

# Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in *Saccharomyces cerevisiae*

Margaux Renvoisé, Ludovic Bonhomme, Marlène Davanture, Benoît Valot, Michel Zivy, Claire Lemaire

#### ▶ To cite this version:

Margaux Renvoisé, Ludovic Bonhomme, Marlène Davanture, Benoît Valot, Michel Zivy, et al.. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in *Saccharomyces cerevisiae*. Journal of Proteomics, 2014, 106, pp.140-150. 10.1016/j.jprot.2014.04.022 . cea-02462405

# HAL Id: cea-02462405 https://cea.hal.science/cea-02462405

Submitted on 31 Jan 2020  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Quantitative variations of the mitochondrialproteome and phosphoproteome duringfermentative and respiratory growth in Saccharomyces cerevisiae

Margaux Renvoisé a,b ; Ludovic Bonhomme c ; Marlène Davanture d ; Benoit Valot c ; Michel Zivy d; Claire Lemaire a, b

- a) CNRS, UMR8221, F-91191 Gif-sur-Yvette, France
- b) CEA, IBITECS, SB2SM, LPM, F-91191 Gif-sur-Yvette, France
- c) INRA, PAPPSO, UMR de Génétique Végétale, Gif-sur-Yvette, France
- d) CNRS, PAPPSO, UMR de Génétique Végétale, Gif-sur-Yvette, France

## Abstract

The yeast Saccharomyces cerevisiae is a facultative aerobe able to adapt its metabolismaccording to the carbon substrate. The mechanisms of these adaptations involve at leastpartly the mitochondria but are not yet well understood. To address the possible role of protein phosphorylation event in their regulation, it is necessary in a first instance todetermine precisely the phosphorylation sites that show changes depending on the carbonsource. In this aim we performed an overall quantitative proteomic and phosphoproteomicstudy of isolated mitochondria extracted from yeast grown on fermentative (glucose orgalactose) and respiratory (lactate) media.Label free quantitative analysis of proteinaccumulation revealed significant variation of 176 mitochondrial proteins including 108 proteins less accumulated in glucose medium than in lactate and galactose media. We also showed that the responses to galactose and glucose are not similar. Stable isotope dimethyllabeling allowed the quantitative comparison of phosphorylation levels between the different growth conditions. This study enlarges significantly the map of yeast mitochondrialphosphosites as 670 phosphorylation sites were identified, of which 214 were new and quantified. Above all, we showed that 90 phosphosites displayed a significant variation according to the medium and that variation of phosphorylation levelis site-dependent.

### **Biological significance**

This proteomic and phosphoproteomic study is the first extensive study providing quantitativedata on phosphosites responses to different carbon substrates independent of the variations of protein quantities in the yeastS. cerevisiaemitochondria. The significant changes observed in the level of phosphorylation according to the carbon substrate open the way to the study of theregulation of mitochondrial proteins by phosphorylation in fermentative and respiratory media. In addition, the identification of a large number of new phosphorylation sites show that the characterization of mitochondrial phosphoproteome is not yet completed.

#### **Graphical Abstract**



## 1. Introduction

Mitochondrion is an organelle with multiple functions, the most important of which being to provide energy to the rest of the cell in the form of ATP by oxidative phosphorylation, a process catalyzed by the respiratory enzymes organizedin supercomplexes in the mitochondrial inner membrane[1,2]. In humans, deregulation of mitochondrial functions, in particular of the respiratory chain, is associated with several pathologies, including neurodegenerative diseases[3,4],neuromuscular diseases[5], type II diabetes[6]and cancer[7]. In response to metabolic demand or various stresses, theactivity of the respiratory enzymes may be adjusted andseveral levels of regulation could be conceived such as change in the expression level of proteins, reversible inter-action with effectors, or post translational modifications such as phosphorylation. In plants, phosphorylation was shown to play a regulatory role in response to light conditions by inducing change in the supramolecular organization and the activity of photosynthetic apparatus of the chloroplast, an energyconverting organelle that is related to the mito-chondrion[8]. The steadily increasing number of known mitochondrial phosphoproteins, kinases and phosphatases suggests that reversible protein phosphorylation could be an important level of regulation in mitochondria[9]and couldbe partly responsible for an adaptation to environmental change as it is the case for chloroplasts[10]. Testing such hypothesis cannot be considered without quantitative data on the variations of mitochondrial protein amounts and their level of phosphorylation under several growth conditions. The yeast

Saccharomyces cerevisiaeis a powerful tool to study various energetic and physiological states as it is a facultative aerobe which can grow either on fermentative substrate such as glucose or galactose or on respiratory substrate such as lactate. Few global quantitative phosphoproteomic and proteomic studies have been carried on yeast grown on different carbon sources but mostly on whole cell extracts[11,12] and the lack of subfractionation limited the access of information on mitochondrial proteins. Two qualitative studies focused on a subset of mitochondrial proteins, but the use of 2D gel electrophoresis[13,14]limited the access to hydrophobic orbasic proteins and to those of very high or very low molecular weight. In this paper, we present for the first time a quantitative study of both protein abundance and phosphorylation levels in isolated yeast mitochondria, under respiratory (lactate medium)or fermentative conditions with two different substrates(glucose and galactose). We performed a subcellular fraction-ation to focus our analysis specifically on the mitochondrial proteins and used LC-MS/MS to overcome the limitations of 2D gel electrophoresis[15–17]. Protein abundances were quantified using a label free method. The quantitative analysis of the phosphoproteome was carried out by using the multiplex stable isotope dimethyl labeling procedure[18]. Forall quantified phosphopeptides, protein abundance measurements were performed allowing normalization of the data and providing a way to analyze the specific variation of phosphorylation status independent of the protein abundance changes. Finally, this study allowed us to obtain a reliable description of the adaptation of the yeast mitochondrial proteome and phosphoproteome to different carbon sources.

#### 2. Material and methods

#### 2.1. Cell culture of yeast

The yeast wild strain W303 (aade2-1 ura3-1 his3-11,15 trp1-1leu2-3,112 can1-100) was grown either in 2% glucosemedium (YPGA) to an OD\$\_{ nm}\$= 6, or 2% galactose medium (YPGAL)to an OD\$\_{600}\$ nm= 6 or 2% lactate medium (YLAC) to an OD\$\_{600}\$ nm=4.5 media as described in Lemaire and Dujardin[19]. Four independent biological replicates were performed in each growth condition, leading to 12 samples in total.

#### .2.2. Extraction of mitochondria

Extraction of mitochondria was performed using the protocol originally developed by Meisinger et al.[20]and widely used in proteomic studies in yeast (see Reinders et al.,[21]). Briefly, crude mitochondrial fraction was

prepared by differential centri fugation and adjusted to a protein concentration of 5 mg/mL in250 mM sucrose/1 mM EDTA/10 mM Mops, pH 7.2. After treat-ment with 10 pestle strokes in a glass-Teflon potter, mitochondria were loaded on top of a three-step sucrose gradient. The proteins were then precipitated by 10% TCA, washed by acetoneandstoredat-20 °C.

#### 2.3. In solution digestion.

Precipitated proteins from each sample were suspended in buffer A (0.1% ZALS I, 6 M urea, 2 M thiourea, 10m MDTT, 30 mM Tris–HCl pH 8.8, 5 mM NH\$\_4\$HCO\$\_3\$). Protein concentration was measured using the 2-D Quant Kit (GE He althcare, Piscataway, NJ, USA) with BSA as a standard. For each sample,1.3 mg of protein was incubated in the dark for 1 h with iodoacetamide to a final concentration of 40 mM and then diluted 8-fold with 50 mM NH\$\_4\$HCO\$\_3. Samples were digested in-solution overnight at 37 °C by adding 40µg of trypsin in 200µL of 50 mM NH\$\_4\$HCO\$\_3\$ (trypsin/protein ratio: 1/32.5). Trypsic digestion was stopped by addition of TFA to pH 2. An aliquot of each sample was kept at–20 °C for further study of the global proteome.

#### 2.4. Stable isotope dimethyl labeling of trypsic peptides

Trypsic digest of each sample was dried by vacuum centrifugation and re-suspended in 1 mL of 5% formic acid. Trypsic peptides were labeled on column by multiplex stable isotope dimethyl labeling procedure as described in Boersema[18]. Briefly the peptides are labeled on their primary amines which are converted to dimethylamines. Several isotopomers of formaldehyde and cyanoborohydride were used to add a specific mass (28, 32 or 36 Da) to the labeled peptide. Each SepPak C18 cartridge column (3 cc; Waters) was conditioned with 2 mL of acetonitrile (ACN) and equilibrated with  $2 \times 2$  mL of buffer B (0.6% acetic acid in bidistilled water). Each sample was loaded in a separate column and washed with 2 mL of buffer B. Each column was flushed 7 times by 1 mL of a labeling solution. The columns were then washed with 2 mL of buffer B.Peptides were eluted with  $2 \times 500 \mu$ L of buffer C (0.6% acetic acidin 80% ACN). Light, intermediate and heavy labeled peptides were mixed in a 1:1:1 ratio. One mix per biological replicate was prepared. Each mix contained samples from the three growth conditions, and each growth condition was alternatively labeled with a light, intermediate and heavy isotope in the four replicates. Light label corresponds to lactate mediumin replicates 1 and 2, to glucose medium in replicate 3 and togalactose medium in replicate 4. Inter label corresponds togalactose medium in

replicates 1 and 2, to lactate medium inreplicate 3 and to glucose medium in replicate 4. Heavy label corresponds to glucose medium in replicates 1 and 2, to galactose medium in replicate 3 and to lactate medium in replicate 4.

2.5. Sample fractionation by strong cation exchange chromatography

Labeled peptides were dried by vacuum centrifugation and re-suspended in 500µL of buffer D (ACN/H2O: 30/70, 0.5% formic acid, pH 2). It was fractionated by Strong-Cation Exchange Chromatography according to Bonhomme et al.[22], using a Zorbax Bio SCX-Series II column (0.8 mm innerdiameter  $\times$  50 mm length; 3.5µm particle size) on a Ulti-mate LC system combined with a Famos autosampler anda Switchos II microcolumn switch system (LC Packings,Sunnyvale, CA, USA). Chromatographic separation was madeby a binary buffer system, constituted by buffer D andbuffer E (buffer E: ACN/H2O: 30/70, 0.5% formic acid, 50 m Mammonium formate, pH 5) at a flow rate of 200µL/min for80 min. Sample was automatically collected in a 96 well platecollector, using an on-line Probot system (LC Packings) toform 12 fractions.

2.6. Enrichment of phosphopeptides by Immobilized Metal ionAffinity Chromatography

Each fraction was dried by vacuum centrifugation an dre-suspended in 300µL of loading buffer (H2O/ACN: 70/30, with250 mM acetic acid). For each fraction, 80µL of Phos-SelectIron Affinity Gel[22] was washed 4-fold with loading buffer and added to the fraction. Peptides were incubated with Phos-select Affinity Gel during 1 h, using a tube rotator. Phos-select Affinity Gel was washed in SigmaPrep spin column (Sigma Aldrich, St Louis, USA), twice with 200µL of loading buffer and once with 200µL of bidistilled water. Phosphopeptides were then eluted in SigmaPrep spin column with  $2 \times 30 \mu L$  of elution buffer (H2O/ACN: 70/30, 0.4 M ammonium hydroxide). Eluted phosphopeptides were dried by vacuum centrifugation and kept at-20 °C until LC-MS/MS analysis. Twenty four percent of the identified peptides were phosphorylated in the enriched fractions. This result shows that the enrichment was very effective, since only 4 phosphopeptides can be detected in non-enriched samples. Interestingly, 88% of the unphosphorylated peptides contained at least one Asp or Glu, which confirms the known limit of the IMAC methodology with regards to the strong affinity for acidic peptides.

#### 2.7. LC-MS/MS analysis

Each sample was resuspended in 20µL of 0.1% formic acid in 2% ACN (solvant E) then 4µLwere loaded at 7.5µL/min on a pre-column cartridge (stationary phase: C18 PepMap 100, particles of 5µm; column: 100µm i.d., 1 cm length; Dionex) using a Nano LC-Ultra system (Eksigent, AB SciEX Massachusetts, USA). Peptides were desalted with solvent E during 3 min and loaded on a separating PepMap C18 column (stationary phase C18PepMap 100, particles of 3µm; column 75µm i.d., 150 mm length; Dionex) prior to gradient chromatography. The buffers used were 0.1%formic acid in water (solvent F) and 0.1% formicacid in ACN (solvent G). A 37 min-long linear gradient from 5 to 30% G at 300 nL/min was used for peptide separation. Including the regeneration step at 95% G and the equilibration step at 95%F; each run took 45 min. Eluted peptides were analyzed with a Q-Exactive mass spectrometer (Thermo Electron, Courtaboeuf, France) using a nano-electrospray interface. Ionization was performed with a 1.3-kV spray voltage applied to an uncoated capillary probe (10µi.d.; New Objective, Woburn, MA, USA). Xcalibur 2.1 interface was used to monitor data-dependent acquisition of peptide ions. This included a full MS scan covering the 300 to 1400 mass-to-charge ratio (m/z) with a resolution of 70,000 and a MS/MS step (normalized collision energy: 30%; resolution: 17,500). The MS/MS step was reiterated for the 8 major ions detected during the full MS scan. The dynamic exclusion was set to 45 s. For the analysis of total protein content, 1µg of digest from each of the 12 samples was directly submitted to LC-MS. The methods were thesame as those described for phosphopeptides, except that the duration of the LC gradient separation was increased to 1 h.

2.8. Identification of peptides and phosphorylation sites Database searches were performed using X!Tandem CYCLONE (http://www.thegpm.org/TANDEM). Cys carboxyamidomethylation and light, intermediary and heavy dimethylation of peptideN-termini and lysine residues were set as static modifications while methionine oxidation and phosphorylation of tyrosine were set as variable modifications. Serine and threonine residues phosphorylation was search as variable modification motifs including phosphate loss. Precursor mass tolerance was10 ppm and fragment mass tolerance was 0.02 Th. Identifications were performed using the Saccharomyces Genome Database, (http://www.yeastgenome.org/, release number: R63-1-1, release date: 20100105, S288C\_reference\_genome\_R63-1-1\_20100105) to which common contaminants were added. Identified proteins were filtered and grouped using the X!Tandem pipeline v3.3.0 (http://pappso.inra.fr/bioinfo/xtandempipeline/). Data filtering was achieved according to a peptide E value smaller 0.01. Using such a thre shold, the false discovery rate (FDR) was estimated to 0.5%.

#### 2.9. Relative quantification of peptides and proteins

Mass ChroQ [23] was used for the a lignment of LC-MS runs and peptide quantification by integration of extracted ion current (10 ppm) window) in the peak detected at the expected retention time. Normalization was performed to take into account possible global variations between samples: for each LC–MS run the ratio f all peptide values to their value in a chosen reference LC-MS run was computed, and normalization was performed by dividing peptide values by the median value of peptide ratios. Only peptides which have been quantified in at least 3 replicates per condition were kept for protein quantification. Only proteins quantified with at least two peptides were kept. Statistic tests were performed on log10-transformed data. The effect of growth condition on each protein was tested by using its normalized peptide values in a mixed model of analysis of variance, with growth conditions as a fixed effect and the peptides and the sample as random effects. We used thefdrtool library of the R package to compute the classical False Discovery Rate[24]. The effect of the growth condition was considered significant when the q-value (False Discovery Rate adjusted p-value) was < 0.01.

#### 2.10. Relative quantification of phosphopeptides and statistical analyses

As for the analysis of protein abundance, the quantification of phosphopeptides was performed using MassChroQ[23]. The alignment was performed between LC-MS/MS runs originating from the same SCX fraction of the different replicates. In the following, a replicate designates the mix of 3 samples corresponding to 3 different growth conditions, each sample being labeled with a different isotope, and a triplex designates the set of isotopes for a same m/z in the same fraction. As there were 12 SCX fractions, each replicate was represented by12 LC–MS runs. For a given peptide, a triplex in a fraction was quantified only when at least 2 isotopes were detected. For normalization, we used a method similar to the one used forprotein quantification, i.e. based on the principle that the median ratio between isotopic peptides within a replicate (i.e. within amix of 3 samples labeled with different isotopes) must be equal to 1[22].Afterlog10-transformation of normalized data, phosphopeptide variations according to the growth condition were determined by using a mixed model of analysis of variance with the treatment (i.e. the corresponding isotope) as a fixed effect and with the triplex and replicate

as random effects. Finally, the relative level of phosphorylation of a protein was computed by dividing the phosphopeptide by the unphosphorylated protein content estimated by the twoANOVA models. As phosphopeptides and peptides used tomeasure protein abundance are different, the computed ratiodoes not represent a real estimation of the relative level of protein phosphorylation, but this normalization allowed making the phosphorylation value independent from protein amount variation. A simple ANOVA model was used to analyze changes, with only the growth condition as a fixe deffect. It was considered significant when the FDR adjusted p-value was <0.05. The analysis of qualitative variations was based on the detection of MS peaks. A K-means clustering was done on proteins whose abundance changed significantly according to growth conditions. Another was done on phosphorylation sites whose level varied according to growth conditions. For these 2 K-means analyses, the dissimilarity criterion was the Pearson correlation and the maximal iterations were 50.

#### 3. Results and discussion

3.1. Variations of mitochondrial protein abundances during fermentative and respiratory growth

We quantified 724 proteins, of which 75% (544 proteins) were known to be mitochondrial proteins and only these were used for further data treatment (see Supplemental data S1). Theother 25% proteins were essentially from the polysomes (11%) which are known to be bound to mitochondria[25]. The other contaminants were essentially of cytoplasmic (8%) or nuclear (2%) origin. Among these 724 proteins, the abundance of 368 displayed no change according to the growth medium while 176 proteins varied significantly. A classification was performed on this set of 176 proteins which defined 4 clusters (Fig. 1 and Supplemental data S2). For each cluster, the different abundance factors relating to the three growth media were compared pair wise (see Table 1). This approach allowed defining two major groups (see Fig. 1andTable 1) showing that the most extreme differences are between glucose and lactate media. One group includes proteins more abundant in glucose than in lactate by a factor varying between 1.9 and 7.5 (cluster 1; 68proteins i.e. 39%). The second group is defined by proteins more abundant in lactate than in glucose (clusters 2 to 4; 108 proteinsi.e. 61%) with an average abundance factor varying from 0.26 to 0.42. Interestingly, we highlighted significant differences between the two fermentative substrates studied as, in most of the cases (clusters 1 to 3), protein abundance in galactosemedium displays a different pattern than in glucose medium(average abundance factor varying from 0.55 to 2.9). In clusters 1 and 3, the galactose medium

was intermediary between the glucose and lactate media. In cluster 2, the same pattern is observed for galactose and lactate. Finally, cluster 4 is the onlyone which contained proteins whose abundance in galactose and glucose were almost similar. Few studies have already compared protein amounts between fermentation and respiration at the steady-state level[12,26,27]. Moreover these analyses were performed on whole cell extracts and only some few data on mitochondrial proteins were found. Our study allows for the first time a noverall comparison of mitochondrial protein abundances in fermentation and respiration together with a deeper analysis of differences between two fermentative substrates which suggest that galactose could be finally considered as a substrate displaying an intermediate metabolism between fermentation (glucose medium) and respiration (lactate medium). This is supported by the data indicating that the contribution of respiration has been shown to be larger during growth on galactose than in glucose [28]



Fig. 1–Significant changes of protein abundances according to the substrate. Pie graph of the clusters built for proteins whose abundance was significantly

affected by the substrate (K-means clustering) (G = glucose; Gal = galactose; L = lactate). Box plots are depicted beside their respective shares. The number of proteins associated to each of the four defined clusters is given.

The protein composition of the clusters will be presented and discussed later in the section concerning the comparison between variation of mitochondrial protein abundances and protein phosphorylation according to their metabolic path-ways. To facilitate this comparison, the clusters were defined by their major trend. Cluster 1 was considered as lactate $^-$  (LAC $^-$ ), clusters 2 and 3 were gathered and defined as glucose $^-$  (GLU $^-$ ) and cluster 4 as lactate $^+$ , (LAC $^+$ ).

# 3.2. Mitochondrial protein phosphorylation display qualitative and quantitative variations between fermentative and respiratory growth

Table 1–Variations of protein abundances according to the cluster. The mean and standard deviation of the ratio between the abundance in one condition and the abundance in the other are shown for every comparison between two substrates and for every cluster.

|           | Glucose/lactate | Galactose/lactate | Galactose/glucose |
|-----------|-----------------|-------------------|-------------------|
| Cluster 1 | $4.7\pm2.8$     | $2.0 \pm 0.58$    | $0.55 \pm 0.09$   |
| Cluster 2 | $0.42 \pm 0.08$ | $0.92 \pm 0.11$   | $2.5 \pm 0.67$    |
| Cluster 3 | $0.26\pm0.08$   | $0.57\pm0.09$     | $2.9\pm0.72$      |
| Cluster 4 | $0.28\pm0.12$   | $0.32 \pm 0.11$   | $1.4\pm0.30$      |

The mitochondrial phosphoproteome of yeast cultivated in three different sources of carbon was investigated using the multiplex stable isotope dimethyl labeling procedure for relative quantification which labeling efficiency was estimated between 93 and 97.7%. Our mitochondrial phosphoproteome analysis led to the identification of 670 phosphorylation sites, observed in at least one of the 12 samples (Supplemental dataS3, S4 and S5). Ninety eight percent of the spectra that identified the same phosphopeptide were found in at most three SCX fractions and 50% were found in the same fraction. The phosphopeptides were identified in 299 proteins of which 150 displayed one site of phosphorylation, 72, two sites, 27,three sites and 50, four sites or more (http://moulon.inra.fr/protic/yeast\_mitochondria,http://www.proteomexchan ge.organd Supplemental data S3). In total, 71% of them were serine,16% were threonine and 0.6% were tyrosine. 12.4% of the residues could not be precisely localized in the peptide sequence.

We considered here only the 289 phosphosites which were present in at least 3 biological replicates in 1, 2 or 3 conditions (Supplemental data S6 and S7). Among them, 214 were notidentified in previous studies [11,21,29] (Supplemental data S6). Thus our present work enlarges significantly the map of yeast mitochondrial phosphosites.

## 3.2.1. Variations in the three growth conditions

Among the 289 phosphosites reproducibly quantified in 1, 2 or 3conditions, the majority (238 phosphosites) were reproducibly quantified in the three growth conditions and were subjected to quantitative examination using analysis of variance. To estimate as precisely as possible the variations of protein phosphorylation independent of protein amount variations, all phosphopeptide data were normalized according to protein abundance by dividing the phosphopeptide quantitative values by the protein abundance values. The mean coefficient of variation of the log\$\_{10}\$-transformed ratio was 1.86%.

39 phosphorylation sites significantly varied according to carbon substrate (Supplemental data S8) while 199 displayed no significant change under our experimental conditions (Supplemental data S9). A classification based on the normalized quantification of these 39 phosphorylation sites was performed (Fig. 2 and Supplemental data S10). We could isolate five clusters of phosphorylation sites. Clusters P1 to P4 displayed the same pattern as those observed for the clusters 1 to 4 defined for protein abundances. Indeed, the abundance factors of the phosphopeptides were of the same order of magnitude thanthose of protein abundances for a given cluster (seeTable 2). An additional cluster P5 included three sites that were less phosphorylated in galactose than in glucose (a decrease by a factor 5) and lactate (a decrease by a factor 2.5). This suggests that a specific regulation could occur in galactose, independently from the two other conditions.

### 3.2.2. Variations in one or two growth conditions

In addition to the 238 sites reproducibly quantified in thethree growth conditions, we also observed 51 sites showing avariation in 1 or 2 conditions as they were absent in the 4biological replicates of the(se) condition(s) (seeTable 3).In the following sections, we gathered phosphorylation sitesdisplaying variations either in one or two growth conditions (51 residues, Table 3) or in the three simultaneously (39 residues, Supplemental data S5). As for the protein abundances, we grouped the sites according to their major trend. The 29 sites detected only in glucose and/or galactose and the 7 sites of cluster P1 were

considered as LAC $^-$ , the 16 sites detected onlyin lactate and galactose and 24 sites of clusters P2 + P3 as GLU $^-$ ; the 2 sites only detected in lactate and glucose and the 3 sites of cluster P5 as GAL $^-$ ; and finally the 4 only detected in lactate and the 5 sites of cluster P4 as LAC $^+$ .

Table 2–Variations of phosphopeptide abundancesaccording to the cluster. The mean and standard deviation of the ratio between the abundance in one condition and the abundance in the otherareshown for every comparison between two substrates and for every cluster.

|                          | Glucose/lactate                  | Galactose/lactate                 | Galactose/glucose                |
|--------------------------|----------------------------------|-----------------------------------|----------------------------------|
| Cluster P1               | $4.5 \pm 1.5$                    | $2.1\pm 0.24$                     | $0.60\pm0.15$                    |
| Cluster P2               | $0.37\pm0.08$                    | $1.1\pm0.18$                      | $3.4\pm0.67$                     |
| Cluster P3               | $0.44\pm0.50$                    | $0.45\pm0.18$                     | $2.2\pm0.44$                     |
| Cluster P4<br>Cluster P5 | $0.18 \pm 0.04$<br>$2.8 \pm 1.1$ | $0.21 \pm 0.06$<br>$0.42 \pm 0.0$ | $1.1 \pm 0.11$<br>80. 20 ± 0. 05 |

# Table 3

| Growth condition                                                                | Gene                                                                                                                                                                                                                                                                                                                            | Metabolic pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phosphorylation site                                                                                                                                                                                                                                               | Phosphopeptide                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                 | 10000                                                                                                                                                                                                                                                                                                                           | Mitochondria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | CBP3                                                                                                                                                                                                                                                                                                                            | biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 544                                                                                                                                                                                                                                                                | ETAQDpSPELLAK                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Glucose                                                                         | HER1                                                                                                                                                                                                                                                                                                                            | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S1192                                                                                                                                                                                                                                                              | VGLEpSLYGDELNSR                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (5)                                                                             | TIF4631                                                                                                                                                                                                                                                                                                                         | Protein synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T177                                                                                                                                                                                                                                                               | LKETSDSpTSTSTPTPTPSTNDSK                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | Cell rescue, defense                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | WWM1                                                                                                                                                                                                                                                                                                                            | and virulence                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S131                                                                                                                                                                                                                                                               | YYPQQAPMPAAAPQQAYYGTAPpSTSK                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                 | YSP2                                                                                                                                                                                                                                                                                                                            | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S399                                                                                                                                                                                                                                                               | NVNANSNpSETENDNDRDDR                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | Amino acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | BAT1                                                                                                                                                                                                                                                                                                                            | metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S26                                                                                                                                                                                                                                                                | LATGAPLDApSKLK                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                 | CYC7                                                                                                                                                                                                                                                                                                                            | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$57                                                                                                                                                                                                                                                               | GYDSYTDANINK                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | Amino acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | CYS4                                                                                                                                                                                                                                                                                                                            | metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S350                                                                                                                                                                                                                                                               | EDDSSKLEASTTK                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | Mitochondria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | FC11                                                                                                                                                                                                                                                                                                                            | biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S113                                                                                                                                                                                                                                                               | SBDLLSGLTGpSSOTR                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1                                                                               |                                                                                                                                                                                                                                                                                                                                 | Cellular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | communication /                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | GPB2                                                                                                                                                                                                                                                                                                                            | signal transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$24                                                                                                                                                                                                                                                               | VAVpSPESSALEGEER                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | C-compound and                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/6.4                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | corhobudrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | CPM1                                                                                                                                                                                                                                                                                                                            | metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$116                                                                                                                                                                                                                                                              | NCEDVDDDDDDACCDECOV                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                 | LIED1                                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | £1019                                                                                                                                                                                                                                                              | ADM/CEDMICDCT3/CANDADOLV                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                 | TENT                                                                                                                                                                                                                                                                                                                            | Cell recrue defence                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31015                                                                                                                                                                                                                                                              | ADIADSEEMIGDS1 VSAINTINDGINESUK                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | LICECO                                                                                                                                                                                                                                                                                                                          | and viralance                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VADE                                                                                                                                                                                                                                                               | LIDENVCDDEAK                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                 | HSPOV                                                                                                                                                                                                                                                                                                                           | and virulence                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1425                                                                                                                                                                                                                                                               | LIDEPTODUTAK                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | 1.2023 V.2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Galactose +                                                                     |                                                                                                                                                                                                                                                                                                                                 | Cell rescue, defense                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Glucose                                                                         | HSP60                                                                                                                                                                                                                                                                                                                           | and virulence                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T377 or T379                                                                                                                                                                                                                                                       | GSIDIPTTPTNSYEK                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (24)                                                                            |                                                                                                                                                                                                                                                                                                                                 | Amino acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | II V2                                                                                                                                                                                                                                                                                                                           | metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S52                                                                                                                                                                                                                                                                | SASPI PARSKRPEPAPSENUTIPI FOPAFPSK                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                 | 11142                                                                                                                                                                                                                                                                                                                           | Cellular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                    | and the sparke the arrest to present ar                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                 | communication /                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | ID A1                                                                                                                                                                                                                                                                                                                           | cignal transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$407                                                                                                                                                                                                                                                              | IFACI DIDICCENICOR                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                 | MDC2                                                                                                                                                                                                                                                                                                                            | the lan example                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 010                                                                                                                                                                                                                                                                | 10-CCCCI DAIVEEV                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                 | MD33                                                                                                                                                                                                                                                                                                                            | Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CE0.                                                                                                                                                                                                                                                               | TI TAOGMONINGTOGADNIV                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                 | PURS                                                                                                                                                                                                                                                                                                                            | Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 220                                                                                                                                                                                                                                                                | ATSOLLEODER                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                 | PUPZ                                                                                                                                                                                                                                                                                                                            | Protein rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 550                                                                                                                                                                                                                                                                | AT DEPENDENT AT DEPENDENT                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                 | 1066                                                                                                                                                                                                                                                                                                                            | Protein rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 301                                                                                                                                                                                                                                                                | IIENAEGD5K                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                 | TIDH1                                                                                                                                                                                                                                                                                                                           | Encigy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1199                                                                                                                                                                                                                                                               | DADDAGNDAGT                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                 | 1114031                                                                                                                                                                                                                                                                                                                         | Protein Synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3900<br>T220 - (T220 ex T222)                                                                                                                                                                                                                                      | DAFFASKDØSFILLK<br>DODID-TA-TA-TREPI CTODAK                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                 | TOM/0                                                                                                                                                                                                                                                                                                                           | Protein fate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1220 + (1230 01 1232)                                                                                                                                                                                                                                              | FGDIDPTAPTAPTPTELSTOPAK                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                 | TOM/1                                                                                                                                                                                                                                                                                                                           | Protein fate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/6                                                                                                                                                                                                                                                                | QSEAFAGQNEDEADLKDDGSVVpSGSNKR                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                 | TOM/1                                                                                                                                                                                                                                                                                                                           | Protein fate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 596                                                                                                                                                                                                                                                                | AKpSGEGFDYPSLPNGEPDIAQLK                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                 | V1 L4.0 /                                                                                                                                                                                                                                                                                                                       | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S/1                                                                                                                                                                                                                                                                | TTDGNQESASKVpSPVKEK                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                 | 11147                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 Y 10 Y                                                                                                                                                                                                                                                          | A DE COMPANY A DE CENTRAL AND                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                 | ZRG8                                                                                                                                                                                                                                                                                                                            | Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S403                                                                                                                                                                                                                                                               | VYSLNNNpSDEYSVNEK                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                 | ZRG8<br>ZRG8                                                                                                                                                                                                                                                                                                                    | Unknown<br>Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$403<br>\$163                                                                                                                                                                                                                                                     | VYSLNNNpSDEYSVNEK<br>TTDSPLPAIK                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8                                                                                                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$403<br>\$163<br>\$519                                                                                                                                                                                                                                            | VYSLNNNpSDEYSVNEK<br>TTDSPLPAIK<br>FEETpSLKSNK                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ZRG8<br>ACH1                                                                                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$403<br>\$163<br>\$519<br>\$397                                                                                                                                                                                                                                   | VYSLNNNpSDEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ZRG8<br>ACH1                                                                                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid                                                                                                                                                                                                                                                                                                                                                                                                                             | \$403<br>\$163<br>\$519<br>\$397                                                                                                                                                                                                                                   | VYSLNNNpSDEYSVNEK<br>TTDSPLPAIK<br>FEETpSLKSNK<br>MLNGLGGpSADFLR                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01                                                                                                                                                                                                                                                                                    | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism                                                                                                                                                                                                                                                                                                                                                                                                                          | \$403<br>\$163<br>\$519<br>\$397<br>\$298                                                                                                                                                                                                                          | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2                                                                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism                                                                                                                                                                                                                                                                                                                                                                                                      | \$403<br>\$163<br>\$519<br>\$397<br>\$298<br>\$514                                                                                                                                                                                                                 | VYSLNNNpSDEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1                                                                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy                                                                                                                                                                                                                                                                                                                                                                                            | \$403<br>\$163<br>\$519<br>\$397<br>\$298<br>\$514<br>\$514<br>\$299                                                                                                                                                                                               | VYSLNNNpSDEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK                                                                                                                                                                                                                                                                                                |  |
|                                                                                 | AC01<br>CAT2<br>CAT2<br>CAT2<br>CIT1<br>CIT2                                                                                                                                                                                                                                                                                    | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy                                                                                                                                                                                                                                                                                                                                                                                  | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15                                                                                                                                                                                                 | VYSLNNNSSDEYSVNEK<br>TTDSPLPAIK<br>FEETSLKSNK<br>MLNGLGGPSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVASSPYLQSNSSQEK                                                                                                                                                                                                                                                                             |  |
|                                                                                 | AC01<br>CAT2<br>CIT1<br>CAT2<br>CIT1<br>CIT2<br>COR1                                                                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy                                                                                                                                                                                                                                                                                                                                                              | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172                                                                                                                                                                                         | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>IVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTFLSLPTR                                                                                                                                                                                                                                                   |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4                                                                                                                                                                                                                                                    | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy                                                                                                                                                                                                                                                                                                                                                    | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58                                                                                                                                                                                  | VYSLNNNpSDEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTLSLPTR<br>EGTVPpTDLDQETGLAR                                                                                                                                                                                                                               |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2                                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy                                                                                                                                                                                                                                                                                                                                | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T172<br>T58<br>T390                                                                                                                                                                  | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETSLKSNK<br>MLNGLGGpSADFLR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVA5SPYLQSNSSQEK<br>VLEHLHSTAFONPTPLSLFTR<br>EGTVPpTDLDQETGLAR<br>AMKKTINVRRSQGASR                                                                                                                                                                                                                           |  |
|                                                                                 | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CV82<br>GUT2                                                                                                                                                                                                                                    | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy                                                                                                                                                                                                                                                                                                            | \$403           \$163           \$519           \$397           \$298           \$514           T239           \$14 or Y15           T172           T58           T390           T438                                                                              | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FRETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>lpTSTDPNADYGK<br>NVApSPLQSNSSQEK<br>VLEHLHSTAFQNpTPLSLPTR<br>EGTVPpTDLDQETGLAR<br>AMKKpTNVRRSQGASR<br>GSApTQGVVR                                                                                                                                                                                             |  |
| Lactate +                                                                       | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1                                                                                                                                                                                                                            | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown                                                                                                                                                                                                                                                                                                           | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157                                                                                                                                                          | VYSLINNNSDEVSYNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGPSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLINER                                                                                                                                                                           |  |
| Lactate +<br>Galactose                                                          | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1                                                                                                                                                                                                            | Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy                                                                                                                                                                                                                                                                                                                     | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37                                                                                                                                                   | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETSLKSNK<br>MLNGLGGpSADFLR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVA5SPYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPpTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK                                                                                                                                                                            |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1                                                                                                                                                                                                                    | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria                                                                                                                                                                                                                                                                                          | \$403           \$163           \$519           \$397           \$298           \$514           T239           \$14 or Y15           T172           T58           T390           T438           \$157           \$37                                               | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FRETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVApSPULOSNSOEK<br>VLEHLHSTAFQNpTPLSLPTR<br>EGTVPpTDLDQETGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK                                                                                                                                                            |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1                                                                                                                                                                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis                                                                                                                                                                                                                                                                            | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31                                                                                                                              | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IJTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTFLSLPTR<br>EGTVPPTDLQCFEGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGV/R<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK                                                                                                                                    |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1                                                                                                                                                                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis                                                                                                                                                                                                                                                                 | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31                                                                                                                              | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETSLKSNK<br>MLNGLGGPSADFLR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVASSYTUSNSQEK<br>VLEHLHSTAFONPTPLSLPTR<br>EGTVPPTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK                                                                                                                                                       |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1                                                                                                                                                                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrare                                                                                                                                                                                                                                          | \$403           \$163           \$519           \$397           \$298           \$514           T239           \$14 or Y15           T172           T58           T390           T438           \$157           \$37           \$27 or \$29 or T31                 | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FRETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVApSPULQSNSSQEK<br>VLEHLHSTAFQNpTPLSLPTR<br>EGTVPpTDLDQETGLAR<br>AMKKpTDVRRSQGASR<br>GSApTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK                                                                                                                                    |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1                                                                                                                                                                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism                                                                                                                                                                                                                                      | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31                                                                                                                              | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLDQFEGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK                                                                                                                                    |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1<br>PDH1                                                                                                                                                                                                    | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism                                                                                                                                                                                                                 | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250                                                                                                                      | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETSLKSNK<br>MLNGLGGPSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVASSPYLOSNSSOEK<br>VLEHLHSTAFONPTPLSLPTR<br>EGTVPPTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTOGVVR<br>SSpSISTSLNER<br>NQH9SFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR                                                                                                                     |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1<br>PDH1                                                                                                                                                                                                    | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and                                                                                                                                                                                                                    | \$403           \$163           \$519           \$397           \$298           \$514           T239           \$14 or Y15           T172           T58           T390           T438           \$157           \$37           \$27 or \$29 or T31           \$250 | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FRETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVApSPUQSNSSQEK<br>VLEHLHSTAFQNpTPLSLPTR<br>EGTVPpTDLDQETGLAR<br>AMKKpTDVRRSQGASR<br>GSApTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR                                                                                                                     |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1<br>PDH1                                                                                                                                                                                                    | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate                                                                                                                                                                                                    | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250                                                                                                                      | VYSLNNNSSDEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IJDTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLDQETGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR                                                                                                                   |  |
| Lactate +<br>Galactose<br>(16)                                                  | PDH1           PDH1                                                                                                                                                                                                                                                                                                             | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism                                                                                                                                                                                                | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51                                                                                                               | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVAPSPYLQSNSSQEK<br>VLEHLHSTAFONPTPLSLPTR<br>EGTVPPTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>UNCDEW 12                                                                                           |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8           ZRG8           ZRG8           ZRG8           ACH1           AC01           CAT2           CIT1           CIT2           COR1           COX4           CYB2           GUT2           HER1           MCR1           PDH1           PDH1           TOMYO                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism                                                                                                                                                                                      | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S596<br>S596                                                                                               | VYSLNNNS5DEVSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>JPTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLQ2FEGLAR<br>AMKKpTNVRRSOGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRpSDPVLAK                                                                                         |  |
| Lactate +<br>Galactose<br>(16)                                                  | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1<br>PDH1<br>PDH1<br>TOM70<br>UIP4                                                                                                                                                                           | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown                                                                                                                                                                                         | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T38<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S250<br>T51<br>S596<br>S185                                                                                | VYSLNNNSSDEVSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IJTSTTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFONPTPLSLETR<br>EGTVPpTDLOCETGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRpSDPVLAK<br>ELpSPNFSQEQTENKQDK                                                                  |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +                                     | PDH1           ZRG8           ZRG8           ZRG8           AC01           CAT2           CIT1           COX4           CYB2           GUT2           HER1           MCR1           MDV1           PDH1           TOM70           UIP4                                                                                          | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular                                                                                                                                               | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S250<br>T51<br>S596<br>S185                                                                                | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FRETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVAPSPTLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRpSDPVLAK<br>ELpSPNFSQEQTENKQDK                                                                   |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose                          | ZRG8           ZRG8           ZRG8           ZRG8           ACH1           AC01           CAT2           CIT1           COR1           COX4           CYB2           GUT2           HER1           MCR1           MDV1           PDH1           TOM70           UIP4                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Ccluluar<br>Cellular<br>communication /                                                                                                                                    | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S596<br>S185                                                                                               | VYSLNNNS5DEVSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IJTSTTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTFLSLPTR<br>EGTVPPTDLOPETGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGVVR<br>SDSDSTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRpSDPVLAK<br>ELpSPNFSQEQTENKQDK                                                                   |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose<br>(2)                   | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MCR1<br>MDV1<br>PDH1<br>PDH1<br>TOM70<br>UIP4<br>CYR1                                                                                                                                                           | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular<br>Collular<br>Collular<br>Collular<br>Collular<br>Communication /<br>signal transduction                                                    | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S250<br>T51<br>S596<br>S5185<br>T389                                                                       | VYSLNNNSSDEVSVNEK<br>TTDSPLPAIK<br>FEETSELKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVAPSPYLQSNSSQEK<br>VLEHLHSTAFONPTPLSLPTR<br>EGTVPpTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRPSDPVLAK<br>ELpSPNFSQEQTENKQDK                                                                   |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose<br>(2)                   | PDH1           ZRG8           ZRG8           ZRG8           ZRG8           AC01           CAT2           CIT1           CIT2           COR1           COX4           CYB2           GUT2           HER1           MCR1           MDV1           PDH1           TOM70           UIP4           CYR1           SUR7               | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular<br>communication /<br>signal transduction                                                                                                     | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S27 or S29 or T31<br>S250<br>T51<br>S596<br>S185<br>T389<br>S221                                                          | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGPSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEPVSK<br>IPTSTDPNADYGK<br>NVAPSPVLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLQCFEGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSPSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEPTPLK<br>IRPSDPVLAK<br>ELpSPNFSQEQTENKQDK<br>LDpTNLEDVTDITK<br>LASTYPSIDNSR                                 |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose<br>(2)                   | ZRG8<br>ZRG8<br>ZRG8<br>ACH1<br>AC01<br>CAT2<br>CIT1<br>CIT2<br>COR1<br>COX4<br>CYB2<br>GUT2<br>HER1<br>MCR1<br>MDV1<br>PDH1<br>PDH1<br>TOM70<br>UIP4<br>CYR1<br>SUR7<br>CAT2                                                                                                                                                   | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular<br>communication /<br>signal transduction.                                                                                  | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S250<br>T51<br>S596<br>S185<br>S185<br>S221<br>S25                                                         | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IJDTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLODETGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRpSDPVLAK<br>ELpSPNFSQEQTENKQDK<br>LDpTNLEDVTDITK<br>LASTYPSIDNSR<br>MHpSAIVNYSTQK               |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose<br>(2)                   | PDH1           PDH1           PDH1           PDH1           PDH1           CYR1           SUR7           CAT2           CTT1           CTT2           COR1           COX4           CYB2           GUT2           HER1           MCR1           MDV1                                                                            | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular<br>communication /<br>signal transduction<br>Unknown<br>Lipid metabolism | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S250<br>T51<br>S250<br>T51<br>S296<br>S185<br>S185<br>S185<br>S185<br>S185<br>S185<br>S185<br>S185         | VYSLNNNS5DEVSVNEK<br>TTDSPLPAIK<br>FEETSELKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVApSPYLQSNSSQEK<br>VLEHLHSTAFONPTPLSLPTR<br>EGTVPpTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRpSDPVLAK<br>ELpSPNFSQEQTENKQDK<br>LDpTNLEDVTDITK<br>LASTYPSIDNSR<br>MHpSAIVNYSTQK<br>TVPYLNpSNR  |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose<br>(2)<br>Lactate        | ZRG8           ZRG8           ZRG8           ZRG8           AC01           CAT2           CIT1           CCR1           COX4           CYB2           GUT2           HER1           MCR1           MDV1           PDH1           TOM70           UIP4           CYR1           SUR7           CAT2           CIT2               | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular<br>communication /<br>signal transduction<br>Unknown<br>Lipid metabolism                      | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S596<br>S185<br>T389<br>S221<br>S25<br>S8                                                                  | VYSLNNNS5DEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>JPTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLPTR<br>EGTVPPTDLQ2FEGLAR<br>AMKKpTNVRRSOGASR<br>GSAPTQOV/R<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>IRpSDPVLAK<br>ELpSPNFSQEQTENKQDK<br>LDpTNLEDVTDITK<br>LASTYPSIDNSR<br>MHpSAI/VNYSTQK<br>TVPYLNpSNR |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose<br>(2)<br>Lactate<br>(4) | ZRG8           ZRG8           ZRG8           ZRG8           AC01           CAT2           CIT1           CT2           COR1           COX4           CYB2           GUT2           HER1           MCR1           MDV1           PDH1           TOM70           UIP4           CYR1           SUR7           CAT2           CIT2 | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Unknown<br>Energy<br>Genegy<br>Unknown<br>Energy<br>Unknown<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular<br>communication /<br>signal transduction<br>Unknown<br>Lipid metabolism                                                                   | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S296<br>S185<br>T389<br>S221<br>S25<br>S8                                                                  | VYSLNNNSSDEYSVNEK<br>TTDSPLPAIK<br>FEETPSLKSNK<br>MLNGLGGpSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>JPTSTDPNADYGK<br>NVApSpYLQSNSSQEK<br>VLEHLHSTAFQNPTPLSLFTR<br>EGTVPPTDLODETGLAR<br>AMKKpTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQHpSFVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEpTPLK<br>RpSDPVLAK<br>ELpSPNFSQEQTENKQDK<br>LDpTNLEDVTDITK<br>LASTYPSIDNSR<br>MHpSAIVNYSTQK<br>TVPYLNpSNR   |  |
| Lactate +<br>Galactose<br>(16)<br>Lactate +<br>Glucose<br>(2)<br>Lactate<br>(4) | PDH1           PDH1           PDH1           PDH1           TOM70           UIP4           CYR1           SUR7           CAT2           CIT1           COR1           COX4           CYB2           GUT2           HER1           MCR1           PDH1           CYR1           SUR7           CAT2           CIT2               | Unknown<br>Unknown<br>Unknown<br>Lipid metabolism<br>Amino acid<br>metabolism<br>Lipid metabolism<br>Energy<br>Energy<br>Energy<br>Energy<br>Energy<br>Unknown<br>Energy<br>Mitochondria<br>biogenesis<br>C-compound and<br>carbohydrate<br>metabolism<br>C-compound and<br>carbohydrate<br>metabolism<br>Protein fate<br>Unknown<br>Cellular<br>communication /<br>signal transduction<br>Unknown<br>Lipid metabolism                                                                      | S403<br>S163<br>S519<br>S397<br>S298<br>S514<br>T239<br>S14 or Y15<br>T172<br>T58<br>T390<br>T438<br>S157<br>S37<br>S27 or S29 or T31<br>S250<br>T51<br>S250<br>T51<br>S250<br>T51<br>S296<br>S185<br>S185<br>S185<br>S185<br>S185<br>S185<br>S185<br>S185         | VYSLNNNS5DEVSVNEK<br>TTDSPLPAIK<br>FEETSELKSNK<br>MLNGLGGPSADFLR<br>pSMIEYLEATGR<br>SVpSTASLEFVSK<br>IpTSTDPNADYGK<br>NVAPSPYLQSNSSQEK<br>VLEHLHSTAFONPTPLSLPTR<br>EGTVPPTDLDQETGLAR<br>AMKKPTNVRRSQGASR<br>GSAPTQGVVR<br>SSpSISTSLNER<br>NQH95FVFNESNK<br>pSNpSNpTQDVLTNNGPYK<br>KpSWAAGDAVSR<br>YVHEDTPLK<br>IRPSDPVLAK<br>ELpSPNFSQEQTENKQDK<br>LDpTNLEDVTDITK<br>LASTYPSIDNSR<br>MHPSAVVNYSTQK<br>TVPYLNPSNR  |  |

3.3. Variations of mitochondrial protein abundances and protein phosphorylation according to their metabolic pathways

Proteins whose amounts vary according to conditions wereassociated with the main metabolic pathways (Fig. 3, panel A) according to the MIPS functional classification ((<u>http://mips.helmholtz-muenchen.de/genre/proj/yeast/</u>) and SGD



Fig. 2–Significant changes of phosphorylation level according to the substrate for the 39 varying residues quantified in the 3growth conditions. Pie graph of the clusters built for phosphorylation sites whose abundance was significantly affected by thesubstrate (K-means clustering) (G = glucose; Gal = galactose; L = lactate). Box plots are depicted beside their respective shares. The number of phosphorylation sites associated to each of the five defined clusters is given.

(http://www.yeastgenome.org/) The pathways were affecteddifferentially and two major patterns could be identified. Firstly, proteins involved in protein fate, amino acid metabolism, transport, C-compound and carbohydrate, vitamins and cofac-tors metabolism were mainly LAC–. Secondly, proteins involvedin energy, protein synthesis and mitochondria biogenesis were



Fig. 3–Regulation of proteins abundance and protein phosphorylation status for different metabolic pathways. Distribution ofvarying proteins (A) and varying phosphorylation sites (B) in their 4 trends of regulation (LAC–, GLU–, LAC+, GAL–) for everymetabolic pathway. For every metabolic pathway, the number of proteins and the number of phosphorylation sites associated to each trend are precised

mostly GLU–. For the other pathways (lipid metabolism, cellrescue, defense and virulence, nucleotide metabolism, cell cycleand DNA processing) the proteins did not appear to be groupedin any specific cluster, or the number of the proteins observedwas too small to reach any significant conclusion. Accordingly, the metabolic pathway displaying the most variation of proteinamount was energy metabolism that included enzymes of therespiratory chain and TCA cycle. They were all GLU–, i.e. moreabundant in lactate and less in glucose, but differed by theirabundance in galactose medium. It was of particular interestto note that the external NADH dehydrogenase Nde1p, theinhibitory peptide of the ATP synthase Inh1p and the TCA cycleenzyme Cit1p are accumulated in galactose medium, contraryto their respective functional homologs Nde2p, Stf1p and Cit3p (78%, 79% and 62% of homology, respectively). This suggests that growth in galactose medium might require the specific function of one specific homolog.

Phosphorylation sites whose status changed according to the carbon substrate were also associated with the metabolic pathway of the protein containing the residue (Fig. 3, panel B). Proteins of energy metabolism show the highest number of quantified sites displaying different phosphorylation levels. They were mainly dephosphorylated under glucose conditions. The other metabolic pathways did not show a general trend.

Our analysis gives deeper results on the mitochondrialchanges at both proteomic and phosphoproteomic levelsfor every metabolic pathway. The most regulated metabolicpathway at both proteomic and phosphoproteomic levelswas energy metabolism with 60 proteins exhibiting differentabundances according to conditions and 28 phosphosites (20 phosphoproteins) showing different levels of phosphorylationas a function of growth medium. As the accumulation of the respiratory complexes has been shown to be modified infermentescible conditions compared to a respirable one [1], we particularly focused our attention on the regulation of proteins involved in the respiratory chain. Interestingly, it must noted that most of the protein chaperones involved in theassembly of the respiratory complexes were not regulated in the same way as the OXPHOS proteins, as no significant/variation in their amount has been detected on the threedifferent carbon sources (see Supplemental data S1).3.4. Phosphorylation of proteins belonging to the oxidative phosphorylation display major variations between fermentative and respiratory growth and phosphorylation regulation is site-dependent 31 proteins involved in the respiratory chain were reproducibly quantified in the 3 growth conditions and showed different abundances according to the condition (Table 4). They are all GLU-, i.e. more abundant in lactate compared to glucose, which account for an increase in the oxidative phosphorylation during growth in respiratory conditions.19 of these proteins were phosphorylated, displaying 37 phosphosites, which suggests an important role of phosphorylation in the regulation of the respiratory chain (Table 4). 12 of these residues located on 7 proteins exhibited a varyinglevel of phosphorylation depending on the carbon source. Formost of them, the level of phosphorylation globally varied in he same direction as protein amounts, as proteins were more abundant and more phosphorylated in respiratory conditions, except for 2 proteins. Rip1p was more abundant in lactate but more phosphorylated in glucose. Atp2p was also more abundant in lactate, but showed different phosphorylation patterns according to the residue: one residue was more phosphorylated in lactate (T43) but the two others (S35 and T40) were specifically less phosphorylated in galactose. Interestingly, 2 proteins (Cor1p and Atp2p) displayed several phosphorylation sites that were differentially regulated according to the substrate. Thus the variation of phosphorylation according to carbon substrate was site-dependent and not protein-dependent. Considering the position of the phosphosites on the complexes, most of the 37 quantified phosphosites are located on the matrix side, where the extra membrane parts of the complexes predominate while only one site, localized on Rip1p, is located in the intermembrane space (Fig. 4). When it was possible to look at the precise position in the structure, for Atp2p for example, we observed that the phosphorylation sites were at the periphery of the subunit which is in agreement with a good accessibility to kinases. Relations between kinases and their targets are still poorly documented in mitochondria: in particular for the mitochondrial proteins encoded by the nucleus, the question to know if phosphorylation occurs before or after their translocation to the mitochondria can be asked However, some kinases have been shown to be located in the mitochondria (e.g. pyruvate dehydrogenase kinase[30] and protein kinase B, that phosphorylates Atp2p [31]) which seems rather in favor of a regulation within the organelle.



#### FIG. 4

Localization of phosphorylation sites on yeast OXPHOS proteins whose abundance vary according to conditions. The presented phosphoproteins exhibited different abundance according to growth conditions. Their phosphorylation sites also displayed either a consistent qualitative variation or a significant quantitative variation. Residues represented by a yellow point are those more phosphorylated in respiratory medium. The one in green has a higher level of phosphorylation in glucose medium. Those in gray are less phosphorylated in galactose, specifically. C II = succinate ubiquinone reductase. C III = ubiquinone cytochrome c reductase. C IV = cytochrome c oxidase. C V = ATP synthase. Respiratory complexes presented in their dimeric form are noticed by a subscript 2. Phosphorylation site of Inh1p is not localized in its structure since only bovine structure of Inh1p is available.

We have been able for the first time to quantitatively analyze variations of respiratory chain at proteomic and phosphoproteomic levels during a change in carbon source. Among the 37 phosphorylation sites discussed here, 34 have not been described yet (see Supplemental data S4). The comparison of these modifications suggests an important role for phosphorylation in the regulation of the respiratory complexes and this study is essential to target the phosphorylation sites, located on Rip1p and Atp2p, are of particular interest since modifications of protein abundances and of phosphorylation levels are not on the same way and further experiments to elucidate the role of these residues are currently under investigation

#### 4. Conclusions

We performed a combined approach of quantitative proteomic and phosphoproteomic analysis of mitochondria from yeast grown on three different carbon sources: glucose, galactose and lactate. We highlighted significant differences of the proteome between the two fermentative substrates studied which suggest that galactose could be finally considered as a substrate displaying an intermediate metabolism between fermentation (glucose medium) and respiration (lactate medium). Proteins involved in a same metabolic pathway seem to exhibit a specific pattern of accumulation among the carbon source. The most regulated metabolic pathway at both proteomic and phosphoproteomic levels was energy metabolism ant particularly the proteins involved in oxidative phosphorylation. They are all more abundant in lactate and less in glucose but some differs by their abundance in galactose. Their phosphorylation level also varies according to the carbon substrate mostly in the same way as the protein accumulation with a few exceptions. Our extensive study provides for the first time confident quantitative data on mitochondrial phosphosites responses to different carbon substrates. It is a step forward in the analysis of regulation of mitochondrialproteins by phosphorylation.

### Acknowledgments

This work has received financial support and encouragements from Pr Marc Le Maire and particularly from Dr Bruno Robert. We are grateful to Dr Francis Haraux for helpful discussions since the beginning of the project and for the design of the yeast respiratory chain presentedin Fig. 4. We thank Mehdi Lembroukand Thierry Balliau for technical assistance and Aurélie Stanislas for the achievement of the preliminary experiments. We acknowledge Dr Patrice Hamel and Dr Andrew Gall for critical reading of the manuscript. We thank Pr Alexander Tzagoloff, Dr Manuel Garrigos and Dr Andy Pascal for their support. We thank Attila Csordas and the PRIDE team for their assistance in making the data available in the PRIDE repository. This work was supported by the International PhD Program forLife Science of CEA (IRTELIS) for which we sincerely thank Dr Christophe Carles.

### Appendix A. Supplementary data

All the data on the protein and phosphopeptide identification are available on the following link:http://moulon.inra.fr/protic/yeast\_mitochondria (login: mitochondria/password:review) The mass spectrometry proteomics data have been also deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository [32] with the data identifiers PXD000714 and PXD000735 Projectname: Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. Supplementary data to thisarticle can be found online athttp://dx.doi.org/10.1016/j.jprot.2014.04.022.

#### REFERENCES

[1]Schagger H, Pfeiffer K. Supercomplexes in the respiratorychains of yeast and mammalian mitochondria. EMBO J2000;19:1777–83.

[2]Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. Respiratory active mitochondrialsupercomplexes. Mol Cell 2008;32:529–39.

[3]Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X. Abnormal

mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 1802;2010:135–42.

[4]Winklhofer KF, Haass C. Mitochondrial dysfunction inParkinson's disease. Biochim Biophys Acta 2009;1802:29–44.

[5]DiMauro S, Bonilla E, Davidson M, Hirano M, Schon EA.Mitochondria in neuromuscular disorders. Biochim BiophysActa 1998;1366:199–210.

[6]Maechler P, Wollheim CB. Mitochondrial function in normaland diabetic beta-cells. Nature 2001;414:807–12.

[7]Verma M, Kagan J, Sidransky D, Srivastava S. Proteomicanalysis of cancercell mitochondria. Nat Rev Cancer2003;3:789–95.

[8]Takahashi H, Iwai M, Takahashi Y, Minagawa J. Identification of the mobile light-harvesting complex II polypeptides forstate transitions inChlamydomonas reinhardtii. Proc Natl AcadSci U S A 2006;103:477–82.

[9]Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, PedrioliPG, et al. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 2010;3:rs4.

[10]Schonberg A, Baginsky S. Signal integration by chloroplastphosphorylation networks: an update. Front Plant Sci2012;3:256.

[11]Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U. Regulation of yeast central metabolism by enzymephosphorylation. Mol Syst Biol 2012;8:623.

[12]Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, et al.Complementary profiling of gene expression at thetranscriptome and proteome levels in Saccharomycescerevisiae. Mol Cell Proteomics 2002;1:323–33.

[13]Ohlmeier S, Kastaniotis AJ, Hiltunen JK, Bergmann U. Theyeast mitochondrial proteome, a study of fermentative andrespiratory growth. J Biol Chem 2004;279:3956–79.

[14]Ohlmeier S, Hiltunen JK, Bergmann U. Protein phosphorylationin mitochondria. A study on fermentative and respiratorygrowth of Saccharomyces cerevisiae. Electrophoresis 2010;31:2869–81.

[15]Pflieger D, Le Caer JP, Lemaire C, Bernard BA, Dujardin G,Rossier J. Systematic identification of mitochondrial proteinsby LC–MS/MS. Anal Chem 2002;74:2400–6.

[16]Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, MeyerHE, et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 2003;100:13207–12.

[17]Reinders J, Zahedi RP, PfannerN, Meisinger C, Sickmann A.Toward the complete yeast mitochondrial proteome:multidimensional separationtechniques for mitochondrialproteomics. J Proteome Res 2006;5:1543–54.

[18]Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ.Multiplex peptide stable isotope dimethyl labeling forquantitative proteomics. Nat Protoc 2009;4:484–94.

[19]Lemaire C, Dujardin G. Preparation of respiratory chaincomplexes fromSaccharomyces cerevisiaewild-type andmutant mitochondria: activity measurement and subunitcomposition analysis. Methods Mol Biol 2008;432:65– 81.

[20]Meisinger C, Sommer T, Pfanner N. Purification

ofSaccharomycescerevisiaemitochondria devoid of microsomal and cytosoliccontaminations. Anal Biochem 2000;287:339–42.

[21]Reinders J, Wagner K, Zahedi RP, Stojanovski D, Eyrich B, vander Laan M, et al. Profiling phosphoproteins of yeastmitochondria reveals a role of phosphorylation in assemblyof the ATP synthase. Mol Cell Proteomics 2007;6:1896–906.

[22]Bonhomme L, Valot B, Tardieu F, Zivy M. Phosphoproteomedynamics upon changes in plant water status reveal earlyevents associated with rapid growth adjustment in maizeleaves. Mol Cell Proteomics 2012;11:957–72.
[23]Valot B, Langella O, Nano E, Zivy M. MassChroQ: a versatiletool for mass spectrometry quantification. Proteomics2011;11:3572–7.

[24]Benjamini Y, Hochberg Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing. J RoyStat Soc B 1995;57:289–300. [25]Margeot A, Garcia M, Wang W, Tetaud E, di Rago JP, Jacq C.Why are many mRNAs translated to the vicinity ofmitochondria: a role in protein complex assembly? GeneCross-Talk between Nucleus and Organelles, 354; 2005 64–71.

[26]Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. Asampling of the yeast proteome. Mol Cell Biol1999;19:7357–68.

[27]Prokisch H, Scharfe C, Camp II DG, Xiao W, David L, AndreoliC, et al. Integrative analysis of the mitochondrial proteome inyeast. PLoS Biol 2004;2:e160.

[28]Lagunas R. Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 1986;2:221–8.

[29]Amoutzias GD, He Y, Lilley KS, Van de Peer Y, Oliver SG.Evaluation and properties of the budding yeastphosphoproteome. Mol Cell Proteomics 2012;11:1–13.

[30]Muller G, Bandlow W. Protein phosphorylation in yeastmitochondria: cAMP-dependence, submitochondriallocalization and substrates of mitochondrial proteinkinases. Yeast 1987;3:161–74.

[31]Bijur GN, Jope RS. Rapid accumulation of Akt in mitochondriafollowing phosphatidylinositol 3-kinase activation. JNeurochem 2003;87:1427–35.

[32]Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, FosterJM, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in. Nucleic Acids Res 2013;41:D1063–9.

Table 4–Phosphorylation of OXPHOS proteins whose abundance change according to growth conditions. Phosphorylationsites displaying a significant quantitative variation were noted in bold with 1 asterisk and those displaying a consistent qualitative variation were noted in bold with 2. Positions of the phosphorylated amino acids were determined from precursor proteins. Phosphorylation sites unambiguously located on the peptide sequence are indicated in bold and by p in the sequence. Otherwise, the different possibilities are noted in the sequence.

| ORF               | Gene | Phosphorylation site | Group of regulation for level of phosphorylation | Phosphopeptide |
|-------------------|------|----------------------|--------------------------------------------------|----------------|
| YML120C<br>YMR145 | NDI1 | S27                  | pSpTGVI                                          | ENSGAGPTSFK    |

CNDE1S265AASLpSPKDPERYDL085WNDE2YKL148CSDH1S524\*GLU-TQpSpSLDE GVRS449\*\*GLU-LGANpSLLDLWFGRYLL041CSDH2T21ouT23\*GLU-ApTApTTAA ATHTPRT24\*\*GLU-ATATpTAAATHTPRYKL141WSDH3T30 ou

T28ATATTAAApTHpTPRYDR178WSDH4YOR065WCYT1YEL024WRIP1**S24**\*GLU+Ip SQpSLLASKYBL045CCOR1**S247**\*GLU–AAFLGp**S**EVR**T172**\*\*GLU–VLEHLHSTAFQN pTPLpSLPTRS94 ou S95 ou

\$98EGLALpSpSNIpSRS135ANLLSpSpSNFEATKT24LATAVApTPKYPR191WQCR2S33 4NAVQNESVSpSPIELNFDAVKDFKYDR529CQCR7YJL166WQCR8YHR001W-

AQCR10S5AYTpSHLSSKS8AYTSHLpSSKQ0250COX2YGL187CCOX4T58\*\*GLU-EGT VPpTDLDQETGLARYNL052WCOX5AS92RPVLNKGDpSSFIAKS93GDSpSFIAKYGL1 91WCOX6A = COX13YLR038CCOX6B =

COX12S7ADQENpSPLHTVGFDARYLR395CCOX8YBL099WATP1S178RpSVHEPVQT GLKT38 ou S37ApSpTKAQPTEVSSI

 $\label{eq:linear} LEERS57IKGVp \texttt{SDEANLNETGRT43AQPpTEVSSILEERS47AQPTEVSpSILEERYJR121} \\ WATP2\texttt{T40*GAL}-ASAAQSpTPITGK\texttt{T43*GLU}-ASAAQSTPIpTGK\texttt{S35*GAL}-ApSAAQSTPITGKS39ASAAQpSTPITGKS299FTQAGpSEVSALLGRYBR039WATP3S226TIEQSPpSFG} \\ \texttt{STPITGKS39ASAAQpSTPITGKS299FTQAGpSEVSALLGRYBR039WATP3S226TIEQSPpSFG} \\ \texttt{STPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS39ASAAQpSTPITGKS3AAQpSTPITGKS3AAQpSTPITGKS3AAQpSTPITGKS3AAQpSTPITGKS3AAQpSTPITGKS3AAQPSTPITGKS3AAQpSTPIT$ 

KFEIDTDANVPRYDR298CATP5S48NpSSIDAAFQSLQKYLR295CATP14T92AYTEQN VEpTAHVAKYDL004WATP16S29 ou S30AEAAAApSpSGLKYDR377WATP17S23NIGpSAPNAKYML081C-AATP18YPR020WATP20YDR322C-AATP21 = TIM11INH1S33GLU-GpSGSEDSFVKRS38GSGSEDpSFVKR148JOURNAL OF PROTEOMICS 106 (2014) 140–150