+ β
N
V

∫ t

0
dt′e−βpt′G(x, y, 2t′) (18)

when imposing the initial uniform source Q = 1/V . The quan-
tity βp is a shorthand for βp = β/(N − 1). When branching
events are absent (β = 0), h(x, y, t) → hid(x, y, t), since spatial
correlations are suppressed. The integral of the Green’s func-
tion appearing in Eq. 18 is bounded thanks to the exponential390

term, and at long times the correlation function converges to an
asymptotic shape. The same asymptotic behaviour is expected
for arbitrary initial sources.

4.2. Relating the spatial moments to ρ and h

The spatial moments of the neutron population defined above
can be formally expressed in terms of the particle density ρ(x, t)

and of the correlation function h(x, y, t). In particular, for the
mean square displacement we have

〈r2〉(t) =

∫
x2ρ(x, t)dx. (19)

As for the mean square distance between pairs of particles, we
have

〈r2
p〉(t) =

∫
dx

∫
dy|x − y|2h(x, y, t)∫

dx
∫

dyh(x, y, t)
, (20)

which is to be compared to the ideal average square distance of
an uncorrelated population uniformly distributed in the viable
volume, namely,

〈r2
p〉id =

1
V2

∫
dx

∫
dy|x − y|2 =

1
2

V
2
3 . (21)

Deviations of 〈r2
p〉(t) from the ideal behaviour 〈r2

p〉id allow395

quantifying the impact of spatial clustering (Meyer et al., 1996;
de Mulatier et al., 2015).

4.3. Analysis of the homogeneous reactor
Let us now consider the case of the homogeneous cube reac-

tor introduced above, with size L and V = L3. At the bound-
aries, we impose reflecting (Neumann) conditions. The Green’s
function for this system reads (Grebenkov, 2013)

G(x, x0, t) =

∞∑
i, j,k

ϕi(u)ϕ†i (u0)ϕ j(v)ϕ†j (v0)ϕk(w)ϕ†k(w0)e−αi, j,k t,

where
ϕq(ζ) = cos

(qπζ
L

)
(22)

are the eigen-modes of the Laplace operator and

αi, j,k = D
(
π

L

)2 (
i2 + j2 + k2

)
(23)

are the associated eigenvalues. The vector x is defined by its
components, namely, x = {u, v,w}. By inspection, the mixing
time of the neutron population is identified with τD ∝ L2/(π2D).
The functions ϕ†q(ζ) are found by imposing ortho-normalization
of the eigenmodes, which yields

ϕ†q(ζ) =
1
L

cos
(qπζ

L

)
(24)

for q = 0, and

ϕ†q(ζ) =
2
L

cos
(qπζ

L

)
(25)

for q ≥ 1.
Assuming a uniform spatial distribution Q = 1/L3 at time

t = 0, the average density simply reads

〈n(x, t)〉 =
N
L3 . (26)

The mean square displacement can be easily computed, and
yields

〈r2〉(t) =

∫
x2ρ(x, t)dx =

L2

4
. (27)
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From Eq. 18 we get the pair correlation function

h(x, y, t) =
N(N − 1)

L6

+ βN
∞∑

i′, j′,k′
ϕi(u)ϕ†i (q)ϕ j(v)ϕ†j (r)ϕk(w)ϕ†k(s)

1 − e−(2αi, j,k+βp)t

2αi, j,k + βp
,

where the sum is extended to all indexes i ≥ 0, j ≥ 0, k ≥ 0,
except i = j = k = 0, and we have set x = {u, v,w} and y =

{p, r, s}. The series appearing at the right-hand side is bounded,
and for times t � τD we obtain the asymptotic shape of the pair
correlation function

h∞(x, y) =
N(N − 1)

L6

+ βN
∞∑

i′, j′,k′

ϕi(u)ϕ†i (q)ϕ j(v)ϕ†j (r)ϕk(w)ϕ†k(s)

2αi, j,k + βp
. (28)

As for the average square distance, at time t = 0 we have
〈r2

p〉(0) = 〈r2
p〉id, as expected. The asymptotic behaviour of

〈r2
p〉(t) at times t � τD can be computed exactly based on

Eqs. (28) and (20), and reads

〈r2
p〉∞ = lim

t→∞
〈r2

p〉(t)

= 12
D
βp

1 −
√

8D
βpL2 tanh


√
βpL2

8D


 . (29)

By recalling the definitions of the mixing time τD and the re-
newal time τR, we can rewrite Eq. (29) as

〈r2
p〉∞ =

12L2

π2

τR

τD

1 −
√

8
π2

τR

τD
tanh


√
π2

8
τD

τR


 , (30)

which shows that the impact of the spatial correlations is ruled400

by the dimensionless ratio between the renewal time and the
mixing time. Intuitively, we expect the effects of the correla-
tions to be stronger when the typical time scale of fission re-
newal is in competition with diffusive mixing (i.e., τR ' τD),
and to be weaker when diffusive mixing is faster than renewal405

(i.e., τD � τR).
Let us first consider the case of a system where the effects

of the spatial correlations induced by clustering are very weak
(i.e., τR → ∞), which is obtained for a very large number of
particles or a vanishing fission rate. By taking the limit of β →
0 or equivalently N → ∞, we have

〈r2
p〉 →

L2

2
= 〈r2

p〉id (31)

and we recover the ideal case corresponding to uncorrelated
trajectories. In this case, the center of mass of the population
obeys

〈r2
com〉id = 〈r2〉 −

1
2

N − 1
N
〈r2

p〉id =
L2

4N
=

1
N
〈r2〉id, (32)

which basically means that for a collection of independent par-
ticles the mean square displacement of the center of mass is

equal to the mean square displacement of a single particle of
the collection, divided by the number of particles.410

Consider now a finite reproduction rate β and a large but finite
number of particles N � 1. In this case, we can expand Eq. (30)
for τD � τR, which yields

〈r2
p〉∞ '

L2

2

[
1 −

π2

20
τD

τR
+ · · ·

]
= 〈r2

p〉id

[
1 −

1
20

L2

NM2 + · · ·

]
, (33)

where we have used the definition of the migration areaM2 =

D/β. This result relates the typical inter-particle distance to the
physical parameters of the reactor model, namely, N, L, and
M2, and implies in particular that 〈r2

p〉∞ will be smaller than in
the uncorrelated case because of the effects of spatial clustering.415

As for the center of mass, we finally get

〈r2
com〉∞ = 〈r2〉 −

1
2

N − 1
N
〈r2

p〉∞ '
L2

4N

[
1 +

π2

20
N
τD

τR
+ · · ·

]
= 〈r2

com〉id

[
1 +

1
20

L2

M2 + · · ·

]
, (34)

which again relates the mean square displacement of the center
of mass to the physical parameters N, L, and M2. In particu-
lar, 〈r2

com〉∞ will be larger than that of an uncorrelated system.
The correction factor increases for increasing system size L,
and decreases for increasing migration areaM2, as expected on420

physical grounds.

4.4. Numerical findings for the homogeneous reactor

It is interesting to compare the numerical values of 〈r2
com〉∞

predicted by Eq. (34) to the behaviour of the center of mass
displayed in Fig. 6 (bottom) and Fig. 7 (bottom). In particular,425

σcom =
√
〈r2

com〉∞ intuitively represents the typical amplitude
of the fluctuations of the center of mass around the average.
The value of M2 can be estimated by computing `2 in each
Monte Carlo simulation and then settingM2 = `2/6 according
to diffusion theory. Because of the geometrical symmetries of430

the cube configuration, along a given axis, say x, we get σx
com =√

〈r2
com〉∞/3.

When the number of particles is kept fixed at N = 104, and
the size L varies, from Eq. (34) we get for σx

com the values re-
ported in Tab. 1. These findings are entirely consistent with the435

typical size of the fluctuations of the x component of the cen-
ter of mass observed in Fig. 6 (bottom): for comparison, the
standard deviation σ̂x

com of the recorded statistical series is also
reported in Tab. 1.

When the reactor size is kept fixed at L = 400 cm (`2 ' 192440

cm2) and N varies, from Eq. (34) we get the σx
com values re-

ported in Tab. 2. Comparison with Fig. 7 (bottom) shows that
these predictions are again entirely consistent with the typical
size of the fluctuations of the x component of the center of mass
observed in our Monte Carlo simulations, whose standard devi-445

ation σ̂x
com is also reported in Tab. 2.
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L [cm] `2 [cm2] σx
com [cm] σ̂x

com [cm]
100 174 1.2 1.5
200 185 4.7 5.9
400 192 18.3 19.9

Table 1: Measured and predicted values for the fluctuations of
the x component of the center of mass for the homogeneous
cube reactor. Here the number of neutrons per generation is
kept fixed at N = 104, and the reactor size L varies.

N σx
com [cm] σ̂x

com [cm]
105 5.8 7.3
104 18.3 19.9
103 57.8 64.4

Table 2: Measured and predicted values for the fluctuations of
the x component of the center of mass for the homogeneous
cube reactor. Here the reactor size L is kept fixed at L = 400
cm, and the number N of neutrons per generation varies.

5. Application to realistic reactor configurations

In the previous Sections, we have applied our analysis to a
simplified reactor model. In the following, we would like to as-
certain whether the conclusions that were drawn in the case of450

space- and energy-independent neutron transport actually carry
over to more realistic configurations. To this aim, we will ex-
amine the behaviour of Monte Carlo power iteration for a fuel
rod and for a full reactor core. Monte Carlo simulations have
been performed by resorting to the reference code Tripoli-4 R©,455

developed at CEA (Brun et al., 2014; Tripoli-4 Project Team,
2008).

5.1. A fuel rod
Let us begin by considering a fuel rod. This configuration is

composed of UO2 fuel at 3.25% enrichment, with radius 0.407460

cm. The fuel pellets are enclosed in a Zircaloy cladding of outer
radius 0.477 cm, and a water moderator surrounds the cladding.
All materials are kept at 300 K. Reflective boundary conditions
have been applied on the system, so that the expected equilib-
rium distribution for the flux is axially flat in space. The chosen465

nuclear data library is ENDF/B-VII.0.
The measured entropy function S(g) for the fuel rod is shown

in Fig. 8 for fixed number N of simulated particles per gener-
ation and varying fuel rod sizes L, and in Fig. 9 for fixed L
and varying N, respectively. When L is varied and N = 104,470

the entropy function converges to a stationary value after about
m = L2/`2 ' 100 generations for L = 100 cm (`2 ' 100 cm2),
m = L2/`2 ' 370 generations for L = 200 cm (`2 ' 108 cm2),
and m = L2/`2 ' 1400 generations for L = 400 cm (`2 ' 112
cm2). Our predictions are consistent with the numerical find-475

ings for S(g). The entropy at convergence depends on the num-
ber N of simulated particles per generations, and an asymptotic
value SN is eventually reached in the limit of large N, with a
∝ 1/N scaling.

Figure 8: The fuel rod. The behaviour of the measured Shannon
entropy S(g) during Monte Carlo power iteration as a function
of generations g, for three different fuel rod lengths L and fixed
number N of neutrons per generation. The guess source at g = 0
consists of N = 104 neutrons uniformly distributed along the
fuel rod. Power iteration is run for 2 × 104 generations. Upper
red curve: L = 100 cm; central green curve: L = 200 cm; lower
blue curve: L = 400 cm. The mesh chosen for the entropy
computation is fixed to 8 identical meshes along the total length
of the fuel rod. The theoretical value of the entropy given by
Eq. (5) reads S∞ = 3.0.

The behaviour of S∗0,0,1(g) for the fuel rod with fixed N480

fixed and varying L is illustrated in Fig. 10 (top), z being the
axis aligned along the rod. As L increases, the fluctuations of
S∗0,0,1(g) become stronger. A similar behaviour is found when
decreasing the number N of simulated neutrons per generations
at fixed reactor size L, as shown in Fig. 11 (top): the fluctua-485

tions increase by decreasing N. The analysis of the center of
mass estimator for the fuel rod with fixed N and varying L is
illustrated in Fig. 10 (bottom), where we display zcom(g): when
L is small, zcom(g) fluctuates around the symmetry center z = 0,
and the fluctuations are rather mild. As L increases, the evo-490

lution of zcom(g) becomes increasingly erratic. The qualitative
behaviour of zcom(g) is similar to that of S∗0,0,1(g). A similar be-
haviour is found for fixed L and varying N, as shown in Fig. 11
(bottom).

In order to relate the numerical simulation results for zcom(g)
to the theory developed above, we have solved Eq. (18) for a
one-dimensional homogeneous rod geometry, where neutrons
are allowed to only move back and forth along a line of size
L. Neumann boundary conditions are applied to the ends of the
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Figure 9: The fuel rod. The behaviour of the measured Shannon
entropy S(g) during Monte Carlo power iteration as a function
of generations g, for a fixed fuel cell length L = 400 cm and dif-
ferent numbers N of neutrons per generation. The guess source
at g = 0 consists of N neutrons uniformly distributed along the
fuel pin. Power iteration is run for 8 × 103 generations. Upper
red curve: N = 5×105 ; central green curve: N = 5×104 ; lower
blue curve: N = 104. The mesh chosen for the entropy compu-
tation is fixed to 8 identical meshes along the total length of the
fuel rod. The theoretical value of the entropy given by Eq. (5)
reads S∞ = 3.0.

segment. The rod model equations yield

〈z2
com〉∞ = 〈z2

com〉id

[
1 +

1
20

L2

M2 + · · ·

]
, (35)

with 〈z2
com〉id = L2/(12N) andM2 = `2/2. For the case of fixed495

N = 104 and varying L, the rod model formula yields the σz
com

values reported in Tab. 3. Comparison with Fig. 10 (bottom)
shows that these predictions are in good agreement with the
standard deviation σ̂z

com of the recorded statistical series, which
is also reported in Tab. 3.500

L [cm] `2 [cm2] σz
com [cm] σ̂z

com [cm]
100 100 1 0.9
200 108 2.6 3.3
400 112 13.8 15.4

Table 3: Measured and predicted values for the fluctuations of
the z component of the center of mass for the fuel rod. Here the
number of neutrons per generation is kept fixed at N = 104, and
the fuel rod size L varies.

Figure 10: The fuel rod. Monte Carlo power iteration as a
function of generations g, for three different reactor sizes L and
fixed number N of neutrons per generation. The guess source
at g = 0 consists of N = 104 neutrons uniformly distributed
along the fuel rod. Power iteration is run for 2 × 104 genera-
tions. Top. The behaviour of the generalized Shannon entropy
S∗0,0,1(g). Red curve: L = 100 cm; Green curve: L = 200 cm;
Blue curve: L = 400 cm. Bottom. The behaviour of the center
of mass zcom(g). Red curve: L = 100 cm; Green curve: L = 200
cm; Blue curve: L = 400 cm.

When L = 400 cm and N is varied, Eq. (35) yields the σz
com

values reported in Tab. 4. These predictions are again in good
agreement with the standard deviation σ̂z

com of the recorded sta-
tistical series shown in Fig. 11 (bottom), which is also reported
in Tab. 4.505

N σz
com [cm] σ̂z

com [cm]
105 2 1.7

5 × 104 6.2 4.9
104 13.8 15.4

Table 4: Measured and predicted values for the fluctuations of
the z component of the center of mass for the fuel rod. Here the
fuel rod size size L is kept fixed at L = 400 cm, and the number
N of neutrons per generation varies.

5.2. The Hoogenboom-Martin benchmark

Let us now turn our attention to a full-scale reactor core
model, namely, the Hoogenboom-Martin benchmark (Hoogen-
boom and Martin, 2009). This benchmark considers a simpli-
fied PWR core made of 241 identical fuel assemblies. The fuel510

composition is representative of a typical depleted core con-
figuration. Two moderator zones are used so as to model the
decreasing bottom to top coolant density. We will focus on the
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Figure 11: The fuel rod. Monte Carlo power iteration as a func-
tion of generations g, for a fixed fuel length L = 400cm and dif-
ferent numbers N of neutrons per generation. The guess source
at g = 0 consists of N neutrons uniformly distributed along the
fuel rod. Power iteration is run for 8×103 generations. Top. The
behaviour of the generalized Shannon entropy S∗0,0,1(g). Red
curve: N = 5 × 105; Green curve: N = 5 × 104; Blue curve:
N = 104. Bottom. The behaviour of the center of mass zcom(g).
Red curve: N = 5×105; Green curve: N = 5×104; Blue curve:
N = 104.

cold zero power core configuration (CZP: all materials are at
room temperature, 300 K), and the chosen nuclear data library515

is ENDF/B-VII.0 (Chadwick et al., 2006).
By analogy with the simulations that were carried out for the

homogeneous cube reactor, we will first examine the evolution
of the fission site distribution as a function of the number of
generations, for different values N of simulated neutrons per520

generation. The results for an axial cut at mid-plane are dis-
played in Fig. 12. We have chosen a uniform neutron source at
g = 0. When N = 105, the population evolves toward the funda-
mental eigenmode, and the fluctuations around the average den-
sity are rather mild. When N decreases to N = 104, the impact525

of spatial correlations becomes stronger, and for even smaller
N = 5×103 neutrons are clearly clustered. Apart from geomet-
rical effects due to the shape of the reactor core, the behaviour
of the Monte Carlo power iteration of the Hoogenboom-Martin
reactor model is not entirely dissimilar to that of the homoge-530

neous cube.
The corresponding entropy function S(g) is shown in Fig. 13.

The mean square displacement per generation has been esti-
mated within the Monte Carlo power iteration and reads `2 '

356 cm2. Similarly as in the case of the homogeneous cube re-535

actor, the entropy function converges to a stationary value after
about m = H2/`2 ' 380 generations, where we have used a
characteristic reactor size H ' 366 cm corresponding to the ac-
tive fuel length (and approximately to the core diameter). The

Figure 12: The Hoogenboom-Martin benchmark. Distribution
of fission sites during Monte Carlo power iteration as a function
of generations g, for three different initial population sizes N.
The guess source at g = 0 consists of N neutrons uniformly
distributed across the reactor. Power iteration is run for 12×104

generations. Top: N = 105; center: N = 104; bottom: N =

5 × 103.

entropy at convergence depends on the number N of simulated540

particles per generations, and an asymptotic value SN is even-
tually reached in the limit of large N, with a ∝ 1/N scaling.

N σz
com [cm] σ̂z

com [cm]
105 3.5 1.8

5 × 104 5 2.2
104 11.3 5.8

5 × 103 15.9 8.6

Table 5: Measured and predicted values for the fluctuations of
the z component of the center of mass for the Hoogenboom-
Martin benchmark. The number N of neutrons per generation
varies.

The behaviour of the spatial moments of the entropy function
and of the center of mass for the Hoogenboom-Martin bench-
mark are displayed in Fig. 14 (top) and (bottom), respectively.
When N is large, the S∗0,0,1(g) is close to zero, and the fluctua-
tions increase by decreasing N. Similar results are found for the
x and y axis, although geometrical effects come into play due
to the cylindrical symmetry. The fluctuations of zcom(g) also in-
crease by decreasing N, and the qualitative evolution of zcom(g)
is very close to that of S∗0,0,1(g). Equation (18) can be developed
for a homogeneous cylinder with Neumann boundaries, which
conceptually corresponds to assuming that the water reflector
surrounding the reactor core acts as a perfect mirror for neu-
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Figure 13: The Hoogenboom-Martin benchmark. The be-
haviour of the measured Shannon entropy S(g) during Monte
Carlo power iteration as a function of generations g, for differ-
ent initial population sizes N. The guess source at g = 0 con-
sists of N neutrons uniformly distributed in the core. Power iter-
ation is run for 12×104 generations. Upper red curve: N = 105;
central green curve: N = 104; lower blue curve: N = 5 × 103.

trons. In this case, for the z component of the center of mass
fluctuations we would get

〈z2
com〉∞ = 〈z2

com〉id

[
1 +

1
20

H2

M2 + · · ·

]
, (36)

with 〈z2
com〉id = H2/(12N). Numerical estimates for σz

com are
reported in Tab. 5, where we usedM2 = `2/6 ' 60 cm2. Com-
parison with Fig. 14 (bottom) shows that these predictions sys-545

tematically overestimate (roughly by a factor of 2) the standard
deviation σ̂z

com of the recorded statistical series, which is also
reported in Tab. 5.

Deviations of the theoretical formula in Eq. (34) from the
observed behaviour of the fluctuations are mostly due to the ap-550

proximation of entirely neglecting the effects of leakages in our
simple model. Nonetheless, the order of magnitude of the fluc-
tuation amplitude and the 1/

√
N scaling are correctly captured

by Eq. (34).

6. Conclusions555

The statistical behaviour of the neutrons in Monte Carlo
power iteration has been analyzed within the framework of
branching stochastic processes. In particular, we have shown
that it is possible to relate the spatial distributions of neutrons
to the key parameters of the simulated configuration, namely,560

Figure 14: The Hoogenboom-Martin benchmark. Monte Carlo
power iteration as a function of generations g, for three different
initial population sizes N. The guess source at g = 0 consists
of N neutrons located at the center of the cube. Power iteration
is run for 12 × 104 generations. Top. The behaviour of the
generalized Shannon entropy S∗0,0,1(g). Red curve: N = 105;
blue curve: N = 5 × 104; yellow curve: N = 104; green curve:
N = 5 × 103. Bottom. The behaviour of the center of mass
zcom(g). Red curve: N = 105; blue curve: N = 5 × 104; yellow
curve: N = 104; green curve: N = 5 × 103.

the number of neutrons per generation, the system size, and the
migration area. By resorting to a simple homogeneous cube re-
actor model, we have illustrated some possible shortcomings of
the entropy function in detecting the convergence of the neu-
tron population to equilibrium. Alternative functions, such as565

the higher moments of the entropy or the center of mass of the
population, may be better suited in order to extract additional
information on the spatial convergence.

A deeper understanding of the spatial behaviour of the neu-
tron population during Monte Carlo power iteration has been570

achieved by resorting to the theory of branching processes,
which allows formally relating the spatial moments (the square
pair distance and the square center of mass) to the system pa-
rameters. The developed formalism is amenable to exact re-
sults (within the diffusion approximation) that are in fairly good575

agreement with the behaviour observed in the homogeneous
cube model.

We have also tested our theoretical findings on more real-
istic reactor configurations, including a full reactor core and
a fuel rod. For the former, we have shown that the formulas580

derived for a homogeneous cylindrical reactor with reflecting
boundaries can capture the scaling of the center of mass fluc-
tuations with respect to the number of particles per generation,
although our predictions globally overestimate the fluctuation
amplitude. We conjecture that this discrepancy is due to the585

approximation of having assumed reflecting boundaries: more
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sophisticated formulas allowing for arbitrary boundary condi-
tions would be needed, and this issue will be the subject of fu-
ture research work. Finally, in the case of the fuel rod (with
reflective boundaries) our simplified model is actually capable590

of correctly assessing the amplitude of the center of mass fluctu-
ations and their scaling with respect to the number of simulated
particles per generation and to the fuel rod length.
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Appendix A. Expectation of the Shannon Entropy

We develop the calculations for the expected Shannon En-
tropy SN as defined in Eq. (1). Assume that there are B tally
regions in the system, with N identical neutrons. The probabil-
ity for each neutron to be found at region i is Pi. After each
simulation, Pi is estimated as

P̂i =
ki

N
(A.1)

where ki is the number of neutrons in region i. Therefore, for
the expected entropy we have

SN = −E

 B∑
i=1

P̂i log2(P̂i)


= log2(N) −

1
N

B∑
i=1

E
[
ki log2(ki)

]
. (A.2)

For each region i, ki represents the number of occurrences of a
neutron fallen in this region. As such, it can be expressed as a
sum of N binomial random variables. Therefore, we obtain

E
[
ki log2(ki)

]
=

N∑
ki=0

(
N
ki

)
(1 − Pi)N−ki Pki

i ki log2(ki). (A.3)

For the homogeneous reactor model considered in Section 2,
we simply have Pi = 1/B and SN reduces to

SN = log2(N) −
B

NBN

N∑
ki=0

(
N
ki

)
(B − 1)N−ki ki log2(ki). (A.4)

Appendix B. The pair correlation function

Let us select a pair of (distinct) neutrons located at positions
x and y, at time t. These neutrons may, or may not, have had a
common ancestor (from a branching event) at a previous time

0 < t′ < t. Because of the particle number conservation im-
posed by population control, the fraction of new particle pairs
created in the time interval (t′, t′ + dt) is βdt/(N − 1) (Meyer et
al., 1996). As a shorthand, we will denote βp = β/(N − 1). The
probability for a chosen pair of particles at time t not to have
had a common ancestor is e−βpt, so that the probability density
for the ancestor to occur at time t′ for a particle pair observed
at t is

ψt(t′) = βpe−βp(t−t′). (B.1)

The function h(x, y, t) can be decomposed as h = h(1) + h(2),
where h(1)(x, y, t) = e−βpt hid(x, y, t) is the contribution of neu-
trons having evolved freely with no common ancestors. The
correlated contribution reads

h(2)(x, y, t) = N(N − 1)
∫ t

0
dt′

∫
V
dx′G(x, x′, t − t′)×

G(y, x′, t − t′)ψt(t′)ρ(x′, t′). (B.2)

where N(N − 1)ψt(t′)dt′ is the number of ordered particle pairs
at time t that have a common ancestor in the time interval (t′, t′+
dt′). The pair correlation function finally yields

h(x, y, t) =
N (N − 1)

V2 e−βpt + β
N
V

∫ t

0
dt′e−βpt′G(x, y, 2t′)

when imposing Q = 1/V .
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