
HAL Id: cea-02460533
https://cea.hal.science/cea-02460533

Submitted on 3 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RGD-functionalized magnetosomes are efficient tumor
radioenhancers for X-rays and protons

Maha Hafsi, Sandra Preveral, Christopher Hoog, Joël Hérault, Géraldine
Adryanczyk Perrier, Christopher T. Lefèvre, Hervé Michel, David Pignol,

Jérôme Doyen, Thierry Pourcher, et al.

To cite this version:
Maha Hafsi, Sandra Preveral, Christopher Hoog, Joël Hérault, Géraldine Adryanczyk Per-
rier, et al.. RGD-functionalized magnetosomes are efficient tumor radioenhancers for X-rays
and protons. Nanomedicine: Nanotechnology, Biology and Medicine, 2020, 23, pp.102084.
�10.1016/j.nano.2019.102084�. �cea-02460533�

https://cea.hal.science/cea-02460533
https://hal.archives-ouvertes.fr


1 
 

 

Magnetosomes are efficient tumor radioenhancers to both X-rays and 

protons 

 

Maha Hafsi a, Sandra Preveral b, Christopher Hoog c, Joel Hérault d, Géraldine 

Adryanczyk Perrier b, Christopher T Lefèvre b, David Pignol b, Thierry Pourcher a 

Jérôme Doyen  d, Olivier Humbert  a, Juliette Thariat c,d,e and Béatrice Cambien a. 

 

a Laboratoire TIRO, UMRE 4320, BIAM, DRT, CEA, Université de Nice-Sophia Antipolis, France. 

b Laboratoire de Bioénergétique Cellulaire, Institute of Biosciences and Biotechnologies of Aix Marseille 

(BIAM), UMR7265 CEA – CNRS - Aix Marseille Univ, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, 

France 

 

c Department of Radiology, Centre Antoine Lacassagne, Nice, France. 

d  Department of Radiation Therapy, Proton Therapy Center, Centre Antoine Lacassagne, Nice, France 

e Department of Radiation Oncology, Centre François Baclesse, Université de Normandie, France. 

 

 

  



2 
 

ABSTRACT :   

Rationale 

Radiation therapy is widely used for cancer treatment but its efficacy is limited by 

radioresistance and by damages caused to adjacent normal tissues. Active research aims at 

maximizing tumor eradication while reducing side-effects with theranostic nanoparticles that 

act as radioenhancers in situ. Ferromagnetic materials have been identified as promising 

nanotools for image-guided radiotherapy. Here, we investigated the potential of RGD-tagged 

magnetosomes (magnetosomes@RGD), bacterial biogenic magnetic nanoparticles naturally 

coated by a biological membrane and genetically engineered to express a RGD peptide, as 

tumour enhancers to conventional radiotherapy and proton therapy. 

Methods 

The potential of native and RGD-functionalized magnetosomes to enhance the effects of 

ionizing radiations was assessed in a DNA fragmentation assay and in melanoma and colorectal 

cancer cells using in vitro clonogenic assays. The in vivo radiotherapy enhancement efficacy of 

the magnetosomes@RGD was explored in preclinical models of melanoma-bearing mice 

treated with either X-rays or protons. 

Results 

Native and RGD-tagged magnetosomes similarly enhanced radiation-induced DNA damage. 

On cancer cells, both magnetoprobes were able to boost the killing efficacy of radiotherapy, 

although to a much larger extent with the magnetosomes@RGD enhancing the mortality by 2.5 

fold in melanoma cells and by 2.9 fold in colorectal cancer cells. In vivo treatment of melanoma-

bearing mice with magnetosomes@RGD prior to X-rays led to a 65% reduction in tumor 

development compared to radiotherapy alone (31%).  Comparatively, a more effective tumor 
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growth inhibition (77%) was observed in combining RGD-decorated nanoprobes to proton 

therapy. The radioenhancing potential of magnetosomes@RGD was further evidenced by the 

DNA damage observed in the nanoscale vicinity of magnetosomes within the treated lesions. 

Conclusions 

Our results show efficacy of magnetosomes functionalized with a RGD peptide as tumor 

radioenhancers to both X-rays and protons in vivo and strengthen the interest of developing 

biogenic magnetoparticles for multimodal nanomedicine for cancer therapy.  

 

Keywords: RGD functionalized magnetosome, biogenic iron-oxide nanoparticle, radiotherapy, 

proton therapy, cancer, radiosensitization, radioenhancement, magnetotactic bacteria 
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INTRODUCTION 

Up to 50% of cancer patients receive radiotherapy (RT) at some time in their disease evolution 

(1). Although ionizing radiation dose is often needed to effectively kill tumor cells, dose 

delivery is limited by the severe damages caused to adjacent normal tissues. RT efficacy is also 

hampered by hypoxia-associated radiation resistance and other mechanisms of radioresistance 

that require that more dose be delivered to the tumor to achieve curability. Systemic 

radiosensitizing agents given concomitantly with radiation increase its local anti-tumor 

efficacy. However, such combination is associated with an increase of toxic, and sometimes 

limiting, systemic effects. With the development of nanotechnology, dose enhancement 

strategies have been proposed to improve radiation responses of tumours while minimizing 

side-effects. Very recently, such nanomedicine strategies have translated from bench to bedside 

and radioenhancing approaches are currently under investigation in a series of clinical trials 

(2,3). 

To be an efficient radio-enhancer, the nano-object has to contain high-Z elements such as gold, 

gadolinium, platinum, iron, which under irradiation will generate secondary radiation and 

electrons at the subcellular scale. Radiation enhancement by scattered photons, photoelectrons, 

Compton and Auger electrons, etc (4,5) thus occurs by an increase of the dose deposited locally. 

Radiopaque radiation-effect enhancing nanoparticles can be used to image drug biodistribution 

in tissues (6). One drawback of such agents resides in their limited spatial selectivity. Among 

radiation-effect enhancing nanoparticles, iron oxide materials combine unique physicochemical 

(magnetic) properties for safe real-time MRI imaging and highly effective radioenhancement 

(7-9). However, passive targeting is available for certain tumours only and does not necessarily 

guarantee internalization of radiation-effect enhancing nanoparticles by targeted cells. Thus, 

iron-oxide based nano-objects have to be modified with suitable targeting ligands, such as small 

organic molecules, peptides, proteins, antibodies, and aptamers, to enable active cell targeting. 
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This has been done with variable success (10,11) due to the lack of solubility of iron-oxide 

nanoprobes in biological fluids. Indeed, modifications of surface characteristics are required to 

provide high dispersion stability (12). Moreover, coating strategies are still limited by the 

complex surface chemistry of the nano-probes, by relatively low receptor density on tumors 

and by homotypic and heterotypic binding properties of membrane receptors on cancer cells.  

The use of magnetosomes, biomineralized iron-oxide nanoparticles naturally coated by a 

biological membrane and purified magnetotactic bacteria, represents a promising alternative to 

overcome both the problem of coating and solubility. Magnetosomes have been shown to be 

safe and efficient in vivo MRI probes in mouse brain angiograms (13). Such biogenic particles 

can be genetically functionalized with peptides or proteins to confer even better selectivity to 

the probe (14,15). In this context, we previously demonstrated the feasibility of using 

genetically tailored magnetosomes to express a RGD peptide (rich in Arginine, Glycine, and 

Aspartic residues) recognized by several members of the superfamily of integrins present on 

tumor cells and involved in cancer progression (18,19). These functionalyzed bionanoparticles 

called magnetosome@RGD actively target tumor cells and blood vessels and provide unique 

MRI probes in brain tumour models (13,16).  In addition, a therapeutic effect has been 

demonstrated by hyperthermia magnetic treatment (17,18), photothermal therapy (19-21), and 

drug delivery systems (22).  

 

In the present study, we explored the possibility to enhance radiotherapy by using single-step 

produced-magnetosomes, decorated with the yellow fluorescent protein Venus and a RGD 

motif (magnetosomes@RGD) or with the yellow fluorescent protein Venus alone 

(magnetosome). We assumed that the RGD peptide would facilitate the cellular uptake of the 

magnetosomes, thereby increasing the dose deposited in situ. The potential of both forms of 

biogenic magnetic radiation-effect enhancing nanoparticles to increase ionizing radiation 
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effects was first analyzed on DNA and on two cellular models, namely colorectal cancer cells 

and melanoma cells known for their relative radioresistance (23) (24). We next evaluated the 

in vivo radioenhancing potential of magnetosomes@RGD after injection into mouse melanoma 

xenografts irradiated with photons. For radioresistant tumors  surrounded by sensitive tissues, 

proton therapy presents a dose distribution superiority compared to other RT modalities with 

photons, by avoiding damage to the tissues behind the tumor. However, damages caused in 

front of the tumor may still remain significant and strategies to reduce radiation doses are 

needed. Therefore, we further explored the therapeutic efficacy of magnetosomes combined to 

protons. To the best of our knowledge, this study is the first to report the use of biogenic 

magnetic radiation-effect enhancing nanoparticles decorated with an RGD peptide as tumor 

radioenhancers to both X-rays and protons.  
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MATERIALS AND METHODS 

Culture of magnetotactic bacteria and magnetosomes production 

The bionanoparticules, magnetosomes@RGD and magnetosomes were prepared as described 

in Plan et al (23). Briefly, the AMB1 strain were genetically modified to biosynthetized 

magnetosomes@RGD and magnetosomes(Fig Supp1A). The RGD peptide was used or not to 

decorate the magnetosome membrane in fusion with the yellow fluorescent protein venus and 

the magnetosome membrane anchor mamC (Fig Supp 1B). Western Blot experiments 

confirmed the insertion of MamC-Venus or MamC-Venus-RGD at the magnetosomal 

membrane using Anti-venus antibodies (Fig Supp 1C) . Each batch of magnetosomes was 

systematically checked for structure by transmission electron microscopy (Fig Supp 1A) and 

size by Nanoparticle Tracking Analysis (Fig Supp 1B). Both genetically modified AMB-1 

strains were grown in 7L bioreactor and cells from late exponential-phase culture were 

harvested by centrifugation (7500 g, 10 min, 4°C). The pellet (≈19 g per 6L) was resuspended 

in 100 ml of purification buffer 1 (20 mM HEPES, 1mM EDTA, 0.9% NaCl, 8% glycerol, pH 

7,5 in presence of a cocktail of anti protéase). The cells were then disrupted 3 times with a 

French press (1000 PSI, 4°C). The tubes were left for 30 min at 4°C in contact of a magnet 

(MACSi-MAGtm separator, Miltennyi Biotec), resulting in magnetosomes collection. The 

unretained fraction was removed and the magnetosome fraction was resuspended in 45 ml of 

buffer. This magnetic purification step was performed 5 times with buffer 1 (without anti 

protease) then 5 times with buffer 2 (20 mM HEPES, 0.9% NaCl, 8% glycerol, pH 7,5). After 

the washing steps, the magnetosomes were resuspended in buffer 3 (20 mM HEPES, 8% 

glycerol, pH 7,5), at a concentration of 3 g/l of iron (ICP-AES measurement) and 100 μL 

aliquots were flash-frozen in liquid nitrogen then stored at −80 °C.  
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Magnetite magnetosomes were biosynthetized under strict genetic control in Magnetospirillum 

magneticum strain AMB-1 (ATCC700264) (Fig Supp1A). As described in Boucher et al (16), 

the Venus fluorescent reporter was  inserted in the lipid membrane by genetic manipulation. 

This first class of biomagnetite is simply referred to as "magnetosomes". The exact same genetic 

construct was used for "magnetosomes@RGD", except that, in addition to the Venus reporter, 

the RGD peptide was used to decorate the magnetosome membrane (Fig Supp 1B). The size of 

both types of particles are similar but western Blot experiments confirmed the insertion of 

MamC-Venus or MamC-Venus-RGD at the magnetosomal membrane using Anti-venus 

antibodies (Fig Supp 1C)  . Both genetically modified AMB-1 strains were grown in 7L 

bioreactor and the same procedure was used for both strains to purify the magnetosomes. 

Briefly, cells from late exponential-phase culture were harvested by centrifugation (7500 g, 10 

min, 4°C). The pellet (≈19 g per 6L) was resuspended in 100 ml of purification buffer 1 (20 

mM HEPES, 1mM EDTA, 0.9% NaCl, 8% glycerol, pH 7,5 in presence of a cocktail of anti 

protéase). The cells were then disrupted 3 times with a French press (1000 PSI, 4°C). The tubes 

were left for 30 min at 4°C in contact of a magnet (MACSi-MAGtm separator, Miltennyi 

Biotec), resulting in magnetosomes collection. The unretained fraction was removed and the 

magnetosome fraction was resuspended in 45 ml of buffer. This magnetic purification step was 

performed 5 times with buffer 1 (without anti protease) then 5 times with buffer 2 (20 mM 

HEPES, 0.9% NaCl, 8% glycerol, pH 7,5). After the washing steps, the magnetosomes were 

resuspended in buffer 3 (20 mM HEPES, 8% glycerol, pH 7,5), at a concentration of 3 g/l of 

iron (ICP-AES measurement) and 100 μL aliquots were flash-frozen in liquid nitrogen then 

stored at −80 °C. Each batch of magnetosomes was systematically checked for structure by 

transmission electron microscopy (Fig Supp 1D).  10 µl drops were deposited on grids, 

evaporated, and observed with a Phillips Tecnai 12 electron microscope. The images were 

processed with Fiji software to determine the magnetosome diameter. 

Code de champ modifié
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DNA preparation and radiation-induced damage quantification  

pGEM-3Zf(−) plasmid DNA (3197 bp, Promega) was extracted from E. coli DH5α and purified 

with the QIAfilter Plasmid Giga Kit (Qiagen). The DNA pellet was redissolved in TE buffer 

(10 mM Tris, 1 mM EDTA, pH 8) and DNA concentration was obtained by measuring its 

absorption at 260 nm. Solutions of DNA (100 ng) and of magnetosomes@RGD or 

magnetosomes (0-500 nM) were mixed just before X-rays exposure (0, 0.5, 1, 2, 3 or 5 Gy) 

(RX Optitop 150/40/80 HC, Siemens). DNA damages were quantified by agarose gel 

electrophoresis stained with SYBR® Gold (Invitrogen). The gels were imaged with a 

Luminescent Image Analyzer LAS 3000 system. Resulting images were analyzed using ImageJ 

software to determine the relative amounts of supercoiled, circular and linear DNA forms  (25). 

Cell culture 

The B16F10 melanoma and the DHD/K12/TRb (PROb) colorectal cancer cells were cultured 

in DMEM (GIBCO, France) supplemented with 10 % heat-inactivated fetal calf serum (FCS, 

GIBCO) at 37 °C under a humidified atmosphere containing 5 % CO2. Cells were passaged by 

using 0.05 % trypsin.  

In vitro measurement of magnetosomes toxicity 

Five hundred DHD or B16F10 cells were plated in 96-well.  After 24 h, the culture medium 

was replaced with 100 L of fresh medium or medium containing magnetosomes@RGD or 

magnetosomes at the indicated concentrations and incubated for 2 hours at 37 °C. After 3 

washes with 1× PBS (pH 7.4), the treated cells were incubated for 4 days in complete medium. 
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Cell viability was assessed by the MTT assay using a spectrophotometer Multiskan GO 

microplate (Thermo Scientific).  

Clonogenic cell survival assay 

The radioenhanced cell kill efficacy of magnetosomes@RGD or magnetosomes to DHD and to 

B16F10 cells was assessed by the clonogenic assay. Different number of cells (50, 100, 300, 

1000) were plated in 12-well.  After 24 h, the culture medium was replaced with 1 mL of fresh 

medium or medium containing magnetosomes@RGD or magnetosomes at the indicated 

concentrations and incubated for 2 hours at 37 °C. After 3 washes with 1× PBS (pH 7.4), the 

treated cells were exposed to 0, 0.25, 0.5, 0.75, 1, 2 or 3 Gy of X rays (RX Optitop 150/40/80 

HC, Siemens) before being incubated for 9–14 days. The colonies were fixed with methanol 

and stained with 0.4 % crystal violet. Finally, the plates were inspected by microscopy and the 

number of the colonies was counted. Each assay was made in triplicate and only colonies 

containing at least 50 cells were counted.  

 

Mice  

Eight-week-old Balb/c female athymic (nude) mice were obtained from Janvier (Le Genest 

Saint Isle, France). Animal housing and procedures were conducted according to French 

Agriculture Ministry guidelines and were approved by the local ethics committee.  

Xenografts and treatments 

Briefly, each mouse was subcutaneously injected with 5×105 B16F10 cells in the flank. An 

apparently visible tumor mass was observed 6 days after injection. At day 8, when the tumor 

size was about 100 mm3, the mice were randomly divided into three groups: control group 

(saline only), irradiation group (X rays or protons), magnetosomes@RGD/ irradiation group. 
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Five mice were included in each group. On day 8, mice treated with magnetosomes received 

either an intratumor injection (750 nmol) or an intravenous injection (4 mol) of 

magnetosomes@RGD. On day 9, mice subjected to irradiation were exposed to 5 Gy of X rays 

or protons. Mice were monitored after treatments. The longest (a) and shortest (b) tumor 

diameters (mm) were recorded and formula for an ellipsoid sphere (0.52×a×b2) was utilized to 

determine the volume of tumor. Tumors were preserved in liquid nitrogen for future studies.  

Irradiation modalities  

For the in vitro study (cells and DNA), we used the OPTITOP 150/40/80 HC x-ray tube 

(SIEMENS) belonging to a medical imaging table. For the in vivo study, mice were 

anesthetized and placed horizontally into a 43855F-CP160 Faxitron x-ray device (EDIMEX). 

To generate the same damages on cells and on mice, we adjusted the beam quality so that it be 

the same on both tubes: 99 kV High Voltage and 3,7 mmAl half value layer. To reach this half 

value layer on the faxitron’s tube, we introduced a 3 mm Al aluminium filter beyond the exit 

window. 

For in vivo proton therapy experiements, mice were anesthetized and placed vertically on a 

robotic chair device. Proton therapy was performed using a single scattering beam line device 

with beam energy modulation (using a range shifter and a rotating wheel placed in the beam 

line) in depth and beam conformation laterally using a brass collimator at the beam end. Tumors 

were placed within the flat portion of the modulated Bragg peak, where relative biological 

efficacy (RBE) of protons compared to photons is 1.1. The distal fall off, where RBE may 

exceed 1.1, was over the deeper part of the tumor. The dose with protons is reported in Gy RBE.  

 

Histology/Fluorescence Images processing 
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Formalin-fixed, paraffin-embedded tumour sections were stained with hematoxylin/eosin for 

morphologic evaluation. The sections were stained with DAPI (4′,6-diamidino-2-phenylindole) 

to visualize nuclei integrity (excitation wavelengths of 405 nm and emission wavelengths of 

471 nm) and venus (YFP)-labelled magnetosomes were detected in green (excitation 

wavelengths of 514 nm and emission wavelengths of 542 nm). The image of Fluorescence 

microscopy images were acquired with a Zeiss LSM 780 microscope at ×63 magnification for 

single field-of-view focusing on structures of interest inside the tumor. 

 

Statistical analysis 

Statistical analysis was performed using Prism (GraphPad software). Dual comparisons were 

made using a Student’s t-test and comparisons between multiple conditions were analyzed using 

ANOVA. Statistical significance was set at P < 0.05.  
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RESULTS 

DNA damage radioenhancement by magnetosomes  

Magnetosomes@RGD and magnetosomes were prepared and characterized as described in Plan 

et al. (19). In order to investigate their radioenhancing effect, DNA plasmids were subjected to 

X rays in the presence and in the absence of both types of magnetosomes. The different forms 

of plasmid DNA were resolved by a 1% agarose gel electrophoresis and quantified with ImageJ 

software (26). Upon irradiation, the supercoiled plasmid (SC) undergoes a single-strand break 

(SSB) causing the molecule to adopt a circular form (CF). The native supercoiled form decrease 

was quantified as a function of the irradiation dose. A typical electrophoresis gel showing DNA 

damage after exposure to 1, 2 and to 3 Gy is presented in Figure 1A. Non-irradiated samples 

mainly consisted of supercoiled DNA (SC) whereas the circular form accounted for ∼5%. After 

irradiation with doses as low as 2 Gy, the proportion of the supercoiled DNA was significantly 

diminished, mainly in favour of the circular form. However, 1 Gy irradiation only led to a minor 

change in the proportions of the SC and the CF forms, thus suggesting minor DNA damage at 

such dose. Therefore, the dose of 1 Gy was retained to further study the radioenhancing 

potential of magnetosomes. Admixing DNA with increasing concentrations of magnetosomes 

(5, 50 and 500 nM) led to enhanced DNA damage in response to 1 Gy X-rays, as indicated by 

the SC decrease concomitant with the CF increase (Figure 1B, C and D). This radioenhancing 

effect on DNA in the presence of magnetosomes was observed with an enhancement factor of 

2.1 ± 0.3 with 50 nM (p<0.05), and of 3.2 ± 0.9 (p<0.05) with 500 nM magnetosomes , but 

remained negligible with 5 nM. Accordingly, a significant increase in the circular form was 

measured with 50 nM (and with 500 nM (Fig. 2D). These results mean that in the presence of 

magnetosomes, only 50% and 30% of the radiation dose, respectively, is necessary to induce 

an equivalent damage. Similar results were obtained with magnetosomes@RGD, thus 
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suggesting the absence of a significant impact of the RGD functionalization on the DNA radio-

enhancement potential of the particles (data not shown). 

 

Radioenhancing potential of magnetosomes on B16-F10 and DHD cells 

Studies were carried out with the B16F10 (melanoma) and the DHD/K12/TRb (colorectal cancer) 

cells to determine the cytotoxicity of magnetosomes and magnetosomes@RGD in viability 

assays (Figure 2A and B). The fraction of the viable cells was determined after exposure of the 

cells for 2 hours to several doses of magnetosomes, ranging from 100 M to 1 mM, followed 

by cell culture for 5 days. No significant reduction in cell viability was observed after exposure 

of both cell types to concentrations reaching even up to 1 mM.  

In order to determine whether magnetosomes and magnetosomes@RGD could radioenhance 

damages in melanoma and colorectal cancer cells irradiated with X-rays, the respective 

sensitivities of both cell lines to radiation were assessed in clonogenic assays. As shown on 

Figures 2C and D, the LD50 (Lethal dose causing the death of 50% of cells) was obtained with 

1.2 Gy in B16-F10 cells and with 0.8 Gy in DHD cells, thus indicating a lower sensitivity to 

radiation of the melanoma cell line to X-rays compared to the colorectal cancer cells. Radiation 

doses leading to approximately 20-25 % of mortality in both cell types were then chosen to 

assess the potential enhancement factor of magnetosomes, precisely 0.75 Gy for B16F10 cells 

and 0.25 Gy for DHD cells. The effect of pretreating the cells for 2 hours with 200 M 

magnetosomes or magnetosomes@RGD before irradiation was tested. Figures 2E and 2F show 

in both cells types a moderate enhancement factor with magnetosomes/ X-rays compared to X-

rays alone. Interestingly, this enhancing effect was much more pronounced with the 

functionalized magnetoparticles. Indeed, magnetosomes@RGD could reduce the cell survival 

fraction from 81% to 50% for the B16F10 cells (Figure 2E) and from 75% to 28% for the DHD 



15 
 

cells (Figure 2F), thus suggesting the ability of the membrane-anchored RGD motif to promote 

the binding and the internalization of the magnetoparticles by both targeted cells.  

Assessment of radioenhancing potential of magnetosomes@RGD in vivo 

Cellular damage radioenhancement observed here for magnetosomes@RGD together with their 

high efficient internalization previously observed in tumor cells (18-21) prompted us to 

investigate their radioenhancing potential in a tumour xenograft model. The B16 xenograft 

model was chosen based on the observation that the B16-F10 melanoma cells proved to be more 

resistant against radiation in vitro than the colorectal DHD cells. B16 tumours were generated on the 

flank of Balb/c mice and allowed to grow for one week. At day 8 post-induction with melanoma 

cells, mice developed tumours with an average volume of 50 mm3, at which point, animals were 

randomly assigned to one of 2 treatment groups: saline (control) or magnetosomes@RGD, 

delivered by 3 intratumoral injections. At day 9, half of the tumors in the saline- and in the 

magnetosome-treated groups were administered a single dose of 5 Gy X-rays. Tumor 

progression was then measured over time and compared between the four groups: saline, 

magnetosomes@RGD, X-rays, magnetosomes@RGD/ X-rays.  

Figure 3A shows that control xenografts grew up to approximately 600 mm3 within 17 days 

after implantation. Histologic analysis of the tumours shows highly proliferative cancer cells 

(Figure 4A). Treatment with magnetosomes@RGD alone had minimal impact on tumour 

growth and the tumour mass failed to show any remarkable change compared to the untreated 

group. The 5Gy X-rays treatment by day 9 significantly impaired tumor progression resulting 

in a 29% reduction in the tumor volume by day 17 (425 mm3 in the X ray group vs 620 mm3, 

in the control group, p= 0.03). In agreement with the radioenhancing effects observed in vitro, 

the combination of magnetosomes / 5Gy X-rays attenuated tumor growth by nearly 50% over 

radiation alone (217 mm3 in the magnetosomes@RGD /X-ray group vs 425 mm3 in the X-ray 
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group, p=0.039), leading to an overall 65% decrease in lesion size compared to control 

xenografts. The most remarkable observation on the lesions treated with magnetosomes@RGD/ 

X-rays was the presence of large areas of necrosis that extended deep into the core of the 

tumours, whereas 5-Gy irradiated tumors rarely demonstrated necrosis at necropsy (Figure 4C 

and D).  

Upon observation of the radioenhancing effects of combining RGD-functionalized 

magnetoparticles with X-rays, we next explored the ability of the nanomaterial to enhance the 

radiation effect of proton therapy using the same melanoma xenograft model. As shown on 

Figure 3B, a single 5 Gy RBE irradiation with protons led to a 37% reduction in tumor growth 

by day 17 (392 mm3 in the proton group vs 620 mm3, in the control group, p= 0.027). However, 

this reduction was not statistically significant compared to that induced by 5 Gy X-rays. Tumour 

development was further decreased by 40% when combined treatments magnetosomes@RGD/ 

protons were administered to mice (Figure 3B), thus leading to lesions 77% smaller than the 

untreated xenografts (139 mm3 in the magnetosomes@RGD / protons group vs 620 mm3, in the 

control group, p= 0.008). This enhancement effect of the magnetosomes upon proton therapy 

was significantly superior when measured by day 17 compared to that measured upon X-rays 

(p=0.04) and consistently correlated with the extent of histologic tumor necrosis post-

irradiation in the treated lesions (Figure 4F).  

We next studied whether the occurrence of necrosis was associated with the presence of 

magnetosomes@RGD within melanoma biopsies isolated at necropsy. Necrosis reflected by 

the loss of DNA integrity within the tumour cells was visualized by DAPI staining revealing 

cell nuclei in blue. The localization of magnetosomes@RGD within melanoma tumours was 

assessed by confocal immunofluorescence analysis of the green Venus protein (Figure 5). As 

expected, control melanoma biopsies exhibited intact nuclei (Figure 5A), whereas irradiated 

lesions showed partially altered DNA integrity within nuclei (Figure 5B). Enrichment of lesions 
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with magnetosomes@RGD led to marked DNA fragmentation reflecting the histologic necrosis 

observed in the treated tumours on the trans images (Figure 5C). Such necrotic patterns were 

associated with the presence of numerous Venus-labelled-magnetoparticles. Interestingly, the 

magnetosomes@RGD were still detectable at necropsy 9 days after injection into tumours. 

Altogether, these data suggest that the accumulated magnetosomes@RGD in the tumour region 

significantly boosted the efficacy of radiotherapy and delayed tumour growth.  
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DISCUSSION 

Magnetic nanoparticles can induce enhanced radiation effects and can be functionalized (7-9) 

by adding a coating shell on their surface. Specific shell coating stabilizes the nanoparticles and 

favors interactions with biological systems, while protecting the surrounding environnment 

from radiation-induced oxidation. However, synthesis of functional groups to accommodate 

may be complex. An alternative approach to the complex conventional synthetic routes is to 

exploit the controlled formation of stable and well-ordered solid inorganic coumpounds by 

biological systems, such as magnetotactic bacteria. Recently, several studies including those 

from our group have demonstrated the great properties of magnetosomes, biogenic 

magnetoparticles naturally coated by a biological membrane, for various biomedical 

applications. Thanks to their bio-magnetic properties, the magnetosome diagnostic potential 

have been revealed in MRI field (13) (16) and a therapeutic effect has been demonstrated by 

hyperthermia magnetic treatment (17,18), photothermal therapy (19-21), and drug delivery 

systems (22).  

In the present study, we explored the radiation enhancement potential of magnetosomes 

genetically modified to express RGD motifs capable of actively targeting tumor cells and 

angiogenic blood vessels. Our in vitro data show that native magnetosomes and 

magnetosomes@RGD are equally efficient to promote the damaging action of X-rays directly 

on DNA. On cancer cells however, cellular damage radioenhancement observed for 

magnetosomes@RGD was greater than that of unlabeled particles. Our quantitative measures 

revealed that magnetosomes@RGD could increase the mortality by 2.5 fold in melanoma cells 

and by 2.9 fold in colorectal cancer cells, with irradiating doses set at 0.75 and at 0.25 Gy, 

respectively. The fact that lower mortality is obtained in melanoma cells despite the use of 

higher radiation doses compared to colorectal cancer cells is consistent with the higher 
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radioresistance of the melanoma cells. Of note, a short incubation time of the cancer cells with 

both types of magnetosomes was deliberately chosen in order to clearly assess the potential 

impact of the RGD functionalization at the magnetosome surface on the cellular uptake. This 

result is in accordance with our previous observations showing that internalization of control 

magnetosomes on cancer cells is not optimal within 2 hours and can be markedly increased by 

lengthening the incubation time up to 24 hours (16). However, the RGD-mediated high efficient 

internalization of magnetoparticles previously observed by our group in tumor cells still 

remained despite longer incubation times.  In terms of mechanism, DNA damage is commonly 

considered as the cause of radiation-induced cell death (27,28). Consistently, nanoparticles have 

been proposed to enhance ionizing radiation effects through an amplification of this DNA 

damage. However, many in vitro studies indicated that the radiation-effect enhancing 

nanoparticles located in the cell cytosplasm also seem to amplify cell killing without entering 

the nucleus (29-34), simply by generating electron showers capable of spreading as far as 

several micrometers (35).  

Encouraged by the in vitro performance of magnetosomes@RGD with X-rays, we further 

explored the potential of the combined therapy in B16 xenografts. As a monotherapy 

administered on day 9 after tumor implantation into mice, 5 Gy X-rays were able to reduce 

tumor growth by 29 %, indicating the tumor-inhibiting efficacy of radiation. The enrichment 

of tumours with magnetosomes@RGD prior to radiotherapy led to a much more effective 

tumor growth inhibition compared to radiation alone, lesions being reduced by 65 % in volume. 

In addition, the treated lesions featured much larger necrotic areas colocalizing with the 

accumulated magnetoparticles thus confirming the ability of RGD-decorated magnetosomes to 

boost the killing efficacy of ionizing radiations. Interestingly, we observed that the 

magnetosomes@RGD were still detectable at necropsy 9 days after injection. Considering that 

the 65% reduction in tumor size was obtained after a single irradiation,  it is tempting to 
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speculate that much more impressive tumour inhibition could be observed with repeated X-ray 

treatments.  

Beyond conventional radiotherapy, nanomedicine have also been envisaged to optimize proton 

therapy. Indeed, targeting tumours with protons enables to spare healthy tissue sited behind the 

tumour region due to the physical superiority of protons represented by their abrupt energy loss 

and finite dose deposition at the end of their predefined range. However, the radiation dose 

received by tissues in front of the tumor still needs to be reduced, especially when tumors are 

adjacent to critical structures such as in brain or head and neck tumours. Based on the 

convincing results obtained when combining magnetosomes@RGD to X-rays, we further 

investigated the ability of magnetoparticles to amplify the killing efficacy of protons using the 

similar melanoma model. Although, 5 Gy RBE protons similarly reduced tumor growth 

compared to 5 Gy X-rays, melanoma tumours appeared clearly smaller with the magnetosome-

proton therapy compared to the same combination with X-rays. These data suggest a higher 

radioenhancing potential of the magnetosomes upon irradiation with protons rather than 

photons. In addition to the 1.1 radiobiological efficacy of protons compared to photons, such 

differences might be explained by different nuclear reactions of the magnetite crystal under 

distinct radiations types. Naturally occurring iron (26Fe) consists of four stable isotopes, among 

which 56Fe accounts for 91%. Whereas excitation of 56F by photons follows a (p, n) reaction, 

protons can produce a 56Fe(p,2n)55Co reaction generating twice more secondary electrons 

compared to X rays, and therefore potentially more damaging effects within cells (36).  Such 

hypothesis is consistent with the enhanced extent of necrosis visualized within 

magnetosomes@RGD-treated melanoma tumors irradiated with protons compared to photons.   

 

 

In conclusion, our work provides the first evidence of the radioenhancing potential of 

magnetosomes@RGD in conventional radiotherapy and proton therapy and pave the way 

https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Isotope
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to  promising investigations using systemic administration of the particles. The combined 

features including simple preparation, good biocompatibility, active cancer cell targeting 

property, strong radioenhancing effect and potential PET imaging capability under proton 

therapy strengthen the interest of developing biogenic magnetoparticles for multimodal 

nanomedicine for cancer therapy.  
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FIGURE LEGENDS  

Figure 1: DNA damage radioenhanced by magnetosomes and magnetosomes@RGD. (A) 

Typical agarose gel electrophoresis showing DNA damage after exposure to 1, 2 and to 3 Gy 

X rays. Non-irradiated DNA mainly consists of supercoiled DNA (SC). Upon irradiation, the 

supercoiled plasmid (SC) undergoes a single-strand break (SSB) causing the molecule to adopt 

a circular form (CF). MM: Mass marker. (B) Influence of the magnetosome concentration on 

the loss of the native supercoiled DNA induced by 1Gy X-rays. Representative electrophoresis 

gels showing the loss of the SC form and the increase in the CF form of DNA irradiated in the 

presence of increasing concentrations of magnetosomes (upper panel) or magnetosomes@RGD 

(lower panel). Quantification of the loss of native supercoiled DNA (C) and of the increase in 

the circular form DNA (D) versus magnetosomes concentrations. The data presented are the 

mean ± SEM of triplicates and are representative of three independent experiments.  * p < 0.05; 

** p < 0.01. 

Figure 2: Radioenhancement potential of magnetosomes and magnetosomes@RGD on 

B16F10 melanoma and DHD colorectal carcinoma cells. Cytotoxicity assays of B16F10 (A) 

and DHD (B) cells in the presence of increasing concentrations of magnetosomes or 

magnetosomes@RGD. Cell survival rate of B16F10 (C) and DHD (D) cells irradiated by X-

rays at the indicated doses. Cell viability of B16F10 (E) and DHD (F) cells assessed in 

clonogenic assays on cancer cells pretreated for 2 hours with 200 M magnetosomes or 

magnetosomes@RGD prior to X-rays at the indicated dose. The data presented are the mean ± 

SEM of triplicates and are representative of three independent experiments.  * p < 0.05; ** p < 

0.01. 

Figure 3: Assessment of radioenhancing potential of magnetosomes@RGD in vivo. 

Melanoma xenograft-bearing mice were subjected to (A) X-rays (5 Gy) or (B) protons (5 Gy). 
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Tumor development was monitored over time in mice untreated (filled circles) or treated with 

either magnetosomes@RGD alone (open cirles), or with 5 Gy X rays (filled squares), or with a 

combination of magnetosomes@RGD / X rays (filled triangles), with 5 Gy protons (open 

squares), or with a combination of magnetosomes@RGD / protons (open triangles). (n = 5 mice 

per condition). * p < 0.05; ** p < 0.01.  

Figure 4: Histology of B16 tumors after treatment with radiotherapy combined or not 

with magnetosomes@RGD. Tumor histology was compared on sections (10X magnification) 

of lesions from B16-challenged mice either untreated (A, C, E), or treated with RGD-V-AMB1 

magnetosomes (B, D, F) before receiving radiotherapy with X-rays (C, D) or with protons (E, 

F). N = area of necrosis in a liver tumor.  

Figure 5: Fluorescent analyses of B16 tumors after treatment with radiotherapy combined 

or not with magnetosomes@RGD. Confocal microscopy on untreated (A), X-rays treated (B) 

or magnetosome@RDG injection and X-rays treated (C) tumors sections. The nuclei were 

visualized in blue after DAPI staining and the magnetosome@RGD were detectable in yellow 

tanks to the venus protein.  Transmision acquisition with nucleus staining and 

magnetosomes@RGD are shown in the overlay images. 

Figure S1: Synthesis and characterization of magnetosomes. (A) Representative TEM 

image of Magnetospirulum magneticum (AMB-1) and isolated magnetosomes. (B) Size 

distribution of magnetosomes suspension performed using Nanoparticle Tracking Analyse 

(NTA), indicating for both magnetosome@RGD (upper panel) and magnetosomes (bottom 

panel) a crystal size of 50 nm surrounded by a bilipidic bilayer of 2X 12nm. (C) The correct 

functionalization was verified by (a) SDS-PAGE gel (10% acrylamide) with 5 µg of 

magnetosomal proteins per lane stained with Coomassie blue (lane 1: Magnetosomes@RGD 

43.7 kDa, lane 2: Magnetosomes 42.5 kDa), and (b) Western blot with 1µg of magnetosomal 
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protein per lane probed with Living Colors® A.v. Monoclonal Antibody (JL-8) against venus 

protein (lane 1:Magnetosomes@RGD 43.7 kDa, lane 2: Magnetosomes 42.5 kDa). 
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Abbreviations 

RT 

MTS 

RGD: rich in Arginine, Glycine, and Aspartic residues  

MRI: 

AMB1: 

MTT: 

SYBR: 

AND: 

Gy: 

DAPI: 

YFP  



26 
 

ACKNOWLEDGEMENTS 

This work was supported by INSERM, the French National Research Agency (ANR) and by a 

grant from CEA/PTTox. We thank Colette Ricort for assistance in preparing the manuscript. 

We thank the IRCAN Animal Core Facility for providing access to their equipment.  The 

authors also thank the Zoom plateform (Biosciences and biotechnology Institute of Aix-

Marseille) for the acess to the Zeiss LSM780 microscope and Pierre Richaud for ICP analysis. 

Michel Péan and Nicolas Ginet  are aknowledged for fruitfull discussions on biomedical 

applications of magnetosomes.    

 

 

 

  



27 
 

Competing interests: 

All authors declare that no competing interest exists.  



28 
 

REFERENCES 

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J 
Clin. 2011;61:69-90. 

 
2. Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy 
using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with 
recurrent glioblastoma multiforme. J Neurooncol. 2011;103:317-324. 

 
3. Bradbury MS, Phillips E, Montero PH, et al. Clinically-translated silica nanoparticles as dual-
modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 
2013;5:74-86. 

 
4. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold 
nanoparticles. J Pharm Pharmacol. 2008;60:977-985. 

 
5. McMahon SJ, Hyland WB, Muir MF, et al. Biological consequences of nanoscale energy 
deposition near irradiated heavy atom nanoparticles. Sci Rep. 2011;1:18. 

 
6. Kainz K, Chen GP, Chang YW, et al. A planning and delivery study of a rotational IMRT technique 
with burst delivery. Med Phys. 2011;38:5104-5118. 

 
7. Michel SC, Keller TM, Frohlich JM, et al. Preoperative breast cancer staging: MR imaging of the 
axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology. 2002;225:527-536. 

 
8. Enochs WS, Harsh G, Hochberg F, Weissleder R. Improved delineation of human brain tumors 
on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging. 
1999;9:228-232. 

 
9. Semelka RC, Helmberger TK. Contrast agents for MR imaging of the liver. Radiology. 
2001;218:27-38. 

 
10. Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted 
superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. 
Nanomedicine. 2016;12:287-307. 

 
11. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron 
oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media Mol Imaging. 
2015;10:329-355. 

 
12. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted 
drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284-304. 



29 
 

 
13. Meriaux S, Boucher M, Marty B, et al. Magnetosomes, biogenic magnetic nanomaterials for 
brain molecular imaging with 17.2 T MRI scanner. Adv Healthc Mater. 2015;4:1076-1083. 

 
14. Xie J, Chen K, Chen X. Production, Modification and Bio-Applications of Magnetic Nanoparticles 
Gestated by Magnetotactic Bacteria. Nano Res. 2009;2:261-278. 

 
15. Mathuriya AS. Magnetotactic bacteria: nanodrivers of the future. Crit Rev Biotechnol. 
2016;36:788-802. 

 
16. Boucher M, Geffroy F, Preveral S, et al. Genetically tailored magnetosomes used as MRI probe 
for molecular imaging of brain tumor. Biomaterials. 2017;121:167-178. 

 
17. Alphandery E, Idbaih A, Adam C, et al. Development of non-pyrogenic magnetosome minerals 
coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of 
treated mice using magnetic hyperthermia. Biomaterials. 2017;141:210-222. 

 
18. Mannucci S, Ghin L, Conti G, et al. Magnetic nanoparticles from Magnetospirillum 
gryphiswaldense increase the efficacy of thermotherapy in a model of colon carcinoma. PLoS One. 
2014;9:e108959. 

 
19. Plan Sangnier A, Preveral S, Curcio A, et al. Targeted thermal therapy with genetically 
engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic 
hyperthermia. J Control Release. 2018;279:271-281. 

 
20. Chen C, Wang S, Li L, et al. Bacterial magnetic nanoparticles for photothermal therapy of cancer 
under the guidance of MRI. Biomaterials. 2016;104:352-360. 

 
21. Mondal G, Barui S, Chaudhuri A. The relationship between the cyclic-RGDfK ligand and 
alphavbeta3 integrin receptor. Biomaterials. 2013;34:6249-6260. 

 
22. Wang X, Wang JG, Geng YY, et al. An enhanced anti-tumor effect of apoptin-cecropin B on 
human hepatoma cells by using bacterial magnetic particle gene delivery system. Biochem Biophys Res 
Commun. 2018;496:719-725. 

 
23. Jingu K, Matsushita H, Yamamoto T, et al. Stereotactic Radiotherapy for Pulmonary 
Oligometastases From Colorectal Cancer: A Systematic Review and Meta-Analysis. Technol Cancer Res 
Treat. 2018;17:1533033818794936. 

 
24. Buontempo F, Orsini E, Zironi I, et al. Enhancing radiosensitivity of melanoma cells through 
very high dose rate pulses released by a plasma focus device. PLoS One. 2018;13:e0199312. 

 



30 
 

25. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat 
Methods. 2012;9:671-675. 

 
26. Brun E, Sanche L, Sicard-Roselli C. Parameters governing gold nanoparticle X-ray 
radiosensitization of DNA in solution. Colloids Surf B Biointerfaces. 2009;72:128-134. 

 
27. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46 
Suppl 1:4S-12S. 

 
28. Belli M, Sapora O, Tabocchini MA. Molecular targets in cellular response to ionizing radiation 
and implications in space radiation protection. J Radiat Res. 2002;43 Suppl:S13-19. 

 
29. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HH, Wu CL. Increased apoptotic potential and 
dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams 
on tumor-bearing mice. Cancer Sci. 2008;99:1479-1484. 

 
30. Zhang X, Xing JZ, Chen J, et al. Enhanced radiation sensitivity in prostate cancer by gold-
nanoparticles. Clin Invest Med. 2008;31:E160-167. 

 
31. Porcel E, Tillement O, Lux F, et al. Gadolinium-based nanoparticles to improve the 
hadrontherapy performances. Nanomedicine. 2014;10:1601-1608. 

 
32. Rima W, Sancey L, Aloy MT, et al. Internalization pathways into cancer cells of gadolinium-
based radiosensitizing nanoparticles. Biomaterials. 2013;34:181-195. 

 
33. Usami N, Furusawa Y, Kobayashi K, et al. Mammalian cells loaded with platinum-containing 
molecules are sensitized to fast atomic ions. Int J Radiat Biol. 2008;84:603-611. 

 
34. Kong T, Zeng J, Wang X, et al. Enhancement of radiation cytotoxicity in breast-cancer cells by 
localized attachment of gold nanoparticles. Small. 2008;4:1537-1543. 

 
35. Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA. Irradiation of gold nanoparticles 
by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary 
electrons production. Med Phys. 2011;38:624-631. 

 
36. Graves SA, Ellison PA, Barnhart TE, et al. Nuclear excitation functions of proton-induced 
reactions (Ep = 35 - 90 MeV) from Fe, Cu, and Al. Nucl Instrum Methods Phys Res B. 2016;386:44-53. 

  



31 
 

 

 

 

  

MTS@RGD 

Xenograft bearing 
mouse 

Protons 

X rays 

RGD 
sham MTS@RGD Radiotherapy Radiotherapy 

+ MTS@RGD 

Absence of MTS Presence of MTS 

Intact Nuclei/DNA DNA fragmentation 

Graphical abstract 



32 
 

  

0               5 nM              50 nM         500 nM 

C D 

MTS concentration (nM) 

0 
Gy 

1 

MTS concentration (nM) 

A B 

MTS@RGD 

  

        0                 5                 50               500  

* 
* 

** 

        0                 5                   50                 500  

MTS 

 0      1 Gy      0      1 Gy      0      1 Gy       0    1 Gy 

   

Figure 1 

MM       0       1 Gy     2 Gy   3 Gy 

CF 

SC 



33 
 

  

Figur

C D 

** 

E 

** 

A B 

MTS 
0       100     500   1000   100     

MTS@RGD (M) MTS 
0       100    500   1000   100     

MTS@RGD 

%
 V

ia
b

ili
ty

 

%
 V

ia
b

ili
ty

 (
D

H
D

 

F 

Untrea
ted 

MTS 

0 0.75 0 0.25 

* ** 



34 
 

  

Figur
e 3

A B 

X 

rays * 
MTS@RG

D

MTS@RG

D

protons
 

   
*
*



35 
 

  

Figu

X- Prot

P

con

MTS@

100 

 

A 

B 

C 

D F 

N 

N 

E 



36 
 

Figu
re 5

Untre
ated

Radioth
erapy

 
MTS@R

GD 

DAPI 
(nuclei)

YFP 
(MTS@RGD
)

DAPI+
transA 

B 

C 

Images surimposées 
à rajouter ???



37 
 

  

Figur

Untrea

Radiothe

 
MTS@R

GD

DAPI YFP 
(MTS@RGD) 

DAPI+t
A 

B 

C 

Images surimposées à 



38 
 

 

 


