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Abstract 

In ionizing radiation metrology, the energy spectra of beta decays are often needed, 

especially when measurements are carried out using Liquid Scintillation Counting. The 

uncertainties on activity measurements can be reduced with a precise knowledge of the shapes 

of the beta spectra. The few studies which have been conducted on this subject since the 

1970s were mainly focused on allowed and first non-unique forbidden transitions. But it is 

also necessary to have a good knowledge of spectra for unique and non-unique forbidden 

transitions of higher orders. Our goal is to develop a computer program for calculating beta 

spectra, validated by experiments, including evaluated uncertainties on the shapes. The 

exhaustive evaluation of form factors measured so far shows that there are not enough good 

data to validate those complex calculations. All these considerations highlight the need for a 

consistent experimental program in which all the distortion phenomena of beta spectra should 

be analysed and quantified very carefully. This paper describes the present features of the 

computer program we have developed, BetaShape, and specifies the future work which 

should be undertaken to improve it. 

 



1. Introduction 

As evaluators of nuclear decay data, we notice an increasing demand from users for a 

precise knowledge of the shape in energy of beta spectra, coupled with well established 

uncertainties. For example, these spectra are useful in nuclear power plants for calculations of 

the residual power, or in medical care for calculations of doses delivered to patients' cells. In 

ionizing radiation metrology, a better knowledge of the spectra would reduce the uncertainties 

on the activity measurements carried out by ionisation chambers or Liquid Scintillation 

Counting.  

To answer the users’ demand, calculations are needed because all the wanted beta 

spectra cannot be measured: very short half-lives, compound spectra, etc. Carrying out 

experiments is also necessary to test and validate the models. The critical point is then to 

quantify all the phenomena that distort a measured beta spectrum: backscattering, 

bremsstrahlung, response function of the detector, dead zones, source quality (thickness, size 

and impurities), etc. Thanks to the increasing power of the computers, it is now possible to 

consider more complex models for the theory, and more complex Monte-Carlo simulations 

for the experiments. 

While the allowed transitions are well known, this is not the case for spectra of unique 

and non-unique forbidden transitions of higher orders. V. Gorozhankin made a bibliographical 

compilation of the published form factors up to 2003 [11Go] in order to determine the mean 

form factors which could be applied to all spectra. However, it is clear that there are not 

enough experiments to validate the theoretical evaluations of forbidden transitions. Only 

about ten form factors have been published since 1976, and concerning the theory we are in 

the same situation: theorists are not working anymore on beta spectra. 

The analysis of various available computer codes led us to develop our own program, 

which is called BetaShape. BetaShape was developed as a C++ class, allowing an easy 



implementation in a Monte-Carlo simulation code or in a nuclear database program. Most of 

these codes calculate only beta spectra of allowed transitions, and give the possibility to add 

an experimental shape factor. The energy dependence of these shape factors is usually 

determined using a Kurie plot (defined in section 2.5). The energy parameterizations are 

summarized in [76Be] and [11Go]. The Radlist program [88Bu] calculates spectra up to the 

third unique forbidding order without experimental shape factor. We have decided to follow 

the same approach and to improve it. 

 

2. Calculation method 

2.1 Basic formulae 

A beta spectrum is the result of a weak interaction coupling constant g, a statistical 

phase space factor which reflects the momentum distribution between the electron and the 

neutrino, the so-called Fermi function F which corrects for the Coulomb effects, and a shape 

factor C which contains the relevant information about the nuclear structure. The number of 

beta particles emitted per unit of time with the energy W, in the range between W and W+dW, 

is [69Be]: 

  dWWCWZFWWW
g

dWWN )(),(
2

²
)(

2

03
 


   (1) 

where: the normalized energy W = 1 + Ekin/m, with Ekin the kinetic energy of the particle and 

m the electron mass at rest; the corresponding normalized momentum  = (W²-1)
1/2

; the end-

point normalized energy W0 = 1 + Emax/m, with Emax the end-point energy of the particle; and 

Z the atomic number of the daughter nucleus. 

 The transition order depends on the variations of the total angular momentum (J) and 

of the parity of the initial and final nuclear states. The shape factor C(W) depends on the 

transition order and on the nuclear matrix elements of the weak interaction operators, but their 

exact calculation is a difficult task. In the case of allowed and unique forbidden transitions, 



the energy dependence of the nuclear matrix elements can be factored out [71Go]. Thus, their 

energy independent part just appears as a normalization factor in the calculation of the shape 

of a given beta spectrum, and can be left out. This factorization is not possible in the case of 

the non unique forbidden transitions. The specific calculation of these transitions is difficult 

because of the large number of nuclear matrix elements to calculate. A usual approximation is 

to calculate non-unique transitions as unique transitions having the same variation of the total 

angular momentum.  

As in the Radlist program [88Bu], the BetaShape program follows the Gove and 

Martin’s approach [71Go]. The calculated spectrum is: 
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and 
3/13/1 002437,0002908,0  AAR  the radius of the nucleus in /mc units. The 

parameter n equals |J|-1, with a value of zero for the allowed and first non unique forbidden 

transitions. f(r) and g(r) are the electronic radial wave functions, continuum state solutions 

of the Dirac equation for an electron into a Coulomb field [82Be]: 
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where Etot is the total particle energy, V(r) the Coulomb potential generated by the Z protons 

of the nucleus, and  the angular momentum quantum number. , a non zero relative integer, 

is the eigenvalue of the operator  1 LK


 , with  the Dirac’s matrix, 


 the Pauli’s 

matrices and prL


  the classical angular momentum operator. 



 If the nucleus is considered as a point source, the equations (5) can be solved 

analytically and the calculations are fast. They can also be solved numerically: the description 

of the nucleus can be then more realistic, but the calculations need a lot of computing power. 

Therefore, theorists used to generate tables of data from which it is necessary to interpolate 

some values in order to calculate the needed beta spectra (Behrens tables [69Be], Dzhelepov 

tables [69Dz]). 

 N.B. Gove and M.J. Martin used the results from M.E. Rose for the expression of the 

electronic radial wave functions [61Ro]. These wave functions, calculated analytically in a 

central Coulomb potential, are: 
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 Conventionally, Z is positive for beta minus decays and negative for beta plus decays. 

1F1(a,b,z) is the confluent hypergeometric function, defined using the (z) function.  is the 

fine structure constant. 

 When the particle momentum tends to zero, the electron spectrum tends to a finite 

value while the positron spectrum tends to zero. For W less than 1+510
-6

, the calculation of 

the electron wave functions is thus modified: 
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(10) 



Three correction terms are added: the screening effect due to the electron cloud of the 

daughter atom, the finite nuclear size effect with regard to the electron Compton wavelength, 

and the radiative corrections.  

 

2.2 Screening effect correction 

To correct for the screening effect, the method of R.H. Good Jr is used [54Go], taking 

a potential V0 which depends on the beta decay type: 
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and W becomes W+V0. 

For beta minus transitions, this correction is applied only above a threshold energy 

mV0, which induces a non-physical discontinuity in the spectrum. For Z less than 100, this 

threshold is less than 20 keV. The normalized momentum  is recalculated with the new W 

value. These new values are introduced in the calculation of Sn(Z,W) and in the phase space 

factor, except in the neutrino energy (W0-W). 

 

2.3 Finite nuclear size correction 

 The finite nuclear size effect reflects the influence of the nuclear charge distribution on 

the beta spectrum. The adopted correction is given by [71Go]: 
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This correction is applied for heavy nuclei and if k = 1 only. The authors in [71Go] 



determined it from the ),( WZk  plots published by M.E. Rose and D.K. Holmes ([51Ro], 

[57Ro]). 

 

2.4 Radiative corrections 

 The radiative corrections take into account the energy loss of the electron in the 

electromagnetic field of the nucleus (virtual photons and internal bremsstrahlung). They are 

calculated as described in [82Be], [67Si], and [72Ja]. The spectrum is corrected for using a 

factor  ),(1 ZWR  calculated as follows: 
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2.5 Remarks 

The beta spectrum is evaluated using equation (2) for a large number of energies. It is 

then normalized by its integral and the mean energy is determined. If an experimental 

spectrum is available, the BetaShape program calculates also the corresponding Kurie plot 

defined by: 
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3. Comparison of the results 

3.1 Radlist 

We compared the results of our calculations with those of the Radlist program [88Bu], 

which uses the same assumptions but does not take into account the radiative corrections. 

Thus, we switched them off for these comparisons. Numerical integration methods and digit 

precisions (double in BetaShape, float in Radlist) are also different. 

We considered a wide range of Z, A, end-point energies and transition orders. A total 

of 38 transitions, listed in Table 1, were calculated. The non-unique transitions are calculated 

as unique transitions having the same variation of the total angular momentum. 

Both codes give the same results over almost the entire spectrum (discrepancy less 

than 1 %). Because of the difference of the digit precisions, the energy thresholds mV0 of the 

screening correction present a difference of about 200 eV. This implies a difference between 3 

and 5 % over a narrow range, typically in one energy bin. For beta plus decay, the screening 

correction depends on the particle energy, and thus induces a shift over the entire spectrum. A 

difference higher than 10 % could be observed at very low energies, where this contribution 

has the greatest influence. 

 

3.2 Beta Spectrum 

The Beta Spectrum program has been developed by V. Gorozhankin et al. [11Go]. 

This program calculates the beta spectra shapes using the Behrens tables or the Dzhelepov 

tables for the Fermi function, according to the user’s choice. 

The Behrens and Dzhelepov calculations correct for the screening effect and the finite 

nuclear size effect, but do not take into account the radiative corrections. The Dzhelepov 

tables are given from 5 keV to 10 MeV. The Behrens tables cover the range 2.6 keV to 25 

MeV without corrections, so it is necessary to correct these data using other tables, also 

provided by Behrens, but more restricted in energy. V. Gorozhankin et al. showed that the 



choice of the tables used does not induce discrepancies higher than 1 % in most cases. 

Discrepancies around 5 % could occur for radionuclei having a low Z or an end-point energy 

lower than 100 keV. 

We compared the results of our calculations with those obtained with Beta Spectrum 

for the allowed and first non unique forbidden transitions listed in Table 1. We switched off 

the radiative corrections and we used the Dzhelepov tables. If we compare the relative 

difference between the two programs, the discrepancy is about 0.5 % and some fluctuations 

are present, which mainly come from the interpolation between the tabulated values of the 

Fermi function. It is noteworthy that this good agreement is obtained by switching off the 

screening correction in BetaShape. Otherwise, the discrepancy can be higher than 1 % in 

some cases, suggesting that the screening effect was not corrected in the Dzhelepov tables. 

 

4. Influence of the various corrections 

The magnitude of each correction is detailed in Table 2 for some nuclei. 

In the calculation model of the BetaShape program, the spectrum shape depends on the 

adopted transition order. To illustrate the influence of the transition order on the spectra 

calculated by BetaShape, we took the 
99

Tc spectrum as an example. Four cases are 

considered, as described in Figure 1: an allowed, first, second and third unique forbidden 

transitions. The shapes are very different from the beginning to the end of the spectrum and 

the mean energies differ by at least 15 %. The true order of this transition is second non-

unique forbidden, calculated as a first unique forbidden according to our assumptions. 

Obviously this approximation needs an experimental validation, with a careful analysis of the 

distortion sources of the measured spectrum. 

One can observe, in Figure 1, a discontinuity at low energy due to the screening 

correction. As described in Section 2, it occurs below 20 keV for Z less than 100. This 

discontinuity could easily be smoothed out using different kinds of functions, but each 



function will affect the spectrum shape differently. Thus, we need some experimental spectra 

to derive a smooth function. The radiative corrections and the finite nuclear size correction are 

usually weak. The finite nuclear size correction is less than 0.5 %. The radiative corrections 

are important near the end-point energy (several tenths of percents), but as the statistics of the 

spectrum is low in this range, their influence on the spectrum shape is limited. 

 

5. Experimental spectrum of 
241

Pu 

For spectra having low end-point energy, the metallic magnetic calorimeters will be 

helpful to obtain high precision measurements. The beta spectrum of 
241

Pu was measured at 

LNHB with a metallic magnetic calorimeter, as described elsewhere [10Lo]. It can be 

observed in Figure 2, with the X-rays which come from the decay of a 
55

Fe source used for 

the energy calibration. The corresponding Kurie plot is given in Figure 3. 

The 
241

Pu beta decay is a first non-unique forbidden transition, calculated as an 

allowed one. Our calculation is in good agreement with the experimental results, except at 

low energy. All the sources of distortion are not yet completely understood, but this 

discrepancy does not seem to come from the measured spectrum. We are currently studying 

the possibility of adding a correction to take into account the exchange effect. This effect 

corresponds to the bound solutions of the coupled differential equations (1). The initial and 

final state orbitals are usually non orthogonal, allowing an electron to be created in an 

occupied orbital of the daughter atom. The electron, previously occupying the atomic orbital, 

is ejected with an energy corresponding to the transferred momentum. According to 

M.R. Harston and N.C. Pyper [92Ha], the exchange effect for 
241

Pu could distort the beta 

spectrum by increasing the channel contents by about 10 % below 2 keV. 

 



6. Conclusion 

In order to answer users’ demand, we have developed a specific program dedicated to 

the calculation of beta spectra shapes. BetaShape is based on the analytical approach from 

Gove and Martin described above. The Coulomb corrections depend on the forbidding order 

of the transition, but the non-unique forbidden transitions are not yet treated specifically. The 

screening effect due to the electron cloud, the finite nuclear size effect with regard to the 

electron Compton wavelength, and the radiative corrections are taken into account. This 

program must be tested and validated by experiments. 

There is a lack of data to test the transitions with high forbidding order. Moreover, the 

oldest published experiments did not have the computing power for Monte-Carlo simulations 

to evaluate all the physical phenomena that could distort the spectra. It is necessary to carry 

out new and well analysed experiments. Metallic magnetic calorimeters provide very 

encouraging results. The analysis of the 
241

Pu beta spectrum leads us to take into account the 

exchange effects in the calculations (currently in progress). Also, we are working on another 

experimental setup using a silicon detector. This setup will be complementary to the metallic 

magnetic calorimeters, providing spectra with energy ranging from 100 keV to 1 MeV.  
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Figures 

 

Figure 1 – 
99

Tc is a second non unique forbidden transition, with an end-point energy of 

293.6 keV. The present beta spectra were calculated with different forbidding orders (uf 

means unique forbidden). The shapes, mean energies and most probable energies are very 

different from one to another. 



 

Figure 2 – Beta spectrum of 
241

Pu measured with a metallic magnetic calorimeter and 

compared with a calculation from BetaShape. The forbidding order of the transition is first 

non unique, calculated as an allowed one, with an end-point energy of 20.8 keV. The 

theoretical spectrum was normalized by integration between 7 and 18 keV. An external source 

of 
55

Fe was used for the energy calibration: the X-rays come from the K and the K X-rays 

of the Mn daughter atom. 



 

Figure 3 – The corresponding Kurie plot of Figure 2. The agreement between the measured 

spectrum and the BetaShape calculation is good over a wide range, except below 5 keV. 



Tables 

Allowed 

(
-
) 

3
H, 

14
C, 

24
Na, 

32
P, 

33
P, 

35
S, 

41
Ar, 

45
Ca, 

46
Sc, 

60
Co, 

63
Ni, 

95
Nb, 

106
Ru, 

114
In, 

133
Xe, 

203
Hg 

(
+
) 

11
C, 

13
N, 

15
O 

First non unique forbidden (
-
) 

79
Se, 

91
Y, 

143
Pr, 

147
Pm, 

151
Sm, 

176
Lu, 

206
Tl, 

210
Bi, 

241
Pu 

First unique forbidden (
-
) 

85
Kr, 

89
Sr, 

90
Sr, 

90
Y 

Second non unique forbidden (
-
) 

36
Cl, 

99
Tc, 

129
I 

Second unique forbidden (
+
) 

26
Al 

Third unique forbidden (
-
) 

40
K 

Fourth non unique forbidden (
-
) 

113
Cd 

Table 1 – List of the 38 transitions calculated for a comparison with the Radlist program. The 

non-unique transitions are calculated as unique transitions having the same variation of the 

total angular momentum. 

 

Nucleus Z Transition order 
Finite nuclear 

size correction 

Screening 

correction 

Radiative corrections 

greater than 1 % if 

129
I 53 2

nd
 non-unique ~ 0.44 % ~ 17 % E  78 % Emax 

133
Xe 54 allowed ~ 0.007 % ~ 3 % E  75 % Emax 

176
Lu 71 1

st
 non-unique ~ 0.22 % ~ 4 % E  72 % Emax 

203
Hg 80 allowed ~ 0.16 % ~ 4.5 % E  58 % Emax 

241
Pu 94 1

st
 non-unique ~ 0.03 % ~ 4.7 % E  53 % Emax 

 Table 2 – Magnitude of each correction applied in BetaShape for some nuclei. The non-

unique transitions are calculated as unique transitions having the same variation of the total 

angular momentum. 

 


