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Evidence for the exchange effect in the beta decay of 241Pu

X. Mougeot,∗ M.-M. Bé, C. Bisch, and M. Loidl
CEA, LIST, LNHB, Gif-sur-Yvette, F-91191, France.

(Dated: September 25, 2012)

The exchange effect has been previously given as a possible explanation for a significant deviation
from an allowed shape observed at low energy in the 241Pu beta spectrum. Calculations set out
here confirm that this atomic effect explains a large part of this deviation. The equations needed
to calculate the exchange effect are detailed, as well as the evaluation of the confluent hypergeo-
metric function for complex arguments of large magnitudes. After a review of the possible other
effects that could explain the remaining discrepancy at low energy, the screening correction using
effective nuclear charges seems to be the best explanation. For radionuclides with high Z, this
work has demonstrated the necessity to take into account the spatial variation of the nuclear charge
experienced by the ejected electron to accurately correct for the screening effect.

I. INTRODUCTION

Metallic magnetic calorimeters have been shown to
be a powerful experimental technique to study the en-
ergy spectra of beta particles having a maximum en-
ergy of about 1 MeV. Beyond this energy range, the
bremsstrahlung effect has a significant contribution and
studies have to be conducted to evaluate the relevance
of this technique. The beta spectrum of 241Pu was re-
cently measured using a metallic magnetic calorimeter
[1]. The source was enclosed in a gold absorber assuring a
4π solid angle and 100 % detection efficiency. The energy
resolution, 29 eV at 5.9 keV, and the energy threshold,
300 eV, allow to test the theoretical beta spectra calcula-
tions with an accuracy never before achieved. The spec-
trum from [1] has already been compared to classical beta
calculations [2], and in this framework, a significant de-
viation of the experimental spectrum below 5 keV could
not be explained. The exchange effect has been given as
a possible cause, which is explained here in detail.

The radionuclide 241Pu mainly decays by beta
minus emission to the ground state of 241Am,
and the transition probability was evaluated to be
P (β−) = 99.99756 (2) %, the remaining being α de-
cays [3]. The nature of the transition is first forbid-
den non-unique, with a maximum available energy of
Qβ− = 20.8 (2) keV. Its half-life T1/2 = 14.33 (4) a
was evaluated from published measurements which are
independent of the beta spectrum.

A beta spectrum is the product of a weak interaction
coupling constant, a statistical phase space factor which
reflects the momentum distribution between the electron
and the neutrino, the so-called Fermi function which cor-
rects for the Coulomb effects, and a shape factor which
contains all the remaining energy dependencies, as lep-
tonic and nuclear matrix elements or atomic effects cor-
rections. A calculation program of the shapes of beta
spectra was already developed and described elsewhere
for allowed and forbidden unique transitions [2]. In this
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kind of beta transition, the energy dependence of the nu-
clear matrix elements can be factored out. This is not
possible for forbidden non-unique transitions, hence the
calculations become more complex. However, first for-
bidden non-unique transitions which fulfil the assump-
tion 2ξ = αZ/2R � E0 can be treated as allowed ones
[4], with α the fine structure constant, R the radius of
the daughter nucleus, Z its nuclear charge, and E0 the
maximum energy of the transition. This approximation,
also called the ξ approximation, simply means that the
Coulomb energy of the beta electron at the nuclear radius
must be large compared to the total decay energy. The
241Pu beta decay is a case study because of its low max-
imum energy (20.8 keV) compared to 2ξ ' 19.8 MeV.
Therefore, this transition can be calculated as an allowed
one.

Atomic effects play an important role for the shape
of beta spectra, mainly at low energy. Atomic electrons
partially screen the nuclear charge seen by the beta elec-
tron: this is the well-known screening effect. The sudden
change of the nuclear charge can induce atomic excita-
tions or internal ionizations, which are respectively called
shake-up and shake-off effects and are not expected to
have a contribution higher than 0.1 %. The exchange ef-
fect is also an atomic effect. It arises from the creation of
a beta electron in a bound orbital of the daughter atom
corresponding to one which was occupied in the parent
atom. An atomic electron from the bound orbital makes
simultaneously a transition to a continuum orbital of the
daughter atom. This process cannot be distinguished
from the direct decay to a final state containing one con-
tinuum electron.

The first study of the exchange effect was only focused
on the 1s orbital. The conclusion was a destructive inter-
ference with the direct process, leading to a lower emis-
sion probability at low energy [5]. Twenty years later, a
specific study of the exchange effect in the tritium beta
decay showed an enhancement at low energy, consistent
with recent measurements [6]. The theoretical formalism
of the exchange effect in the case of the allowed transi-
tions was then extended to higher orbitals, including also
the screening effect [7]. It was shown that the exchange
effect should systematically enhance the decay probabil-
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ity at low energy.
Qualitative evidence of the exchange effect was first

observed by the measurement of the beta spectrum of
107Pd with a cryogenic micro-calorimeter [8]. A different
type of cryogenic detector provided quantitative evidence
in the beta spectrum of 63Ni [9], but the contribution of
the exchange effect is low above the energy threshold
(8 keV). The beta decay of 63Ni is well-suited for testing
the atomic exchange effect because it is an allowed tran-
sition, which simplifies the calculations, and because of
its low endpoint energy, 66.980 (15) keV [10]. Recently,
this spectrum was measured using the same technique
as in [1], with an energy threshold of ∼ 200 eV [11].
It was shown that the exchange correction factor deter-
mined following the formalism from [7] leads to a very
good agreement between theory and experiment down to
these very low energies.

II. FORMALISM

A. General considerations

The formalism used in this publication is from Harston
and Pyper [7]. The exchange effect is expressed as a cor-
rection factor which modifies the beta spectrum intensity
I:

dI

dE
=
dINE

dE

[
1 + ηTex(E)

]
, (1)

where the superscript NE stands for ’no exchange’, and
ηTex(E) is the total exchange factor depending on the beta
electron energy E. The exchange factor must involve the
overlap between the electron radial wave functions of the
bound and continuum orbitals.

For allowed transitions, only beta electrons created
into an s bound orbital of the daughter atom take part
in ηTex. Indeed, a beta transition is classified by the prop-
erties of the initial and final nuclear states: the total
angular momentum change ∆J and the parity change
∆π. For an allowed transition, ∆J = 0,±1 and ∆π = 0,
which means that the electron-neutrino pair does not
carry away any orbital angular momentum. Thus, only
the ns orbitals are reachable by the beta electron.

In the first study of the exchange effect, Bahcall [5]
pointed out that in the hydrogenic approximation the
probability density of the beta electron at the center of
the nucleus is:

|Ψns(0)|2 ∝ π−1

(
αZ

n

)3

, (2)

with n the principal quantum number and Z the charge
of the daughter nucleus. The conclusion was that the
largest contribution comes from the 1s orbital and the
higher orbitals can be ignored. In their extended formal-
ism, Harston and Pyper [7] underlined that the other ns
orbitals could have a contribution of the same magnitude

at low energy. They also highlighted an inconsistency in
the wave functions used in Bahcall’s calculations, giving
a destructive interference of the exchange effect with the
direct decay. Finally, they predicted an enhancement of
about 10 % below 5 keV, from Z = 10 to Z = 90.

B. Expression

The total exchange factor can be written in terms of
the subshell contributions ηnsex :

ηTex(E) =
∑
n

ηnsex (E) +
∑
m,n

(m 6=n)

µmµn, (3)

and the exchange factor of the n-th subshell is given by:

ηnsex (E) = fs
(
µ2
n − 2µn

)
. (4)

The parameters µn and fs are expressed in terms of
the bound and continuum electron radial wave functions
according to:

µn = 〈Es′|ns〉
gbn,κ(R)

gcκ(R)
and fs =

gcκ(R)2

gcκ(R)2 + f cκ(R)2
. (5)

All the parameters are explained in the next section.
The second sum in equation (3) is not taken into ac-

count in [7] because of its expected smallness. Even if
this is true over almost the entire energy range of the beta
spectra, the contribution of this term can be about 1–3 %
below 1 keV. It was therefore included in the present cal-
culations.

C. Electron radial wave functions

The electron wave function is defined in [12] by its
small and large radial components f and g:

Ψκ(~r) =

(
gκ(r)

∑
µ χ

µ
κ

ifκ(r)
∑
µ χ

µ
−κ

)
, (6)

where the spin-angular functions χµκ are expanded into

the orthonormal basis of the spherical harmonics Y µ−ml :

χµm =
∑
m

C

(
l
1

2
j;µ−m,m

)
Y µ−ml χm, (7)

with the Clebsch-Gordan coefficients C and the two-
component spin eigenfunctions χm. κ is the eigenvalue

of the operator K̂ = β(~σ · ~L+1) which appears by apply-
ing the theory of angular momentum to an electron in a
Coulomb central field: β is the Dirac matrix, ~σ designates

the Pauli matrices σx,y,z and ~L is the orbital angular mo-
mentum operator.

The electron radial wave functions for the bound (f bn,κ,

gbn,κ) and continuum (f cκ, gcκ) orbitals are the analytical
solutions of the Dirac equation in the hydrogenic approx-
imation given by Rose [12]. With κ = −1 for s orbitals,
the following parameters are defined:
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n′ = n− |κ|, ζ = αZ, γ =
√
κ2 − ζ2,

λ =

[
1 +

(
n′ + γ

ζ

)2
]−1/2

,

Wn,κ =

[
1 +

(
ζ

n′ + γ

)2
]−1/2

,

K =
(2λr)γ−1e−λr

Γ(2γ + 1)

[
2λ5Γ(2γ + n′ + 1)

n′!ζ(ζ − λκ)

]1/2

,

F1 = n′ 1F1(−n′ + 1, 2γ + 1, 2λr),

F2 = (κ− ζ/λ) 1F1(−n′, 2γ + 1, 2λr).

The Gamma function Γ is the extension of the factorial
function to complex numbers. 1F1 is the confluent hyper-
geometric function, whose evaluation is described in sec-
tion II E. The bound wave functions are then expressed
as:

f bn,κ = −K
√

1−Wn,κ(F1 − F2), (8a)

gbn,κ = −K
√

1 +Wn,κ(F1 + F2). (8b)

In the same way, the following parameters are defined:

W = 1 + E/mec
2 the total energy of the electron

in rest mass units,

p =
√
W 2 − 1 the corresponding momentum,

y = ζW/p, Q =
(2pr)γeπy/2 |Γ(γ + iy)|

2r
√
πp Γ(2γ + 1)

,

η the phase of the wave functions via

eiη =

[
−κ− iy/W

γ + iy

]1/2

,

C1 = e−ipr+iη(γ + iy)1F1(γ + 1 + iy, 2γ + 1, 2ipr),

C2 = C∗1 .

The continuum wave functions are then expressed as:

f cκ = iQ
√
W − 1(C1 − C2), (9a)

gcκ = Q
√
W + 1(C1 + C2). (9b)

The overlap which appears in the left term of equation
(5) is defined in the case of allowed transitions simply by:

〈Es′|ns〉 =

∫
Ω

Ψc∗
−1(~r)Ψb

−1(~r)dΩ. (10)

It remains from the spin-angular functions a factor
1/
√

4π. Thus, integrating over the angular parts and
emphasizing the initial and final nuclear charge depen-
dences, one has the explicit form:

〈Es′|ns〉 =

∫ Rmax

Rmin

r2
[
gc−1(Zf , r)g

b
n,−1(Zi, r)

]
dr

+

∫ Rmax

Rmin

r2
[
f c−1(Zf , r)f

b
n,−1(Zi, r)

]
dr. (11)

D. Effective nuclear charges

When calculating a beta spectrum, the screening effect
is generally corrected for using a Thomas-Fermi potential
which is substracted from the total energy of the particle
[13]. This method creates a non-physical discontinuity at
the minimum energy defined by the potential [2]. This
mimimum energy is . 20 keV, hence the discontinuity
does not generally affect the practical use of the spec-
trum. Physically the influence of the atomic electrons is
expected to be significant when the beta wavelength is
comparable to the atom size, thus at low energy.

Bahcall [5] and Haxton [6] did not consider the in-
fluence of the screening effect in their exchange calcula-
tions. Harston and Pyper [7] pointed out that this ap-
proximation was not valid for many-electron atoms since
the screening distorts the beta wave functions and can
contribute significantly to the overlap involved. Instead
of a Thomas-Fermi potential, they preferred to use ef-
fective nuclear charges, also best suited for bound wave
functions. Obviously, this does not concern wave func-
tions evaluated at the nuclear radius, for which the full
nuclear charge has to be used.

The effective nuclear charge Zeff is equal to the number
of protons Z in the nucleus decreased by the electron
density integral in a sphere of radius r:

Zeff(r) = Z − 4π × 2
∑
nlm

∫ r

0

|Ψnlm(r′)|2 r′2dr′. (12)

It is difficult to account for the spatial dependency in
a simple model. Using the hydrogenic approximation
framework, Harston and Pyper calculated effective nu-
clear charges for each atomic orbital from the mean ra-
dius of the orbital. In the non-relativistic case, the rela-
tion is well-known:

〈r〉 =
3n2

2Zeff
− l(l + 1)

2Zeff
. (13)

As only s orbitals have to be considered, l = 0. For
medium and large Z, a relativistic relation is needed [14]:

〈r〉 =
(n′ + γ)

(
3N2 − κ2

)
− κN

2NZeff
, (14)

with N =

√
(n′ + γ)

2
+ ζ2.

According to equation (13) or (14), Harston and Pyper
calculated the mean radii in the Hartree-Fock or the
Dirac-Fock approximation using the GRASP code [15].
Atomic data tables including mean radii were preferred
in this study. Within the Hartree-Fock approximation,
values are available up to Z = 86 in [16], and up to
Z = 102 in [17]. They are available up to Z = 120 in
[18] within the Dirac-Fock approximation. From these
tabulated values, the effective nuclear charges were de-
termined for the 106Ru decay (Table I) and for the 241Pu
decay (Table II). These compare well with the ones cal-
cutated by Harston and Pyper [7] for the first orbitals.
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The discrepancies for the higher orbitals come from the
fact that neutral atoms were assumed in the atomic data
tables used here, whereas Harston and Pyper assumed
ions Ru1+, Rh2+, Pu3+, Am4+.

TABLE I. Calculated effective nuclear charges compared to
[7] for the 106Ru → 106Rh beta decay. ∆ is the difference.

n Zi([7]) Zi ∆ (%) Zf ([7]) Zf ∆ (%)
1 43.322 43.3226 0.001 44.320 44.3210 0.002
2 39.841 39.8412 0.0005 40.819 40.8188 0.0005
3 32.765 32.7656 0.002 33.727 33.7229 0.012
4 22.841 22.7408 0.44 23.866 23.5974 1.1
5 9.5087a 9.67195 1.7 10.620a 9.88093 7.5

a values extrapolated from the lower orbitals.

TABLE II. Calculated effective nuclear charges compared to
[7] for the 241Pu → 241Am beta decay. ∆ is the difference.

n Zi([7]) Zi ∆ (%) Zf ([7]) Zf ∆ (%)
1 93.222 93.2188 0.003 94.213 94.2188 0.006
2 90.485 90.4844 0.0007 91.505 91.5039 0.001
3 84.050 84.0488 0.001 85.108 85.1074 0.0007
4 72.601 72.5986 0.003 73.695 73.6914 0.005
5 56.388 56.3633 0.044 57.527 57.4670 0.11
6 37.452 36.9865 1.3 38.860 37.7924 2.8
7 13.0883a 16.4458 20.4 14.6624a 16.6616 12

a values extrapolated from the lower orbitals.

E. Calculation of the confluent hypergeometric
function

The evaluation of the confluent hypergeometric func-
tion is the main technical difficulty in the calculation of
the exchange effect. The evaluation of 1F1(a, b, z) is re-
quired for both cases of bound and continuum wave func-
tions. The parameters required for the calculation of the
bound wave functions are: a = −n′ + 1 or a = −n′,
with a ∈ N; b = 2γ + 1, with b ∈ R; and z = 2λr,
with z ∈ R. Those required for the continuum wave
functions are: a = γ + 1 + iy; b = 2γ + 1 (as above);
and z = 2ipr. Since only s waves contribute to the ex-
change effect for the allowed transitions, then γ ∈ ]0, 1[,
b ∈ ]1, 3[, <(a) ∈ ]1, 2[. =(a) has an energy dependence,
e.g. for Z = 100, =(a) ' 36.9 at 100 eV and tends to the
fine structure constant at high energy. The parameter z
is in an open interval. If the endpoint energy of a beta
spectrum is less than 10 MeV, r might need to be as high
as 104 (in atomic units) in order to achieve a good ac-
curacy on the overlap calculation. Many methods were
tested for the evaluation, the most precise of which were
retained and are presented below.

1. Definition

The confluent hypergeometric function is a solution of
the Kummer’s differential equation:

z
d2u(z)

dz2
+ (b− z)du(z)

dz
− au(z) = 0, (15a)

and is defined by the following series:

1F1(a, b, z) =

∞∑
n=0

(a)n
(b)n

zn

n!
, (15b)

where a, b, z are complex numbers, and (a)n is the
Pochhammer factorial:

(a)n = a(a+ 1)(a+ 2) . . . (a+n− 1) =
Γ(a+ n)

Γ(a)
. (15c)

The numerical calculation of 1F1, especially for com-
plex arguments of large magnitudes, is poorly docu-
mented. There is no efficient calculational method avail-
able for all possible values of the parameters. A direct
calculation is not possible because very large numbers are
needed, whose products and ratios give a small quantity.
The precision limit of the calculations is quickly achieved,
even in double-precision.

2. Generalized Laguerre polynomials

For the bound wave functions, an exact solution exists
in terms of generalized Laguerre polynomials:

Lαn(x) =
(α+ 1)n

n!
1F1(−n, α+ 1, x), (16a)

which satisfy the recurrence relation:

Lαn(x) =

(
2 +

α− 1− x
n

)
Lαn−1(x)

−
(

1 +
α− 1

n

)
Lαn−2(x), (16b)

with the first two polynomials:

Lα0 (x) = 1 and Lα1 (x) = −x+ α+ 1. (16c)

This method allows an exact and quick calculation.
Even for Z = 120, no orbital beyond 8s needs to be
considered.

3. Taylor and asymptotic series

The Taylor series method, based on equation (15b), de-

fines Aj =
(a)j

(b)jj!
and Sj as the sum of the first j terms
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of the series, which leads to the following recurrence re-
lations:

Aj+1 = Aj ·
a+ j

b+ j
· z

j + 1
and Sj+1 = Sj +Aj+1, (17)

with S0 = A0 = 1. This method is convenient for com-
plex arguments with small magnitudes, but it quickly
diverges.

For larger magnitudes, the asymptotic series method
is more appropriate and is defined by:

1F1(a, b, z) ∼ Γ(b)

Γ(a)
ezza−b

∞∑
j=0

(b− a)j(1− a)j
z−j

j!
+
eiπaz−a

Γ(b− a)

∞∑
j=0

(a)j(1 + a− b)j
(−z)−j

j!
. (18)

Each of the two series in the right term of equation (18)
is calculated using the Taylor series method described
above.

Once again the use of double-precision is not sufficient
because sometimes, and especially for the higher orbitals,
the Taylor series diverges before the asymptotic series
converges.

4. CONHYP and iRRAM: beyond double-precision

CONHYP is a Fortran numerical evaluator of 1F1 for
complex arguments of large magnitudes [19]. Extended
precision subroutines using large arrays allow calcula-
tions with a high accuracy. CONHYP was successfully
tested up to magnitudes of about 1 000 but the calcula-
tion of the exchange effect often needs larger values, for
which some limitations are binding. For a better com-
patibility with our code, it was translated into C++ and
the limitations for small and large numbers (10±75) and
maximal length of arrays (777) were removed. Unfor-
tunately, this program cannot return any value for very
large magnitudes, e.g. for the calculation of η6s

ex in 241Pu.
iRRAM is a C++ package for error-free real arithmetic

[20]. The accuracy of the calculations is only limited by
the size of computer memory. Common mathematical
functions are defined for three specific data types (IN-
TEGER, REAL, COMPLEX), which allow the package
to be easily used. The accuracy of the calculation is con-
trolled by redefining the standard outputs. The main
drawback is the necessity to deal with memory instabili-
ties.

The quick divergence of the generalized Laguerre poly-
nomials leads us to calculate them exactly using the iR-
RAM package. In other cases, the following strategy was
adopted for the evaluation of 1F1: with iRRAM, use of
(i) the Taylor series method for |z| < 100 and of (ii) the
asymptotic series method for |z| > 100; (iii) use of CON-
HYP if no value is returned due to a memory problem.

5. A faster, simpler but less accurate method

Another method should be mentioned, which uses di-
rectly the asymptotic solutions of the electron wave func-

tions given in [12]:

f = −
(
W − 1

πp

)1/2
sin(pr + δ)

r
, (19a)

g =

(
W + 1

πp

)1/2
cos(pr + δ)

r
. (19b)

where the phase δ is defined by:

δ = y log 2pr − arg Γ(γ + iy) + η − πγ/2. (19c)

Thus, the evaluation of the confluent hypergeometric
function is avoided for large pr values. For small pr val-
ues, 1F1 was calculated using the Taylor series method
in double-precision. It turned out that a switch criterion
from the latter method to the former is very difficult to
set, since it may be correct for certain orbitals and cer-
tain radionuclides, but not consistently. Moreover, one
has to check with a more exact calculation, which makes
this method inappropriate.

III. RESULTS

Calculations were made initially for the two beta de-
cays described in detail by Harston and Pyper, 106Ru and
241Pu. If the same orbitals and the same effective nuclear
charges are used, the results from [7] are well reproduced.
Figure 1 shows the total exchange factor for the 241Pu
decay, with the contribution of each orbital. The 7s or-
bital was included, as described later. The second term
in equation (3) is also included in our calculation. Its
contribution is ∼ 1.2 % at 100 eV and decreases quickly
with increasing energy.

TABLE III. Integration limits and steps for the radial part
used in the calculation of the total exchange factor of the
241Pu beta decay.

n 1 2 3 4 5 6 7
Rmax 45 90 150 250 500 900 2 700
r step 0.05 0.05 0.1 0.1 0.2 0.2 1

Theoretical allowed beta spectra, calculated with and
without exchange effect, were compared to the measured
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FIG. 1. (Color online) Total exchange factor for the 241Pu
beta decay and contributions of each orbital. The effective
nuclear charges used are the relativistic ones from Harston
and Pyper [7] (see Table II).

spectrum of 241Pu from [1]. The theoretical spectra were
normalized to the data in the energy range 7–18 keV. The
calculation of the total exchange factor was carried out
using the effective nuclear charges given in Table II. Our
hypothesis of a neutral atom led us to consider the 7s or-
bital, which has a significant contribution below 1 keV.
The integration limits and steps used for the radial part
in the calculation of the overlap (11) are given in Ta-
ble III. The main contribution to the overlap comes from
the product of the large radial components of the wave
functions. Thus, Rmax was chosen such as the amplitude
of this product was . 10−12 to ensure an overlap preci-
sion of ∼ 10−4 with r ∼ 104, and r step was maximized
such as a lower step yields an overlap change . 10−4.
Figure 2 shows the effect of the complete calculation.

Figure 3 presents the residuals relative to the allowed
spectrum without exchange effect for the measured spec-
trum from [1]. Our calculation – neutral Pu atom with 7
orbitals (red solid line) – and the one from [7] – Pu3+ ion
with 6 orbitals (green long-dashed line) – are included
and give very similar results. We have obtained a better
agreement with the experimental spectrum adding the
7s orbital to Harston and Pyper’s calculation. The re-
sult of this calculation is also included in figure 3 (blue
chain-dashed line). The effective nuclear charge of the 7s
orbital was determined with a second order polynomial
fit from the lower orbitals, and is given in Table II. Obvi-
ously, the 7s orbital is not filled in the case of a Pu3+ ion
and should not have to be taken into account. It is just
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FIG. 2. (Color online) Comparison between the measured
beta spectrum of 241Pu from Loidl et al. [1] and an allowed
spectrum calculated with and without exchange effect. The
effective nuclear charges used are the relativistic ones calcu-
lated for a neutral Pu atom (see Table II).

a way of simulating another effect, which is discussed in
the next section.

IV. DISCUSSION

The significant deviation from an allowed shape
observed at low energy in the 241Pu beta spectrum is
reproduced in a large part by taking into account the
exchange effect. But many effects, as described below,
are not taken into account in the calculation, which
could explain the remaining discrepancy.

a) Quality of the measurement
Commonly used in ionizing radiation metrology for

activity measurements, the Liquid Scintillation Counting
technique (LSC) requires the knowledge of the spectrum
shape in the case of beta emitters [21]. The influence
of this shape was studied in detail in the case of 241Pu
decay [22]. The authors demonstrated that, when the
shape measured by [1] is used, LSC activity results are
in better agreement with results obtained by techniques
which are independent of the spectrum shape. The
study underlines the quality of the 241Pu beta spectrum
from [1]. However, the remaining discrepancy at low
energy could be due to the measurement itself. For
example, the influence of the quality of the source was
not yet studied in [1] and could yield distortion effects.
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FIG. 3. (Color online) Residuals relative to the allowed
spectrum for the measured spectrum of 241Pu from Loidl et
al. [1], for our calculation including the exchange effect (red
solid line), for the one from Harston and Pyper [7] (green long-
dashed line), and for the latter one including the 7s orbital
(blue chain-dashed line). The details of the calculations are
explain in the text.

This point must be clarified.

b) Contribution from the 241Am decay

One might think the conversion and Auger electrons
from the 241Am α decay could have a great influence at
low energy, because of their high emission probabilities
[23]. However, these electrons are emitted immediately
after the α decay, and the α particle deposits so much
energy that the detection system becomes saturated.
Thus, this kind of event was easily rejected during the
data analysis and the corresponding secondary electrons
were not seen. Additionally, the 241Pu source was
purified during the preparation and the activity was
about 8 Bq for a total acquisition time of 61 h, and as
the T1/2(241Am) = 432.6 (6) a, the 241Am decays were
extremely rare.

c) Compton background

Another influence at low energy could be the Compton
background from the Kα and Kβ X-rays of the 55Fe
calibration source. The total counts in the two peaks
is N(Kα + Kβ) ' 143 500. For gold, the ratio of the
photoelectric cross section to the Compton cross section
at 5 keV is ∼ 106. Thus, the Compton effect contributes
no more than 0.002 % which is completely insufficient to
explain the remaining discrepancy.

d) Theoretical shape factor
The 241Pu decay is considered as an allowed transition

whereas it is a first forbidden non-unique transition.
The accuracy of the ξ approximation is ∼ 1/ξ, better
than 1 % in the present case. Moreover, the theoretical
shape factor of this transition was already studied
through complete calculation of the nuclear matrix
elements [24]. Its influence increases linearly with the
energy, not higher than 0.3 % at the endpoint and
0.1 % below 8 keV. Thus, the remaining discrepancy
cannot be explained by the allowed transition hypothesis.

e) Chemical environment
The decaying atom is embedded in a chemical environ-

ment and the other atoms have an influence on the most
external orbitals. A recent measurement of the 63Ni al-
lowed beta decay with a metallic magnetic calorimeter
can be mentioned as an example [11]. This radionuclide
was electroplated on a gold absorber, ensuring a metal-
lic form. Thus, it can be considered as a neutral atom.
The spectrum calculation including the exchange effect
exhibits an excellent agreement.

In the present case, the beta spectrum from [1] might
be sensitive to chemical effects due to the accuracy of the
measurement and the low energy threshold. However, the
chemical composition of the 241Pu source was not clear,
being probably a mixture of PuO2 with a small quan-
tity of Pu(NO3)4. Harston and Pyper estimated that
chemical effects cannot be higher than 0.3 % by study-
ing different ionic charges [25]. Indeed, Pu has the same
oxidation number in PuO2 as in Pu4+.

As it has been shown in the previous section with
the analysis of figure 3, the calculated total exchange
factor is very similar whether a neutral atom (red solid
line) or an ion (green long-dashed line) is considered.
Thus, ionic charges might not be the correct approach
to simulate chemical effects, because the neutral atom
hypothesis yields the same result. A more comprehensive
study should consider molecular orbitals, following, for
example, the formalism developed in [26].

f) Screening
High Z nuclides, such as 241Pu, require complete cal-

culation of the effective nuclear charges, taking into ac-
count their spatial variations. This was already done for
some nuclides fifteen years ago using the Dirac-Fock for-
malism [27]. The authors calculated the mean energy in
the beta decay with and without exchange effect. Among
the studied nuclides, they gave results for 63Ni and 241Pu
decays.

For 63Ni, we compare our theoretical calculations with
the experimental spectrum measured in [11]. Taking the
exchange effect into account led to a mean energy lower
by 2.3 % than the one without exchange effect. This is in
good agreement with the measured result and also with
the calculations carried out by [27]. Indeed, the screening
correction is weak for such a low Z nuclide.
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For 241Pu, we calculate a mean energy lower by 2.5 %
taking the exchange effect into account, significantly dif-
ferent from the 4.6 % obtained by [27]. The mean energy
of the beta spectrum from [1] is lower by 3.9 % than
the calculated one without exchange effect. This fact
demonstrates our underestimation of the screening effect
for high Z.

Assuming the measured 241Pu spectrum from [1] as
definitive, the remaining discrepancy at low energy seems
to come from the screening correction more than any
other effect. Then, the influence of the screening on
the exchange effect must be studied preferably using the
Dirac-Fock formalism, which is beyond the scope of this
study.

V. CONCLUSION

All the equations that are necessary to calculate the
total exchange factor for allowed beta transitions have
been presented. The technical difficulty of the evalua-
tion of the confluent hypergeometric function has been
set out in detail. From the results shown above, the in-
fluence of the exchange effect on the spectrum shape is
demonstrated in the case of low energy beta transitions,
especially for 241Pu decay.

However, the exchange effect does not seem sufficient

to reproduce well the beta spectrum from [1] at low en-
ergy. The influence of possible other effects has been re-
viewed. The evaluation of the chemical effects by Harston
and Pyper [25] has been shown to be questionable, but
these are not expected to be sufficient enough even con-
sidering molecular orbitals. Furthermore, this work has
demonstrated that the exchange correction is very sensi-
tive to the screening, which seems to be underestimated
by our use of effective nuclear charges. For radionuclides
with high Z, it will be necessary to take into account
the spatial variation of the nuclear charge experienced
by the ejected electron, using electron radial wave func-
tions generated in the Dirac-Fock formalism.

This study also highlights the necessity of a new mea-
surement of the 241Pu beta spectrum. As mentioned in
[1], an implantation of 241Pu ions directly into the detec-
tor absorber is planned in order to limit the influence of
the quality of the source.
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