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Abstract 

In order to probe the conformational preferences of the anions of Kemp’s triacid (cis,cis-1,3,5-

trimethyl-1,3,5-cyclohexanetricarboxylic acid, H3kta) in their metal ion complexes, and their influence 

on the structures thereof, six complexes with widely different metal cations (alkali, alkaline-earth, 

3d-block and actinide) were synthesized and crystallographically characterized. All these complexes 

crystallize as diperiodic assemblies, but with three different conformations of the kta3–/Hkta2–/H3kta 

ligands. Only the tripodal form, with the cyclohexyl ring in chair conformation and the three 

carboxylic/ate groups axial is found in [Na5(kta)(Hkta)(H2O)] (1), [Sr3(H3kta)(kta)2] (2), 

[Mn3(kta)2(H2O)3] (3), and [Mn(H2O)6][Mn5(kta)4(H2O)4] (4). Particularly notable are hexanuclear ring 

subunits formed around two ligands in 2. The tripodal form coexists with the discoidal one, with the 

ring in the chair conformation and the three carboxylate groups equatorial, in [Mn6(kta)4(nmp)3] (5), 

with nmp = N-methyl-2-pyrrolidone, which displays hexanuclear ring subunits. Finally, the so-called 

dipodal form, with the ring in boat conformation, two carboxylate groups axial and one equatorial, is 

only found in [UO2Cs(kta)] (6), in which uranyl cations and ligands alone form a honeycomb 

assembly, the caesium cations being decorating species. 
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Introduction 

The carboxylate group is a versatile coordinating unit known to variously adopt unidentate, 

chelate, bridging and chelate-bridging roles in a vast range of crystalline metal ion 

complexes.[1–4] This versatility is enhanced in polycarboxylate species where multiple groups 

can be attached to frameworks varying from highly flexible polymethylene chains to 

extremely rigid polycyclic and aromatic entities, sometimes endowed with additional 

functionality, including chirality, and this has led to their widespread exploitation in the 

synthesis of coordination polymers and metal-organic frameworks.[5–10] As an example of a 

source of a tricarboxylate system of high symmetry, Kemp’s triacid, cis,cis-1,3,5-trimethyl-

1,3,5-cyclohexanetricarboxylic acid (H3kta) has been used to prepare a number of crystalline 

coordination complexes which have been characterized by crystal structure 

determinations.[11–18] Interestingly, this number (23) is smaller than that (26) of those of 

structure determinations on just complexes of dicarboxylate ligands obtained by reactions of 

diamines with axially oriented carboxylic groups of Kemp’s triacid to give 

bis(imide)dicarboxylates,[19–25] a difference which, in our experience, possibly reflects the 

difficulty in general of obtaining suitable crystals of metal complexes of the simple triacid 

anions. Two factors influencing the nature of the species in a solution of Kemp’s triacid and 

thus the composition of any crystalline material deposited are the degree of dissociation and 

the conformational equilibria involving the different anions. The acidity constants (pKa1 3.6, 

pKa2 6.2, pKa3 7.3; 298 K, 0.15 mol L–1 aqueous NaClO4
[11]) for Kemp’s triacid are sufficiently 

close for mixtures of anions to be present over a wide pH range. Even in the presence of a 

strong base ([NBu4]OH), Fe and Mn complexes, for example, were obtained with both kta3– 

and Hkta2– anions present in the crystal structures.[12,13] On the basis of 1H NMR 

spectroscopy in aqueous solution,[26] both H2kta– and Hkta2– were assigned a chair 
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conformation with carboxyl/ate groups axial, while kta3– was assigned a chair conformation 

with the carboxylate groups equatorial, corresponding to tripodal and discoidal arrays, 

respectively, of the coordinating groups. While what is seen in known structures[11–18] does 

not reflect such a clear dichotomy, the dianionic ligand has only been found in the tripodal 

form[11–13] and the trianionic ligand has been found in both tripodal and discoidal 

conformations[14–17] as well as, somewhat unexpectedly, in a boat conformation with two 

carboxylate groups equatorial and one axial,[16] a form we denote as dipodal (Scheme 1). As 

the discoidal form has only been found in complexes of very heavy metals (Pb and U) 

prepared under solvothermal conditions, it is unclear whether this is a consequence of the 

nature of the metal ions or of the particular method of synthesis. The present structural 

study of Kemp’s triacid complexes of metal ions across a wide range of the Periodic Table 

provides some clarification of these issues. 

 

Scheme 1. The three conformations of kta3– found in its metal ion complexes. 
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Results and Discussion 

The acidity constant values (cited above) for Kemp’s triacid are such that at least the trianion 

would be expected to undergo a significant degree of hydrolysis in a pure aqueous solution 

under ambient conditions. This may explain why recrystallisation from water of material 

believed to be Na3kta provided the crystals characterised by their structure determination as 

[Na5(kta)(Hkta)(H2O)] (1). There are 5 inequivalent Na sites within the structure, Na1 being 

5-coordinate while Na2, Na3, Na4 and Na5 are 6-coordinate, all having rather irregular 

coordination geometry, with the water molecule bridging Na4 and Na5 (Figure 1). The  

 

Figure 1. (a) View of complex 1. Displacement ellipsoids are drawn at the 50% probability level. Carbon-bound 

hydrogen atoms are omitted and the hydrogen bond is shown as a dashed line. Symmetry codes: i = –x, 2 – y, 1 

– z; j = x, 3/2 – y, z + 1/2; k = x, 3/2 – y, z – 1/2; l = –x, 1 – y, 1 – z; m = –x, y – 1/2, 1/2 – z. (b) Packing with layers 

viewed edge-on, showing sodium coordination polyhedra. 
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trianion and dianion have separate identities and do not share the acidic proton, which in 

fact is involved in an intramolecular H-bond [O12O8 distance 2.504(3) Å, O12–HO8 angle 

162°]. All 5 Na(I) cations are associated with the two anions in a diperiodic polymer lying in 

sheets parallel to (100). Both anions have a chair conformation with the carboxylate groups 

axial and oriented from both sides towards the interior of the sheet, so that the methylene 

and methyl groups form a lipophilic layer on each face of the sheet and thus may be involved 

in dispersion interactions with the similar layers of adjacent sheets. Part of the versatility of 

Kemp’s triacid anions as ligands is seen in the different forms of coordination of each cation. 

Thus, Na1 is bound to one trianion through a 4-membered chelate ring, to a second through 

an 8-membered chelate ring, and to a dianion by coordination to the carbonyl-O of the 

carboxyl group which retains a proton. Na2 is bound to a trianion as a tridentate ligand (one 

oxygen from each carboxylate), to one dianion through an 8-membered chelate and to 

another dianion through a single carboxylate-O. Na3 is bound to one dianion in a tridentate 

mode involving a 4-membered ring and an 8-membered ring formed by the two carboxylate 

groups, one trianion through an 8-membered chelate ring and one trianion through a single 

carboxylate-O. Na4 is bound to a dianion through a 4-membered chelate ring, a trianion 

through an 8-membered ring, another trianion through a single carboxylate-O and to a 

water molecule through which it is bridged to Na5. Na5 is bound to two dianions and one 

trianion through single carboxylate-O atoms, one trianion through a 4-membered chelate as 

well as the water molecule. The Na–O(carboxylato) bond lengths span the range of 2.257(2)–

2.744(2) Å and are thus unexceptional, the range for such bond lengths in the sodium 

carboxylate structures reported in the Cambridge Structural Database (CSD, version 5.40[27]) 

being 2.20–2.80 Å. While there are similarities to the known structure of 
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[Na2(Hkta)(H2O)4][11] in that there the ligands are again in chair form with carboxyl/ate 

groups axial and the coordination polymers lie in sheets with methyl and methylene groups 

lining the faces, there are also clear differences in that in [Na2(Hkta)(H2O)4] the polymer 

units are monoperiodic strands parallel to the b axis lying adjacent to one another to form 

the sheets, and each of the two inequivalent Na(I) ions is bound to just one Hkta2– ligand 

through 8-membered chelate ring formation, with coordinated water occupying four other 

sites. 

 The structure of [Sr3(H3kta)(kta)2] (2) shows close similarity to that of 1 in that the 

anions all have a chair conformation with the carboxyl/ate groups axial and a diperiodic 

polymer is present in which each face consists of lipophilic methyl and methylene groups 

(Figure 2). There are 3 inequivalent ligand units, all of them having threefold rotation 

symmetry. The remaining carboxylic proton has been found to be located on the sole 

uncoordinated oxygen atom, so that, due to symmetry, there is one H3kta and two kta3– 

ligands. The Sr unit is unique, with a coordination form quite different to any of the Na units 

in 1 or [Na2(Hkta)(H2O)4], being that of 8-coordination and involving five ligand units, one 

bound through a 4-membered chelate ring, two through an 8-membered, and two through 

single carboxylate-O atoms. The Sr–O bond lengths span the range of 2.4541(16)–2.8734(15) 

Å, to be compared with the range of 2.40–2.90 Å from the CSD. Of the three inequivalent 

ligands, one (kta3–) forms three 4-membered and three 8-membered chelate rings (each 

carboxylate group adopting the 3-2O,O഻:1O:1O഻ coordination mode), thus using all 

carboxylate-O atoms as donors and being bound to six cations, as does the other kta3– 

ligand, in which the three carboxylate groups are bound in 3-1O:1O:1O഻ fashion, with 

formation of three 8-membered chelate rings, while the H3kta ligand forms just three  
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Figure 2. (a) View of complex 2. Displacement ellipsoids are drawn at the 50% probability level. Carbon-bound 

hydrogen atoms are omitted and hydrogen bonds are shown as dashed lines. Symmetry codes: i = –y, x – y, z; j 

= y – x, –x, z; k = 1 – y, x – y, z; l = y – x + 1, 1 – x, z; m = y, y – x, 2 – z; n = x – y, x, 2 – z. (b) View of the diperiodic 

assembly showing strontium coordination polyhedra. (c) Packing with layers viewed edge-on. 
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bonds involving one carboxylic-O of each group. Fusion of all these elements produces 

hexagonal rings of Sr atoms with triangular face-sharing coordination polyhedra (the latter 

of quite irregular geometry) centred around the tris-2O,O഻-chelating ligands, these 

hexanuclear subunits being assembled into a diperiodic assembly parallel to (001). 

Observation of only the tripodal form with axial carboxyl groups of the anions in this and the 

Na(I) complexes could be seen as reinforcing the consideration of Kemp’s triacid anions as 

preferably adopting this form and thus being particularly well suited to the formation of 

closed oligomers, as indeed observed with known Fe[12] and Mn[13] complexes and in some 

instances with uranyl derivatives.[14,15,18] The present study of pure Mn(II) complexes show, 

however, that this is an oversimplification. 

 In the structure of [Mn3(kta)2(H2O)3] (3), there are three inequivalent Mn(II) centres 

and two inequivalent ligand units, both of chair form with axial carboxylates (Figure 3). Of 

the Mn(II) centres, Mn1 is 6-coordinate, being bound to one ligand via a 4-membered 

chelate ring and two others by a single carboxylate-O each, with two water molecules 

completing the coordination sphere; Mn2 is 7-coordinate, being bound to two ligands via 8-

membered chelate rings and to a third via a 4-membered, with a single water molecule 

completing the coordination sphere; Mn3 is 6-coordinate, with two ligands bound via 8-

membered chelate rings and a third by a 4-membered ring, and no coordinated water. The 

Mn–O(carboxylato) bond lengths span the range of 2.0615(11)–2.4986(11) Å, to be 

compared with the range of 1.85–2.50 Å from the CSD. The two ligands are bound to either 

four or five metal cations, and all carboxylate-O donors of both are coordinated. The 

coordinated water molecules are all involved in H-bonding to carboxylate-O [OO distances 

2.6603(16)–3.1714(17) Å, O–HO angles 125–170°]. The fusion of all these units produces a 
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diperiodic polymer lying in sheets parallel to (100), once again with faces lined by the 

lipophilic methylene and methyl groups. 

 

Figure 3. (a) View of complex 3. Displacement ellipsoids are drawn at the 50% probability level. Carbon-bound 

hydrogen atoms are omitted. Symmetry codes: i = 1 – x, –y, –z; j = 1 – x, 1 – y, –z; k = 1 – x, y + 1/2, 1/2 – z; l = 1 

– x, y – 1/2, 1/2 – z. (b) Packing with layers viewed edge-on, showing manganese coordination polyhedra. 

 

 The H-bonding interactions of the hexaquamanganese(II) ion play a particularly 

important role in defining the structure of the complex [Mn(H2O)6][Mn5(kta)4(H2O)4] (4), 

crystallized from the same solution as 3 and shown in Figure 4. As in all the structures  
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Figure 4. (a) View of complex 4. Displacement ellipsoids are drawn at the 30% probability level. Carbon-bound 

hydrogen atoms are omitted and hydrogen bonds are shown as dashed lines. Symmetry codes: i = –x, 1 – y, 2 – 

z; j = 1 – x, 1 – y, 2 – z; k = 1 – x, 2 – y, 2 – z; l = –x, 2 – y, 2 – z. (b) View of the diperiodic assembly showing 

manganese coordination polyhedra. (c) Packing with layers viewed edge-on. 
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described to this point, however, all the metal ion species can be considered to lie in sheets, 

here parallel to (001), and the two inequivalent ligand units have chair conformations with 

the carboxylate groups axial. The [Mn5(kta)4(H2O)4]2– component is a diperiodic polymer 

forming thick, undulating layers, with methyl and methylene units projecting from both 

faces, and defining cavities large enough to accommodate the centrosymmetric [Mn(H2O)6]2+ 

ions. There are three inequivalent Mn centres in the diperiodic polymer, Mn1 being 6-

coordinate through 8-membered ring chelation by two inequivalent ligands and 4-

membered ring chelation by a third, Mn2 being 6-coordinate through 8-membered ring 

chelation by two inequivalent ligands, a single carboxylate-O of a third ligand and a water 

molecule, and Mn3 (located on an inversion centre) being 6-coordinate through 8-

membered ring chelation by two equivalent ligands and the binding of two trans-disposed 

water molecules. The Mn–O(carboxylato) bond lengths are in the range of 2.077(2)–2.450(3) 

Å. H-bond donation to carboxylate-O involves all the coordinated water molecules [OO 

distances 2.707(4)–3.189(3) Å, O–HO angles 113–167°], fixing in particular the 

[Mn(H2O)6]2+ ions within the polymer cavities, so that the form of the polymer is clearly 

adapted to this factor (Figure 4b). 

 The effect of removing any H-bond donor is dramatically evident in the structure of 

[Mn6(kta)4(nmp)3] (5), where nmp is N-methyl-2-pyrrolidone, which crystallizes in the polar 

space group R3c (Figure 5). Although there is again a diperiodic polymer present 

incorporating both inequivalent Mn(II) ions, there are four inequivalent ligand units, all with 

threefold rotation symmetry, two of which adopt a chair form with triaxial carboxylates 

while the other two adopt a chair form with triequatorial carboxylates. Mn1 is bound in an 

8-membered chelate ring to one triaxial ligand as well as to one other triaxial and two  
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Figure 5. (a) View of complex 5. Displacement ellipsoids are drawn at the 30% probability level and hydrogen 

atoms are omitted. Symmetry codes: i = y – x + 1, 1 – x, z; j = 1 – y, x – y, z; k = 1 – y, x – y + 1, z; l = y – x, 1 – x, z; 

m = 2 – y, x – y + 1, z; n = y – x + 1, 2 – x, z; o = x + 1, y + 1, z. (b) View of the diperiodic assembly showing 

manganese coordination polyhedra. (c) Packing with layers viewed edge-on. (d) Nodal representation of the 

network (orange, manganese; blue, tricarboxylate ligand). Orientation slightly rotated with respect to that in 

(b). 

 

triequatorial ligands by a single carboxylate-O on each, and to one nmp-O, thus being 6-

coordinate, with a distorted octahedral environment. Mn2 is also 6-coordinate, with the 

same ligand environment as Mn1 except that it lacks the nmp-O and one of the triaxial 

ligands is 4-membered chelating. The Mn–O(carboxylato) bond lengths span the usual range 

of 2.062(4)–2.421(3) Å. The combination of these interactions means that the Mn(II) ions in 

nearly planar, threefold rotation-symmetric (Mn1)3(Mn2)3 units, with the manganese 

coordination polyhedra sharing alternately one edge or one vertex, are bridged by two 
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triaxial ligands, one to each side of the mean plane and linked to other such units by bridging 

of triequatorial ligands, each carboxylate of the latter ligand being involved in 2-1OO' 

bridging of Mn1 and Mn2 centres in the same (Mn1)3(Mn2)3 unit. Both metal ions are four-

connected nodes and all ligands are six-coordinated nodes in the diperiodic assembly 

formed parallel to (001). Despite some differences in symmetry, the structure of this Mn(II) 

complex is akin to that of complex 3, and virtually identical with that of [Pb3(kta)2(dmf)3] 

(dmf = N,N-dimethylformamide), although the coordination number of Pb(II) is 8.[17] Thus, 

adoption of a chair form with carboxylate groups disposed equatorially is not necessarily a 

feature restricted to very heavy metal complexes of Kemp’s triacid, although with Mn(II) as 

with Pb(II)[17] and U(VI),[14,15] it is associated with the formation of sheet-like coordination 

polymers. An obvious implication of the present results, one supported by numerous other 

observations, is that H-bonding can have a major influence upon the structures of 

polycarboxylate coordination polymers. This is not to say, however, that the nature of the 

metal ion is unimportant, an assertion supported by what is seen in the structure of 

[UO2Cs(kta)]. 

 The structure of [UO2Cs(kta)] (6) provides a further example of a diperiodic 

coordination polymer. This complex is isomorphous to the previously reported 

[H2NMe2][UO2(kta)].[16] As is common with uranyl carboxylate complexes with a 1:3 

U/carboxylate ratio, the U(VI) centre, located on a mirror plane, has a hexagonal bipyramidal 

form involving three 2O,Oඁ 4-membered chelate rings, each here from a different trianionic 

ligand unit (Figure 6). The U–O(oxido) bond lengths are 1.770(8) and 1.795(7) Å, and the U–

O(carboxylato) bond lengths span the usual range of 2.444(5)–2.485(6) Å. The caesium ions, 

which are disordered over two sites, one located on a symmetry plane and the other slightly  
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Figure 6. (a) View of complex 6. Displacement ellipsoids are drawn at the 40% probability level and hydrogen 

atoms are omitted. Symmetry codes: i = x, 1/2 – y, z; j = 1/2 – x, y + 1/2, z – 1/2; k = 1/2 – x, –y, z – 1/2; l = x, y, z 

– 1; m = x, 1/2 – y, z – 1; n = x, y, z + 1; o = 1/2 – x, y + 1/2, z + 1/2; p = 1/2 – x, –y, z + 1/2; q = 1/2 – x, 1 – y, z + 

1/2. (b) View of the diperiodic assembly with uranium coordination polyhedra yellow and caesium cations 

shown as blue spheres. (c) and (d) Two views of the packing with layers edge-on. Only one position of the 

disordered caesium atom is shown in all views. 

 

displaced from the plane, in general position, are bound to four carboxylate oxygen atoms, 

with Cs–O bond lengths in the range of 2.946(7)–3.496(6) Å, in agreement with the range of 

2.8–3.7 Å in the structures reported in the CSD. They are also bound to two oxo groups 

from two uranyl cations, with Cs–O bond lengths of 3.045(9)–3.289(7) Å, at the lower end of 

the range usually found for such bonds, 2.96–3.89 Å.[28] What is unusual in this of the 

present structures is that the unique ligand, which has mirror symmetry, adopts a regular 

boat conformation with two carboxylate groups equatorial and one axial, leading to their 
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orientation in two near-orthogonal directions, a form for which the term “dipodal” seems 

appropriate. This conformation is very rarely observed in Kemp’s triacid anions, since, apart 

from these two isomorphous uranyl complexes, deviation from the chair conformation is 

only found in two cases of organic compounds including kta3– which display conformations 

described as twisted or twisted boat.[29,30] In the present case, this conformation appears 

well suited to the complexation of two metal cations, the uranyl ion being chelated by the 

carboxylate group in axial position, and the caesium atom being chelated by the two 

carboxylate groups in equatorial position, with formation of an 8-membered chelate ring, 

the bridging uranyl oxido group making a link between the two cations. When considered 

alone, uranyl cations and ligands in 6 are both three-coordinated nodes and the diperiodic 

network they form, parallel to (100), has the point symbol {63} and the hcb topological type, 

as in [H2NMe2][UO2(kta)]. The caesium cations appear to have a decorative role in that they 

are not an essential part of the polymer but, given evidence that they may have a unique 

form of interaction with carboxylates,4 they have possibly an influence favouring the 

adoption of the boat conformation. This influence is perhaps to be contrasted with that of 

protonated 2,2഻-bipyridine in [bipyH][UO2(kta)],[15] where the anions have a chair 

conformation with equatorial carboxylates, the diperiodic coordination polymer having also 

the hcb topology, but the fact that 6 is similar to [H2NMe2][UO2(kta)] indicates that whatever 

factors are operative, they must be rather subtle. 

 

Conclusions 

We have reported the synthesis and crystal structure of six complexes of Kemp’s triacid or 

its anions with metal cations spanning a large range of size and preferred environment. 

Although the tripodal chair conformation of the ligand with the three carboxyl/ate groups 
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axial is most common, the discoidal chair conformation with the three groups equatorial is 

found here in one Mn(II) complex, and the boat conformation with one axial and two 

equatorial groups, designated dipodal, is observed for the second time in a uranyl ion 

complex. While ligand flexibilty is recognised as a cause of a loss in selectivity in metal ion 

binding in solution,[31] it can be advantageous in the construction of crystalline coordination 

polymers,[32] both because it renders possible the generation of structures unique to a given 

metal ion[33] and because it may lead to useful properties of these materials such as 

“breathing” of the crystals.[34] Kemp’s triacid is a molecule of limited flexibility due to its 

cyclic nature but the present structures further demonstrate that it is capable of forming 

coordination complexes in at least three different conformations. While chair conformers 

with triaxial and triequatorial dispositions of the carboxyl/ate groups may be found in 

complexes of metal ions across a wide range of the Periodic Table, the boat form of the 

ligand may well be limited to uranyl ion complexes, indicating that Kemp’s triacid has both 

ubiquity and specificity in its solid state coordination chemistry. The importance of H-

bonding noted in the present structures is an aspect in common with a huge range of 

coordination polymers but does seem to have nearly unique features in Kemp’s triacid 

derivatives in the ways in which the charge on a metal ion is neutralised by a mixture of 

different protonated forms of the ligand. Such is not a prominent feature of the structures of 

the threefold-symmetric, tripodal ligand 1,3,5-benzenetriacetate, for example.[35] Another 

peculiarity of complexes with Kemp’s triacid anions, previously noted in cases displaying 

various periodicities[14–16] and apparent also in all the present diperiodic complexes, 

whatever the ligand conformation, is the segregation of the hydrophobic parts on the 

outside of the polymeric assemblies, sometimes as bulging groups, this being probably a 

major influence on the geometry of the species formed. 
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Experimental Section 

General: Kempʼs triacid (H3kta) and Mn(NO3)2·4H2O were from Sigma-Aldrich, and 

UO2(NO3)2·6H2O (depleted uranium, R. P. Normapur, 99%) was from Prolabo. For all 

syntheses under solvo-hydrothermal conditions (complexes 26), the mixtures in 

demineralized water were placed in 10 mL tightly closed glass vessels and heated at 140 °C 

under autogenous pressure. In all cases, the reactions produced only a small homogeneous 

crop of single crystals, suitable for crystal structure determination, but insufficient for 

further characterization. 

 

Caution! Uranium is a radioactive and chemically toxic element, and uranium-containing 

samples must be handled with suitable care and protection. 

 

[Na5(kta)(Hkta)(H2O)] (1): Recrystallisation by vapour diffusion of ethanol into its aqueous 

solution of the amorphous precipitate, assumed to be Na3kta, obtained by the addition of 

ethanol to a solution of H3kta in an excess of aqueous Na2CO3, provided crystalline material 

for which the composition was deduced from the structure determination. 

 

[Sr3(H3kta)(kta)2] (2): Kempʼs triacid (13 mg, 0.05 mmol) and Sr(NO3)2 (43 mg, 0.20 mmol) 

were dissolved in a mixture of water (0.9 mL) and nmp (0.7 mL), giving colourless crystals of 

complex 2 in low yield within one week. 
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[Mn3(kta)2(H2O)3] (3) and [Mn(H2O)6][Mn5(kta)4(H2O)4] (4): Kempʼs triacid (13 mg, 0.05 

mmol), Mn(NO3)2·4H2O (25 mg, 0.10 mmol), and DABCO (11 mg, 0.10 mmol) were dissolved 

in a mixture of water (0.9 mL) and nmp (0.4 mL), giving a mixture of colourless crystals of 

complexes 3 and 4 in low yield within one week. 

 

[Mn6(kta)4(nmp)3] (5): Kempʼs triacid (13 mg, 0.05 mmol) and Mn(NO3)2·4H2O (25 mg, 0.10

mmol) were dissolved in a mixture of water (0.9 mL) and NMP (0.4 mL). After heating for 

two months, the solution was left to slowly evaporate, giving colourless crystals of complex 

5 in low yield over a two months’ period. 

 

[UO2Cs(kta)] (6): Kempʼs triacid (13 mg, 0.05 mmol), UO2(NO3)2·6H2O (25 mg, 0.05 mmol), 

and CsNO3 (39 mg, 0.20 mmol) were dissolved in a mixture of water (0.9 mL) and NMP (0.4 

mL), giving yellow crystals of complex 6 in low yield within two weeks. 

 

Crystallography: The data were collected at 150(2) K on a Nonius Kappa-CCD area detector 

diffractometer[36] using graphite-monochromated Mo K radiation ( = 0.71073 Å). The 

crystals were introduced into glass capillaries with a protective coating of Paratone-N oil 

(Hampton Research). The unit cell parameters were determined from ten frames, then 

refined on all data. The data (combinations of - and -scans with a minimum redundancy of 

4 for 90% of the reflections) were processed with HKL2000.[37] Absorption effects were 

corrected for empirically with the program SCALEPACK.[37] The structures were solved by 

direct methods with SHELXS[38] or by intrinsic phasing with SHELXT,[39] expanded by 

subsequent difference Fourier synthesis and refined by full-matrix least-squares on F2 with 

SHELXL.[40] All non-hydrogen atoms were refined with anisotropic displacement parameters. 
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When present, the hydrogen atoms bound to oxygen atoms were found on difference 

Fourier maps, and the carbon-bound hydrogen atoms were introduced at calculated 

positions; all hydrogen atoms were treated as riding atoms with an isotropic displacement 

parameter equal to 1.2 times that of the parent atom (1.5 for CH3, with optimized 

geometry). Some voids in the structure of 5 probably indicate the presence of unresolved 

solvent molecules; this structure was refined as a 2-component inversion twin, with a Flack 

parameter of 0.44(4). In complex 6, the caesium atom is disordered over two sites which 

were refined with occupancies of 0.5 (Cs1A, located on a mirror plane), or 0.25 (Cs1B, in 

general position). Crystal data and structure refinement parameters are given in Table 1. The 

molecular plots were drawn with ORTEP-3[41] and the polyhedral representations with 

VESTA.[42] Topological analyses were conducted with ToposPro.[43] 

 

Table 1. Crystal data and structure refinement details. 

 1 
 

2 3 4 5 6 

 
Empirical formula 

 
C24H33Na5O13 

 
C12H16O6Sr 

 
C24H36Mn3O15 

 
C48H80Mn6O34 

 
C63H87Mn6N3O27 

 
C12H15CsO8U 

M (g mol1) 644.45 343.87 729.35 1530.76 1647.99 658.18 
Crystal system monoclinic trigonal monoclinic triclinic trigonal orthorhombic 
Space group P21/c P3 P21/c Pī R3c Pnma 
a (Å) 14.2793(10) 13.1497(2) 12.4763(5) 10.4421(5) 14.0042(3) 20.0155(17) 
b (Å) 15.2955(11) 13.1497(2) 14.5900(4) 12.2118(7) 14.0042(3) 9.7071(4) 
c (Å) 14.2147(7) 12.4529(3) 15.6202(5) 12.8752(8) 67.091(2) 8.6825(7) 
(°) 90 90 90 75.926(3) 90 90 
 (°) 115.594(4) 90 101.177(2) 72.647(3) 90 90 
(°) 90 120 90 85.764(4) 120 90 
V (Å3) 2800.0(3) 1864.80(7) 2789.40(16) 1520.04(15) 11394.9(6) 1686.9(2) 
Z 4 6 4 1 6 4 
Reflections collected 58979 35669 104565 74356 94782 46591 
Independent reflections 5330 3794 8502 5763 4807 1693 
Observed reflections [I > 2(I)] 3531 3380 6585 4599 4490 1452 
Rint 0.068 0.021 0.034 0.092 0.020 0.024 
Parameters refined 385 175 385 406 304 123 
R1 0.054 0.029 0.032 0.051 0.049 0.035 
wR2 0.104 0.081 0.083 0.143 0.138 0.095 
S 1.056 1.141 1.026 1.037 1.043 1.120 
min (e Å3) 0.24 0.65 0.51 0.75 0.36 1.17 
max (e Å3) 0.25 0.51 0.43 0.88 0.97 2.32 
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CCDC 1965436 (for 1), 1965437 (for 2), 1965438 (for 3), 1965439 (for 4), 1965440 (for 5), 

and 1965441 (for 6) contain the supplementary crystallographic data for this paper. These 

data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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