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H I G H L I G H T S

• An improved theoretical model for electron captures is presented.

• Influence of precise atomic energies is explored.

• Influence of radiative correction is explored.

• Influence of the nuclear component is explored.

• Calculations are compared with available precise measurements.

A R T I C L E I N F O

Keywords:
Electron capture
Theoretical calculations
Nuclear decay data
Radionuclide metrology

A B S T R A C T

Based on previous study, the calculation of electron capture decays has been improved by considering a more
accurate atomic model with precise atomic energies, and different radiative corrections have been tested. The
computer code has been revised in order to greatly speed-up the calculation and has then been coupled with the
BetaShape code. The influence of the nuclear component has also been explored using a simple nuclear model.
All the calculations are compared with precise measurements available in the literature.

1. Introduction

The LogFT code (LogFT Program, 2001) and (Gove and Martin,
1971) is currently the reference code for electron captures when eval-
uating nuclear decay data, either within DDEP (Decay Data Evaluation
Project) (Kellett and Bersillon, 2017) or the NSDD (Nuclear Structure
and Decay Data) network which provides ENSDF (Evaluated Nuclear
Structure Data File) evaluations for every existing nucleus (NNDC and
Bhat, 2019). In a previous study, the theoretical predictions of the
LogFT code were compared to those of a specific model developed at
LNE-LNHB (Mougeot, 2018). Our modelling was more complete and
more consistent, including several improvements. However, despite
significantly improved results for some radionuclides, it was found that
this model suffered from a lack of precision in the atomic wave func-
tions used.

Improvements in these predictions are still necessary, as electron
capture properties are crucial features when one is evaluating the decay
scheme of radionuclides. On the metrology side, pure electron capture
radionuclides can be standardized with the liquid scintillation counting
technique, the uncertainty of which partly depends on the decay
scheme. A precise knowledge of capture probabilities is also pivotal for
many applications, e.g. in geo- and cosmo-chronology for rocks and
fossils dating; in the estimate of radiation effects on human tissue at the

DNA length scale in nuclear medicine; or for some experiments in
fundamental physics which are looking at rare events, in order to
evaluate the background components.

In the present study, precise eigenvalues of atomic orbital energies
have been considered, and were obtained for atoms from H to U based
on a relativistic self-consistent model with an approximate account of
the electron correlations. Radiative corrections have also been studied
with formulations derived for allowed transitions, and the internal
bremsstrahlung spectrum from 55Fe decay has been determined. Our
code for electron capture calculation has been improved for better
computational efficiency, and then implemented within the BetaShape
code. Our modelling is described in Section 2.

In Section 3, we compare the predictions from our modelling with
precise experimental data available in the literature for different proton
numbers Z and different forbiddenness degrees of transitions. Finally,
the influence of nuclear structure is considered in Section 4, with a
detailed description of the matrix elements, which have been fully de-
rived starting from the recent work performed in the context of beta
decays.
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2. Theoretical description of the electron capture transitions

2.1. Overview of the previous modelling

In a previous publication, we detailed the development of a con-
sistent modelling of electron captures based on the formalism of
Behrens and Bühring (1982) which calculates allowed and forbidden
unique transitions. Several atomic effects were taken into account: i)
influence of the hole created by the capture process in the atomic
structure, by means of first order perturbation theory; ii) shake-up and
shake-off effects, using Crasemann's work (Crasemann et al., 1979) to
determine the probability Pmκ of producing secondary vacancies in
every (m κ, ) orbital of the electron cloud; and iii) overlap and exchange
effects Bκx, estimated from the approximate treatment from Bahcall
(1965) and from the more precise treatment from Vatai (1970). The
total decay probability λεwas then given as the sum of the capture
probability of each subshell, labelled by its quantum number κx:
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where Gβ is the Fermi coupling constant, nκx is the relative occupation
number, qκx is the momentum of the emitted neutrino, βκx is the Cou-
lomb amplitude of the captured electron wave function and Cκx couples
the lepton and nucleon wave functions.

For each atomic subshell, the code developed provides capture
probability ratios and, for transitions with sufficient energy, capture-to-
positron probability ratios. The sum for each shell (L, M, N, etc.) is also
given, as well as the total capture-to-positron probability ratio.
Uncertainties were estimated by propagation of the uncertainties on the
Q-value and the level energies, and by taking into account the differ-
ence between results from Bahcall's approach and Vatai's approach.

This modelling was validated by comparison with published mea-
surements of capture probability ratios and capture-to-positron ratios.
However, it was not possible to distinguish between the predictions
from Bahcall's and Vatai's approaches, an unsatisfactory conclusion as
Vatai's approach is based on a more reliable theoretical description.

2.2. Precise atomic energies

In order to have access to the capture probabilities for each atomic
subshell and to calculate the different corrections, the relativistic bound
wave functions were determined from the model explained in detail in
(Mougeot and Bisch, 2014). In this model, an iterative procedure was
implemented in order to reach relativistic Dirac-Fock orbital energies
from (Desclaux, 1973) by adjusting the strength of the atomic exchange
potential. However, particle correlations, an important physical phe-
nomenon in the many-body problem, were not taken into account in
Desclaux's work.

In the present work, we have considered more precise atomic orbital
energies determined by Kotochigova (Kotochigova et al., 1997). They
were obtained in the framework of the density functional theory by
means of the relativistic local-density approximation for a point nu-
cleus. In this approach, electron correlations are embedded in an ex-
change-correlation potential which depends on the local value of the
electron density. The correct parameterization of this dependency is of
high importance to get realistic values. These orbital energies are
available on the NIST website for elements from H to U (NIST, 2009),
and can differ from Desclaux's results by an order of magnitude for
some of the least bound subshells.

Our algorithm still remains the same, the iterative process conver-
ging to different orbital energies. However, our approach has lost
consistency for two reasons. The first one is because we have considered
a spherical nucleus while Kotochigova (Kotochigova et al., 1997) have
considered a point nucleus. Our wave functions are thus more precise
than Kotochigova's on this aspect, which is of importance due to the

sensitivity of the capture probabilities to the correctness of the wave
functions at the nucleus. The second reason is because the Coulomb
potential used in our procedure does not take into account any electron
correlation. Our wave functions are thus less precise than Kotochigova's
because in our modelling electron correlation information is only in-
cluded in the atomic energies, while it is expected to influence also the
spatial behaviour of the wave functions, and hence their overlaps. As
capture probabilities are very sensitive to the energetics of the transi-
tion, we can expect that the gain obtained by using more precise atomic
energies will dominate over the loss due to the inaccuracy of the
overlaps involved in the different corrections.

2.3. Radiative corrections

In regular electron capture, the transition energy is shared between
the emitted neutrino and the nucleus. In this two-body process, all the
energies are well defined. In the radiative capture process, one or more
photons are emitted and the transition energy is then shared between at
least three particles, which creates the well-known continuous spec-
trum of internal bremsstrahlung. The emission probability of a single
photon through such a process is typically of about 0.01% per capture
event. Processes involving more photons can thus be safely ignored.
With such a low probability, the question arises about the necessity of
considering radiative corrections in electron captures. In fact, their
contribution is much more significant when considering capture-to-
positron probability ratios because of the beta plus emission. It is also
important to remember that our modelling calculates ratios of capture
probabilities for subshells, and radiative corrections can be different
from one subshell to another.

In addition, very precise radiative corrections are available for beta
transitions (Towner and Hardy, 2008), however it is not the case for
electron capture decays. It is therefore mandatory to take into account
radiative corrections at the same level of precision for both capture and
beta plus transitions when considering capture-to-positron probability
ratios. Several formalisms can be found in the literature with different
assumptions. Unfortunately, the most precise only describe two or three
of the inner subshells and are not consistent for both capture and
capture-to-positron ratios. We give below an idea of the precision of the
radiative corrections for capture ratios, and then we outline the form-
alism for the capture-to-positron ratios.

We have studied two formulations of the radiative corrections, de-
rived only for allowed transitions: a Coulomb-free theory from
(Morrison and Schiff, 1940) and a fully relativistic theory from (Martin
and Glauber, 1958). Coulomb-free theory drastically simplifies the
modelling of radiative electron capture by neglecting the momentum
and the binding energy of the captured electron, as well as the Coulomb
field influence. This theory accurately describes internal brems-
strahlung photon spectra in the high energy region. Morrison and Schiff
derived the total radiative capture rate ωns for an electron in an s state
per K-capture ωK by integrating over the photon momentum k:
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with α the fine structure constant. One should note that for s orbitals,
the Coulomb amplitude of the wave function is exactly the value of the
wave function at the origin, i.e. =β Ψ (0)ns ns , and is thus still defined in
the context of Coulomb-free theory. Fully relativistic theory leads to
much more complicated formulas because of the inclusion of the Cou-
lomb field, even considering analytical relativistic electron wave
functions. These formulas are available for some of the most bound
orbitals. In the case of a 1s captured electron, the energy spectrum of
photons from internal bremsstrahlung becomes:
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with:
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The quantities A k( )s1 and B k( )s1 are very complicated integrals
which can only be obtained numerically (Bambynek, 1977). We have
implemented the procedure established by Intemann (1971) to obtain
exact numerical results. We have then applied the Coulomb-free theory
and the relativistic theory to the K-capture in the allowed transition of
55Fe decay. This low-energy, ground-state to ground-state transition is
very suitable to illustrate the difference between both results. The two
energy spectra of internal bremsstrahlung are given in Fig. 1. For
Coulomb-free theory, one gets a total radiative capture correction of
0.0037%; for fully relativistic theory, one gets 0.0022%. We can see
that the spectrum shape is identical but the total intensity is sig-
nificantly reduced by taking into account the Coulomb and relativistic
effects. However, Coulomb-free theory provides at least the correct
order of magnitude of the total radiative correction, even for such a
low-energy transition.

Regarding capture-to-positron ratios, we have followed Holstein's
formulation (Holstein, 1979) in which the capture part is estimated by
Coulomb-free theory and the beta plus part is determined consistently
keeping the energy dependent part and omitting the Z dependent parts,
as detailed in (Mougeot, 2015). The correction to be applied on the
total capture-to-positron ratio is then:
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where mp and me are the proton and electron rest masses, 〈 〉δβ is the
average of the energy-dependent part of the radiative correction ap-
plied to the beta plus spectrum, and W0 is the total energy of the
transition. Identical formulation can be derived straightforwardly for
the capture-to-positron ratios of ns orbitals, e.g. for the K shell:
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In order to avoid inconsistent results between capture probabilities
and capture-to-positron probabilities due to the radiative corrections,
we chose to consider only Coulomb-free theory in our whole modelling
of the electron capture decay. The contribution of the ns subshells can
be easily subtracted to the total radiative correction:
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We then approximate the δr κ, x corrections by an average radiative
correction ≠δr ns, identical for every other subshell as:
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Therefore, the radiative corrections applied in our modelling are
expected to be overestimated. However, as their absolute contribution
is reasonably small, the induced bias should be smaller than the current
experimental uncertainties, except for high-precision measurements of
low-energy transitions for which a more precise modelling would have
to be used.

2.4. Inclusion within the BetaShape code

The BetaShape code has been developed for the last few years to
improve the theoretical predictions of beta decays used in nuclear data
evaluations (Mougeot, 2017). Electron captures are the other weak-
interaction decays of interest in the same context. We have thus im-
plemented the present modelling in BetaShape. However, the calcula-
tions are time consuming because of the iterative procedure used to
determine the atomic wave functions. In addition, the precise atomic
energies from Kotochigova et al. (1997) are only available up to
Z =92.

To correct these problems, we have extrapolated the atomic en-
ergies of the different orbitals up to Z =120 using their smooth Z
dependency. Next, we have neglected the isotope shift of atomic en-
ergies, which comes from the nucleus through both a mass effect and a
volume effect, because of its small magnitude (Pálffy, 2010). For each
Z , we have fixed the mass number A making use of the empirical for-
mula given in (Angeli, 1999) for the number of protons Zst along the
stability line:

=
+

Z A
A1.98 0.016st 2/3 (10)

All the atomic wave functions from Z =1 to Z =120 have then
been determined and parameters that depend on the iterative procedure
have been tabulated. Eventually, the calculation of electron-capture
properties is significantly speeded-up as the iterative procedure is
avoided.

The present modelling has been implemented in BetaShape. The
program reads the input ENSDF file; determines the transition para-
meters; calculates each electron capture decay; generates specific
output files with detailed information; and updates the ENSDF file with
the new values. In addition, the logft value and the splitting of the
branch between capture and beta plus transitions are determined for
each branch. In a few cases such as 205Pb, K capture is energetically
hindered due to a low Q-value compared with the K binding energy.
The modelling then calculates all the probability ratios according to the
first possible subshell, usually L1. Altogether, the BetaShape code is now
providing the same quantities as the LogFT code but also additional,
detailed information using more reliable and more precise theoretical
modellings for both beta and electron capture transitions. Its use in
evaluations wills lead to improved nuclear data.

Fig. 1. Internal bremsstrahlung spectrum from 55Fe allowed K capture. The
blue spectrum has been calculated using Coulomb-free theory (Morrison and
Schiff, 1940). The red spectrum has been calculated by means of the fully re-
lativistic theory from (Martin and Glauber, 1958). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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3. Results

We have compared the theoretical predictions based on the mod-
elling described in previous section with precise measurements avail-
able in the literature. Most of these experimental values have already
been presented in previous work (Mougeot, 2018). In addition, we have
also considered:

i) the ε/β+ ratio of the allowed decay between the ground state of
57Ni and the third excited state of 57Co at 1504.826 (21) keV, a
weighted average of two values from (Konijn, 1958) and (Bakhru
and Preiss, 1967);

ii) the ε/β+ and K/β+ ratios of the allowed decay between the ground
state of 58Co and the first excited state of 58Fe at 810.7662(20) keV,
which are weighted averages of six values for ε/β+ which can be
found in (Bé, 2016) and of three values for K/β+ which can be
found in (Bambynek, 1977);

iii) the K/β+ ratio of the allowed decay between the ground state of
130Cs and the ground state of 130Xe from (Hagberg, 1981).

The latest Q-values from AME 2016 atomic mass evaluations (Wang,
2017) have been taken into account for all the calculations, as in our
previous study.

Results are given in Table 1, with predictions from (Mougeot, 2018)
and contribution of radiative corrections. In previous work, it was not
possible to distinguish between the predictions using either Bahcall's or
Vatai's approaches. In our present work, the use of more precise atomic
wave functions has a significant influence. Indeed, Vatai's approach
systematically leads to predictions closer to measurements than Bah-
call's approach, and are thus preferred. This sounds reasonable as Va-
tai's approach relies on a better physical description of the overlap and
exchange effects. It also highlights that our modelling has made a sig-
nificant qualitative step forward, thanks to the inclusion of precise
atomic energies and radiative corrections, reaching an overall con-
sistency. However, Bahcall's approach is still considered to estimate the

theoretical uncertainties, as detailed before in (Mougeot, 2018), be-
cause the sole propagation of energy uncertainties provides very small,
unrealistic uncertainties on capture probabilities.

These results are presented differently in Figs. 2–5 for a wide range
of proton numbers and for allowed, first and second forbidden unique
transitions. While it was not the case in previous work, we can clearly
see that the present modelling provides predictions consistent with
measurements, except in two cases. The first one is the ε/β+ ratio in
22Na decay which was already discussed in (Mougeot, 2018),

Table 1
Comparison between measured and calculated probability ratios from our previous work in (Mougeot, 2018) and from the present work. The contribution of the
radiative correction for each ratio is given in the last column. The measured values are detailed in (Mougeot, 2018) or in the text.

Nuclide Prob. ratio Experiment Previous work This work Rad. Corr.

Allowed
11C +K β/ 0.00225 (15) 0.00218 (8) 0.00210 (6) 0.68%
22Na +ε β/ 0.1083 (9) 0.1143 (10) 0.1109 (9) 0.47%

+K β/ 0.105 (9) 0.1058 (9) 0.1038 (8) 0.46%
55Fe L K/ 0.1165 (12) 0.11823 (30) 0.11629 (31) Negligible

M L/ 0.1556 (26) 0.1708 (12) 0.1568 (11) Negligible
M K/ 0.0178 (6) 0.02019 (13) 0.01824 (12) Negligible

57Ni (1505 keV) +ε β/ 1.460 (47) n.a. 1.447 (11) 0.59%
58Co (811 keV) +ε β/ 5.61 (8) n.a. 5.63 (8) 0.45%

+K β/ 4.94 (6) n.a. 4.98 (7) 0.44%
65Zn +K β/ 30.1 (5) 29.8 (6) 29.5 (7) 0.37%
133Ba (437 keV) L K/ 0.371 (7) 0.375 (8) 0.362 (8) Negligible
133Ba (384 keV) L K/ 0.221 (5) 0.2265 (18) 0.2214 (11) Negligible
130Cs +K β/ 1.025 (22) 1.077 (23)a 1.042 (19) 1.26%
First forbidden unique
81Kr L K/ 0.146 (5) 0.14851 (37) 0.14485 (33) Negligible
84Rb +K β/ 1.12 (25) 0.905 (13) 0.909 (10) 1.13%
122Sb +K β/ 300 (50) 256 (10) 260 (10) 0.78%
126I +K β/ 20.2 (20) 20.38 (47) 20.55 (45) 0.88%
202Tl L K/ 0.223 (18) 0.2105 (5) 0.2090 (6) 0.07%
204Tl L K/ 0.47 (3) 0.5150 (49) 0.504 (5) Negligible
Second forbidden unique
138La L K/ 0.391 (3) 0.416 (8) 0.403 (8) Negligible

M K/ 0.102 (3) 0.1045 (24) 0.0996 (24) Negligible
M L/ 0.261 (9) 0.251 (8) 0.247 (8) Negligible

26Al +ε β/ 0.185 (44) 0.183 (10) 0.186 (12) 0.98%

a Calculated value given in (Hagberg, 1981) with a radiative correction of 1.3%.

Fig. 2. Comparison of capture probability ratios for allowed transitions. Black
points are ratios of the measured values and are given to shown the experi-
mental uncertainties. Red points are ratios of calculated values to measured
values, with theoretical uncertainties. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)
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highlighting the discrepancy of experimental data and stressing the
need for a new high-precision measurement. However, it is noteworthy
that the absolute difference – 0.0060 (13) before, 0.0026 (13) now – is
reduced by more than a factor of two with the present result. The
second one is the L/K ratio in 138La decay, which measured value has a
relative uncertainty less than 0.8%. Such a low uncertainty is definitely
a challenge for any modelling. Again, the absolute difference – 0.025
(9) before, 0.012 (9) now – is reduced by more than a factor of two with
the present result and is at the boundary of the statistical significance.

Finally, one can notice for certain transitions a difference of several
percent between theory and experiment, even if the values are con-
sistent when taking the uncertainties into account. Of course, this dif-
ference can be due to the precision of the measurement, some having a

large uncertainty. However, we would like to underline the high sen-
sitivity of electron capture calculations to the accuracy of the energies
used, both the atomic energies from the modelling and the input en-
ergies from the Q-values and nuclear levels. This fact could explain
some of the remaining differences.

4. Contribution of the nuclear component

The low-energy transitions of interest in the present work occur
through the weak interaction between two nuclear states, the initial one
in the parent radionuclide and the final one in the daughter radio-
nuclide. The coupling of the nuclear component and the lepton com-
ponent is performed within the Cκx coefficients for electron captures,
and within the theoretical shape factor C W( ) for beta plus transitions.
In the present work, we have derived all the equations that are neces-
sary to calculate these quantities following the Behrens and Bühring
formalism (Behrens and Bühring, 1982). We are only giving below the
equations required to reproduce the present results.

Essentially, every weak interaction process is described by a uni-
versal Hamiltonian density expressed in terms of self-interacting cur-
rents – a hadron current and a lepton current – and a multipole ex-
pansion is performed for both. This technique was applied in the past to
describe electromagnetic transitions in nuclei because perfect knowl-
edge of the electromagnetic interaction makes it favourable. In the
present case, the structure of the weak interaction is only known em-
pirically and particle physics experiments were used in the 1970s to
select one of the many possible covariant forms, i.e. any linear com-
bination of the scalar (S), pseud-scalar (P), vector (V), axial-vector (A)
and tensor (T) components. We are considering in this work a pure (V-
A) interaction, consistent with the Standard Model. In addition, the
necessity of introducing a Coulomb field for the electrons leads to a
very complicated formalism.

First, one can notice that the maximum energy of electron capture
or beta transitions (less than 30MeV) is negligible compared with the
mass of the weak interaction bosons ±W (about 80 GeV). This fact jus-
tifies the use of the Fermi effective theory which assumes an in-
stantaneous point interaction between four particles. Second, the nu-
cleon is assumed to feel only the weak interaction during the decay, the
other nucleons within the nucleus are thus assumed to be spectators.

Fig. 3. Comparison of capture-to-positron ratios for allowed transitions. Black
points are ratios of the measured values and are given to shown the experi-
mental uncertainties. Red points are ratios of calculated values to measured
values, with theoretical uncertainties. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)

Fig. 4. Comparison of L/K and K/β+ ratios for first forbidden unique transi-
tions. Black points are ratios of the measured values and are given to shown the
experimental uncertainties. Red points are ratios of calculated values to mea-
sured values, with theoretical uncertainties. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 5. Comparison of capture probability and ε/β+ ratios for second forbidden
unique transitions. Black points are ratios of the measured values and are given
to shown the experimental uncertainties. Red points are ratios of calculated
values to measured values, with theoretical uncertainties. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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This assumption is called the impulse approximation and only mea-
surements of very high precision could be sensitive to the neglected
residual interactions.

After performing the multipole expansions and determining the
transition matrices of beta and electron capture decays, Behrens and
Bühring introduce specific quantities to express the Cκx coefficients as
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The MK and mK quantities are expressed by a sort of overlap be-
tween the nucleon and lepton wave functions. As the modelling as-
sumes a spherical symmetry, one gets eventually a sum of radial in-
tegrals over some of the multipole expansion coefficients. A similar
structure has been derived in both cases. For electron capture, we
found:

A∫∑+ =
+ +

∞

[ ]β M k k S m k k
K J

r dr( , ) ( , ) 2
2 1 2 1κ K x ν κ K x ν

i L s
KLs
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x x
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and for a beta transition:

A∫∑=
+ +
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M k k
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(14)

The radial quantities AKLs have been established to be:

• Time, non-relativistic vector component
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• Time, relativistic axial-vector component

A = −
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• Spatial, non-relativistic axial-vector component
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• Spatial, relativistic vector component
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The quantity F r( )lept. has been determined from lepton matrix ele-
ments. For electron capture, one gets:
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where j p r( )k νν is a spherical Bessel function, solution of the Dirac
equation for the neutrino as a free particle. Similarly for beta plus de-
cays, one gets:
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The quantities H r( )ke and D r( )ke are defined from the positron wave
functions and similar quantities h r( )ke and d r( )ke exist, which replace
the first ones in F r( )lept. for the mK quantity:
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where αke are the Coulomb amplitudes of the continuum positron wave
functions and R is the nuclear radius.

Nucleon wave functions are then necessary to perform the calcula-
tions. Two simple models are considered in the present work, based on
the mean field assumption. We first start by analysing the nuclear shell
model to select the quantum numbers that will be assumed to define the
nucleon wave function in accordance with the total angular momentum
and parity of the nuclear state. We then calculate the wave function
considering either a non-relativistic harmonic oscillator or a relativistic
harmonic oscillator. The non-relativistic harmonic oscillator is well-
known and we identify this radial wave function with the large re-
lativistic component g r( )κ . The small component f r( )κ was estimated by
taking the non-relativistic limit of the Dirac radial equations:

= ⎛
⎝

+ + ⎞
⎠

f r
M r

κ
r

g r( ) 1
2

d
d

1 ( )κ
N

κ (23)

with MN being the nucleon mass. In this case, it is not possible to treat
separately neutrons and protons, which are thus considered as identical
nucleons. For the relativistic harmonic oscillator, we have followed
Strange in (Strange, 1998) to derive the most general analytical solu-
tions. It is noteworthy that spin-orbit coupling naturally emerges from
the Dirac equation as a relativistic effect, but this coupling is not suf-
ficiently strong – by a factor of about 25 – to explain the well-known
spin-orbit coupling in nuclear matter. However, in Strange's formula-
tion this coupling is very much stronger (proportional to 1/ℏ) than the
real one in nuclear matter due to the way the harmonic oscillator is
introduced in the Dirac equation. Finally, we have also considered the
Coulomb potential from a uniform charged sphere which results in a
shift in the oscillator strength, allowing us to treat neutrons and protons
differently in this relativistic model.

The calculations in our study have been performed only for ground-
state to ground-state transitions because of the difficulty to assign
quantum numbers to nucleons for nuclear excited states with such
simple nuclear models. The same oscillator strength has been con-
sidered to model the effect of the strong interaction as a mean nuclear
potential, i.e. =ω Aℏ 41 MeV1/3 , which is only expected to be good
within an order of magnitude. The selected nucleon states are given in
Table 2. Results for the probability ratios are given in Table 3.

We found that the results from non-relativistic harmonic oscillators
are comparable or significantly better than those from relativistic har-
monic oscillators. This is most probably due to the value of the oscil-
lator strength, which can be found in nuclear shell model books and
was derived from non-relativistic analysis of some basic nuclear prop-
erties. It is interesting to see a better agreement with measurements
when including the nuclear component in some cases, e.g. 81Kr, 130Cs,
138La and 202Tl. It is a good indication that these nuclear states can be
described with a single very dominant pure nucleon wave function, as
long as it is not accidental –which is known to be the case for 138La, this
radionuclide exhibiting a special nuclear structure (Quarati, 2016). On
the contrary, our nuclear models are clearly too simple to describe the
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65Zn structure. In order to obtain high-precision predictions of electron
capture probabilities, it would be necessary to consider accurate nu-
clear models which have to take account of realistic nuclear potentials,
nucleon correlations, configuration mixing and deformation of the nu-
cleus.

5. Conclusion

Starting from a previous study, we have improved our modelling of
electron capture transitions considering precise atomic orbital energies
– at the cost of a slight inconsistency in the atomic model – and ra-
diative corrections. Comparison with available measurements has
shown that the results from Bahcall's and Vatai's approaches for the
overlap and exchange corrections, which were generalized to every
subshell in previous work, can now be distinguished. As expected from
a theory point of view, Vatai's approach leads to more accurate and
more consistent results than Bahcall's one. We have also explored the
influence of nuclear structure calculating the transition matrix elements

which couple the lepton and nucleon wave functions. Using two simple
nuclear models based on either non-relativistic or relativistic harmonic
oscillators, we found that the predictions of electron capture prob-
abilities are sensitive to the nuclear structure and, as expected, that a
realistic nuclear model would be necessary to be conclusive.

We have thus demonstrated that high-precision calculation of
electron capture decays requires an atomic model with electron corre-
lations, radiative corrections especially for the capture-to-positron ra-
tios, and accurate values of the input parameters i.e. Q-values and
nuclear level energies. It is noteworthy that additional developments
would be necessary regarding radiative corrections to reach the same
precision level as for beta decays. The EMPIR project MetroMMC is
addressing some of these challenges, e.g. the development of an accu-
rate atomic code benchmarked with results from a multi-configura-
tional Dirac-Fock code. We have also highlighted that high-precision
measurements of electron captures have the potential to test the pre-
dictions of different nuclear structure models, and eventually to provide
additional information.

Finally, we have improved the efficiency of our code, essentially
through the tabulation of parameters to determine the atomic wave
functions, and added the calculation of logft values and splitting of the
branch between capture and beta plus transitions. Doing this has al-
lowed us to implement our modelling within the BetaShape code
(http://www.lnhb.fr/rd-activities/spectrum-processing-software/),
which is now able to calculate both beta and electron capture transi-
tions with more accurate results than the LogFT code. In addition,
BetaShape provides detailed information about beta and neutrino
spectra, as well as about capture probabilities for every subshell. Its use
is therefore recommended instead of LogFT during the evaluation
procedure in order to improve the accuracy of nuclear decay data
provided either by DDEP or NSDD networks.
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