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Abstract. The pathophysiology of Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, and many others
converge at alpha-synuclein (�-Syn) aggregation. Although it is still not entirely clear what precise biophysical processes act
as triggers, cumulative evidence points towards a crucial role for protein quality control (PQC) systems in modulating �-Syn
aggregation and toxicity. These encompass distinct cellular strategies that tightly balance protein production, stability, and
degradation, ultimately regulating �-Syn levels. Here, we review the main aspects of �-Syn biology, focusing on the cellular
PQC components that are at the heart of recognizing and disposing toxic, aggregate-prone �-Syn assemblies: molecular
chaperones and the ubiquitin-proteasome system and autophagy-lysosome pathway, respectively. A deeper understanding of
these basic protein homeostasis mechanisms might contribute to the development of new therapeutic strategies envisioning
the prevention and/or enhanced degradation of �-Syn aggregates.
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INTRODUCTION24

Alpha-synuclein (�-Syn) was first identified in25

human brain extracts more than 25 years ago [1, 2],26

and since then many physiological roles have been27

ascribed to this small protein. Although �-Syn has no28

defined tridimensional structure in aqueous solution29

[3] and is soluble under most physiological condi-30

tions [4], it can adopt beta-strand rich conformations31
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Building 3215, 5th Floor, FB30, 9713 AV Groningen, Nether-
lands. Tel.: +31 50 3616143; Fax: +31 50 3616111; E-mail:
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favoring the formation of amyloid fibrils in several 32

neurodegenerative diseases, collectively known as 33

synucleinopathies [5–7]. For instance, �-Syn aggre- 34

gates are found in distinctive neuronal structures 35

known as Lewy bodies (LBs) and Lewy neurites 36

(LNs) in idiopathic and familial forms of Parkinson’s 37

disease (PD) and dementia with Lewy bodies [8], 38

and in glial cytoplasmatic inclusions in multiple sys- 39

tem atrophy [9–12]. However, instead of being able 40

to adopt only one type of structure, recent studies 41

revealed that aggregated �-Syn possess distinct con- 42

formations (polymorphs) with unique cytotoxicity 43

profiles [13–17]. This suggests that different synu- 44
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cleinopathies arise from distinct �-Syn polymorphs,45

as indeed proposed by experiments in animal models46

[18, 19].47

Although the initial events leading to �-Syn aggre-48

gation and toxicity in vivo are still poorly understood,49

several lines of evidence suggest that cellular pro-50

tein quality control (PQC) pathways play a central51

role in these processes. Among these are the molecu-52

lar chaperones and the two main protein degradation53

pathways, namely the ubiquitin-proteasome system54

(UPS) and autophagy-lysosome pathway (ALP) [20].55

Here, we review basic molecular and cellular princi-56

ples of �-Syn aggregation and their connection with57

PQC components, with a special emphasis on the58

suppression of �-Syn aggregation and/or toxicity by59

molecular chaperones.60

ALPHA-SYNUCLEIN STRUCTURE AND61

FUNCTION62

The N-terminal domain of �-Syn contains sev-63

eral motifs with amphipathic properties allowing64

for interactions with membranes (binding to lipid65

vesicles) and that can serve in protein-protein inter-66

actions [21] (Fig. 1). The central portion (residues67

61 to 95) contains the non-amyloid-beta compo-68

nent of Alzheimer’s disease amyloid (NAC) motif69

[1], which is both sufficient and required for amy-70

loid formation [6, 22–24]. The C-terminal region71

has an important role in shielding the NAC motif72

from aggregation [6, 24]. Deletion of only the last73

10 amino acids is already sufficient to accelerate �-74

Syn aggregation in vitro, and this effect is stronger75

upon larger C-terminal truncations up to amino76

acids 102–120 [24–26]. �-Syn is subject to several77

post-translational modifications (PTMs), including78

N-terminal acetylation, ubiquitylation, SUMOyla-79

tion, nitration, and phosphorylation [27–32], with80

diverse consequences for its function and propen-81

sity to aggregate (detailed below). Several roles82

have been ascribed to �-Syn, including facilitating 83

the assembly of N-ethylmaleimide-sensitive factor 84

attachment protein receptor (SNARE)-complexes at 85

presynaptic neuron terminals that mediate release of 86

neurotransmitters [33, 34], and induction of mem- 87

brane curvatures [35], among many others [36]. 88

SNCA MUTATIONS REVEAL UNIQUE 89

FEATURES OF �-SYN TOXICITY AND 90

AGGREGATION 91

Two types of mutations in the SNCA gene have 92

been linked to autosomal dominant forms of PD, 93

highlighting distinct mechanisms by which �-Syn 94

aggregation can be triggered: (i) increased gene 95

dosage and (ii) point mutations enhancing �-Syn 96

aggregation propensity. The latter, including A30P 97

[37], E46K [38], H50Q [39, 40], G51D [41], and 98

A53T [42], A53V [43], and A53E [44] (see Fig. 1), 99

have been discovered by genetic screens in fami- 100

lies with hereditary PD and directly influence �-Syn 101

aggregation to different extents and via discrete 102

pathways [45]. Mutants such as �-SynA53T largely 103

enhance �-Syn aggregation into fibrils [45, 46], most 104

likely by changing the conformational landscape 105

that �-Syn populates towards aggregation-prone con- 106

formers, without disrupting vesicular interactions 107

[21]. In contrast, the A30P mutation does not 108

markedly modulate �-Syn aggregation compared 109

to overexpression of �-SynWT in cellular models 110

[46–48]. Instead, it abolishes �-Syn interaction with 111

lipid vesicles both in vitro [21, 49] and in vivo [50], 112

which may lead to a buildup of cytosolic �-Syn lev- 113

els, and eventually contributes to �-Syn aggregation. 114

This implies that �-Syn aggregation is also extremely 115

dependent on its concentration and can even be trig- 116

gered by the wild type protein [50, 51]. In fact, 117

familial PD cases caused by duplications or triplica- 118

tions of the SNCA locus have been identified [52–56], 119

Fig. 1. Domain structure of the human alpha-synuclein (�-Syn) protein. �-Syn comprises three basic domains: an N-terminal amphipathic
region, a central non-�-amyloid component (NAC) domain, and a C-terminal acidic domain. Seven membrane-interacting amino acid motifs
are also present in the first half of the protein. The region preceding the NAC domain concentrates all pathogenic �-Syn mutations identified
so far. Numbers on the upper part of the structure refer to amino acid positions.
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with increased gene dosage correlating with earlier120

age at onset of disease [57].121

MODELLING �-SYN AGGREGATION:122

SEEDED VERSUS NON-SEEDED123

CONDITIONS124

As for any aggregation-prone protein, �-Syn125

molecules adopt conformations that allow the126

establishment of non-native interactions between127

molecules and their coalescence into thermody-128

namically unstable assemblies [58]. It is upon129

conformational transition to more regular and com-130

plementary interfaces [59] that stable seeds are131

generated, capable of acting as conformational tem-132

plate of the amyloid state [58]. In contrast, the highly133

stable preformed �-Syn aggregates commonly used134

in studies grow by incorporation of �-Syn molecules135

to their ends, as the binding of additional molecules136

to fibrillar ends generates an incorporation site for137

another molecule [58]. The spontaneous aggregation138

of �-Syn into amyloid fibrils thus is a multi-step139

process during which various intermediates are gen-140

erated that provide copious opportunities for PQC141

interference.142

The exogenous provision of preformed fibrils143

(seeded aggregation) bypasses the initial requirement144

for seed formation and allows the rapid incorporation145

of �-Syn monomers to their ends [58], presenting146

a more limited number of conformational states at147

which PQC components can interfere. The molecu-148

lar mechanisms of chaperone modulation of �-Syn149

aggregation in spontaneous versus seeded aggrega-150

tion are thus likely to differ significantly. Indeed,151

some chaperones interfere with unseeded aggrega-152

tion (e.g., DNAJB6 [60]), whilst others selectively act153

on the elongation of preformed seeds (e.g., HSPB5)154

[61]).155

The distinction between unseeded and seeded156

�-Syn aggregation is thus extremely important to157

our understanding of the �-Syn aggregation process158

and PQC effects thereon. Cellular studies aimed at159

investigating PQC components in �-Syn aggregation160

are most often unable to clearly determine whether161

unseeded, seeded or both processes are targeted and162

to what extent.163

Non-seeded α-Syn aggregation164

It has been surprisingly difficult to consistently165

model spontaneous, non-seeded �-Syn aggregation166

in cellular and organismal models. In fact, recent167

nuclear magnetic resonance data showed that �-Syn168

at physiological concentrations remains largely in a 169

monomeric, highly dynamic state in cells [4]. Since 170

the crowded cellular environment is expected to facil- 171

itate �-Syn aggregation, these data strongly suggest 172

the existence of agents (such as molecular chaperones 173

and protein degradation machineries) that efficiently 174

counteract �-Syn aggregation under normal circum- 175

stances. 176

To date, most studies investigating de novo, 177

non-seeded, �-Syn aggregation have relied on over- 178

expression of either wildt-type (WT) or mutant 179

variants of �-Syn. In one of the earliest models, 180

�-Syn inclusion formation was detected in human 181

neuroglioma H4 cells and mouse primary corti- 182

cal neurons only upon overexpression of �-Syn 183

constructs (�-SynWT, �-SynA30P, or �-SynA53T) har- 184

boring distinct C-terminal tags of variable sizes, 185

which affected proteasomal clearance [47]. Since 186

untagged �-Syn variants remained soluble, the tag 187

potentiated aggregation probably through the expo- 188

sure of the NAC region. Others have employed the 189

co-expression of �-Syn with distinct aggregation- 190

prone proteins that co-localize with �-Syn in LBs to 191

trigger inclusion formation, such as synphilin-1 [45, 192

62–65] and tubulin polymerization-promoting pro- 193

tein (TPPP/p25�) [66], but it is not entirely clear 194

whether these are indeed active drivers of �-Syn 195

aggregation. Some studies have also used bimolecu- 196

lar fluorescence complementation assays to assess de 197

novo �-Syn aggregation [45, 67, 68]. In these cases, 198

fluorescence is reconstituted and detected upon co- 199

expression of two �-Syn constructs fused to either 200

the N-or C-terminus halves of a fluorescent protein 201

(for example, the split Venus-system). However, it 202

is still neither clear whether such assemblies are of 203

fibrillar nature, as the interaction of little as two �- 204

Syn molecules is already sufficient to reconstitute 205

fluorescence, nor to what extent the reconstitution 206

of the functional fluorescent protein drives assem- 207

bly. Nevertheless, some degree of �-Syn fibrillation 208

was detected upon overexpression of distinct split 209

Venus-�-Syn in flies [68]. In any case, true detergent- 210

insoluble �-Syn aggregates are either usually not 211

observed in unseeded �-Syn models, or they com- 212

prise only a small fraction of the total �-Syn pool, 213

highlighting the urgent need for better models to doc- 214

ument �-Syn aggregation. 215

Seeded α-Syn aggregation 216

Seeded aggregation experiments have been instru- 217

mental in uncovering many of the basic principles 218
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of �-Syn pathology (see for instance [26, 69–71]).219

Indeed, most of the �-Syn literature relies on exper-220

iments in which an exogenous source of �-Syn221

amyloid fibrils is administered to cells or animals222

in order to trigger aggregation of the endogenous �-223

Syn (i.e., the �-Syn pool generated by cells de novo,224

even if it consists of an artificial transgene). In these225

cases, exogenous �-Syn fibrils come from either in226

vitro reactions using recombinant �-Syn [69] or from227

fibrils isolated from animal models or human post-228

mortem tissue [19, 26, 72]. As stated above, structural229

differences of �-Syn fibrils may lead to different230

synucleinopathies [15, 73]. However, it should be231

noted that there is currently no evidence demonstrat-232

ing that human pathology starts upon exposure to233

exogenous �-Syn seeds [36], suggesting that factors234

such as cellular stress may trigger the formation of235

the first �-Syn seeds.236

�-SYN AGGREGATION AND TOXICITY237

IN THE CONTEXT OF PQC SYSTEMS238

Molecular chaperones239

Suppression of α-Syn aggregation by Hsp70240

machines241

Molecular chaperones are at the heart of several242

PQC pathways and have been extensively impli-243

cated as protective agents against protein aggregation244

and neurodegeneration [74]. Here, we will primar-245

ily focus on the action of Hsp70 machines on �-Syn246

aggregation and toxicity. The human genome encodes247

for multiple Hsp70 isoforms and these Hsp70s act248

with the help of many co-factors a system that we249

refer to as the Hsp70 machines.250

Purified Hsp70s (e.g., HSPA1A or HSPA8) alone251

can almost completely block �-Syn fibrillation at252

substoichiometric ratios, generating small aggregates253

composed of both proteins [25, 75–77]. Interestingly,254

addition of recombinant Hsp70-interacting protein255

(Hip) to reactions containing Hsp70 and monomeric256

�-Syn completely blocked Hsp70 co-aggregation257

and led to sustained inhibition of �-Syn aggrega-258

tion in an ATP-dependent manner [78], highlighting259

the importance of additional co-factors for maxi-260

mal suppression of �-Syn aggregation by Hsp70261

machines (see below). Purified Hsp70s (HSPA1A262

or HSPA8) have been shown to bind a range of263

�-Syn assemblies, including monomers [77], pre-264

fibrillar [76, 78], and fibrillar species [75, 79,265

80]. �-Syn amino acid stretches that are bound266

by Hsp70s span residues 10–45 and 97–102 [77].267

Besides the suppression of �-Syn nucleation, Hsp70s 268

also bind to �-Syn seeds [75] and prevent fibril 269

elongation [79, 80]. These latter findings are con- 270

sistent with a holdase function of Hsp70s against 271

�-Syn fibril elongation, possibly shielding fibrillar 272

ends from further incorporation of �-Syn molecules 273

[79, 80]. 274

In cells, co-expression of Hsp70 decreased the 275

amount of high molecular weight �-Syn species [64, 276

65], probably by stabilization of �-Syn in assembly- 277

incompetent states [81]. This could account for 278

decreased cytotoxicity of �-Syn upon overexpression 279

of Hsp70 [65, 82]. Indeed, Hsp70 overexpression in 280

primary neurons markedly decreased the size, but not 281

the amount, of secreted �-Syn species [82]. Since 282

Hsp70 was also detected in the culture medium, it 283

was proposed to bind monomeric or low molecu- 284

lar weight pre-fibrillar �-Syn assemblies and prevent 285

further aggregation into mature fibrils [82]. 286

At the organismal level, mice overexpressing both 287

�-Syn and the rat HspA1 showed a 2-fold reduc- 288

tion in 1% Triton-X100-insoluble �-Syn-containing 289

aggregates, compared to animals expressing �-Syn 290

only [65]. In the fruit fly Drosophila melanogaster, 291

selective expression of �-SynWT, �-SynA30P, or �- 292

SynA53T in dopaminergic neurons for 20 days led to 293

a 50% cell loss, but this could be fully rescued by 294

targeted co-expression of the human Hsp70 isoform 295

HSPA1L [83]. Interestingly, despite its cytoprotective 296

effects, HSPA1L did not inhibit �-Syn inclusion for- 297

mation, but rather co-localized with �-Syn in LB-like 298

structures, suggesting that Hsp70 binding reduced 299

toxic interactions of �-Syn with other biomolecules. 300

Such phenomenon is conserved from flies to humans, 301

with evidence for the accumulation of not only 302

Hsp70, but also its cochaperones Hsp40/DNAJs and 303

Hsp110/NEFs, into LBs and LNs from patients with 304

PD, dementia with Lewy bodies, and other synucle- 305

inopathies [63, 83]. Indeed, the titration of Hsp70s 306

out of solution by misfolded �-Syn has been hypoth- 307

esized to contribute to disease onset due to lowering 308

of the functional pool of Hsp70 available for protein 309

quality control pathways [78, 84]. 310

In vitro, the suppression of �-Syn aggregation by 311

either Hsp70 (HSPA1A) or Hsc70 (HSPA8) does not 312

require ATP/ADP cycling [25, 75, 78, 80], nor co- 313

chaperones, such as DNAJB1 [78]. In fact, DNAJB1, 314

which stimulates Hsp70 cycling, even counteracts 315

such sequestering activity [76]. However, these fac- 316

tors are essential for the proper function of Hsp70 317

in quality control pathways in vivo [85]. Indeed, 318

overexpression of other members from the family of 319



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

E.P. De Mattos et al. / Alpha-Synuclein and Protein Quality Control 5

Hsp70 co-chaperones also successfully prevents �-320

Syn aggregation and/or toxicity in cell and mouse321

models of PD. Of special relevance in this context322

is the large family of Hsp40/DNAJ proteins, which323

are regarded as the main determinants of specificity324

of Hsp70 machines, since different DNAJs bind to325

distinct client proteins and deliver those to Hsp70326

[85, 86]. Thus, DNAJs could be exploited to maxi-327

mize the activity of Hsp70 machines towards specific328

substrates. For example, besides inhibiting �-Syn329

aggregation in vitro [76], DNAJB1 almost completely330

abolished �-Syn inclusion formation in cells overex-331

pressing �-Syn [63]. This has also been shown for332

DNAJB6 and its close homologue DNAJB8 [51],333

both of which also strongly suppress the aggrega-334

tion of other amyloidogenic polypeptides, including335

expanded polyglutamine-containing proteins [60, 87]336

and the amyloid-beta protein [88]. Interestingly, �-337

Syn aggregation was not suppressed by a DNAJB6338

mutant that does not interact with Hsp70 [51],339

strengthening the notion that cooperation between340

distinct components of Hsp70 machines is essential341

for optimal function. Despite these examples, little is342

still known on the contribution of different DNAJs343

and/or NEFs to the Hsp70-dependent suppression of344

�-Syn aggregation in vivo. Similar to recently devel-345

oped in vitro screens for inhibiting tau aggregation346

[89], or enhancing �-Syn disaggregation (see below)347

[90], further comparative studies using distinct com-348

positions of Hsp70 machines are urgently required to349

better understand and manipulate Hsp70 machines in350

synucleinopathies.351

Disaggregation of α-Syn fibrils by Hsp70352

machines353

The diversity and complexity of Hsp70 machines354

is also highlighted by studies investigating the poten-355

tial of these systems to disaggregate pre-existing356

�-Syn amyloids. For instance, although Hsp70 alone357

does not modify or disaggregate mature �-Syn fibrils358

at relevant time-scales in vitro [75, 91], a specific359

Hsp70/HSPA-Hsp40/DNAJ-Hsp110/NEF combina-360

tion showed powerful, ATP-dependent disaggregase361

activity against �-Syn amyloids [90]. Indeed, optimal362

fragmentation and depolymerization of �-Syn fibrils363

was detected upon combining Hsc70/HSPA8 with364

Hdj1/DNAJB1 and the NEF Apg2/HSPA4, but not365

upon addition of other Hsp70 machine members, such366

as Hsp70/HSPA1A, DNAJA1, DNAJA2, or BAG1.367

Moreover, a precise stoichiometry between these368

components was crucial for productive disaggrega-369

tion [90, 91], further illustrating the tight balance370

between specificity and levels of chaperones/co- 371

chaperones for the activity of Hsp70 machines. It is 372

still not known whether Hsp70-mediated disaggrega- 373

tion of �-Syn also occurs in vivo, but it is tempting 374

to speculate that the breakup of fibrils into smaller, 375

more soluble assemblies facilitates their process- 376

ing by downstream PQC components, as discussed 377

below. However, it is equally possible that disaggre- 378

gation could be detrimental and facilitate �-Syn seed 379

propagation. Further studies are necessary to clarify 380

these issues. 381

Clearance of α-Syn assemblies via protein 382

degradation machineries 383

The two major cellular protein degradation 384

machineries comprise the UPS and ALP, with the 385

latter encompassing both autophagosome-dependent 386

and independent pathways [92]. There is an intricate 387

and tightly regulated crosstalk between proteasomal 388

and lysosomal pathways engaged in the processing 389

of �-Syn, as several studies reported preferential 390

degradation of �-Syn via the UPS or ALP [31, 391

93–98]. Moreover, �-Syn (WT or distinct mutants) 392

overexpression can impair the activity of both the 393

UPS [99, 100] and distinct components of the ALP 394

[66, 101–104], which would act in a progressive 395

pathogenic feedback loop to accelerate aggregation 396

and toxicity. Whether UPS or ALP lead to the degra- 397

dation of �-Syn assemblies is still actively debated. 398

Recent findings suggest, however, that the UPS has 399

a more prominent role in degrading smaller �-Syn 400

assemblies at least when protein quality systems are 401

highly active, as is generally the case in young, 402

healthy organisms [99]. Autophagic activity seems 403

to be more required for larger �-Syn assemblies and 404

upon increased �-Syn burden, due to either muta- 405

tions that lead to �-Syn accumulation or decreased 406

activity of other PQC components, as observed with 407

aging [99]. �-Syn has also been shown to be recog- 408

nized and degraded by other cellular (extracellular) 409

proteases not directly linked to the UPS and ALP 410

pathways [105, 106]. However, the extent to which 411

such enzymes are required for proper �-Syn turnover 412

and/or inhibition of propagation is still poorly under- 413

stood. 414

PTMs also play a role in �-Syn processing and 415

act as important sorting hubs to distinct protein 416

degradation machineries. For instance, the covalent 417

binding of ubiquitin to �-Syn, via either mono- 418

(monoUb) or polyubiquitylation (polyUb) in dis- 419

tinct linkage types, has opposing consequences to the 420
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Fig. 2. Targeting and processing of alpha-synuclein (�-Syn) by protein quality control (PQC) pathways. Left: in normal conditions, in
which the cellular PQC capacity is in balance with the �-Syn burden, soluble as wells as pre-fibrillar �-Syn assemblies (after disassembly)
have been shown to be targeted to and degraded by several PQC components. The initial survey of �-Syn species might be performed by
molecular chaperones (1), which can facilitate the sorting of �-Syn to distinct degradative routes, such as the ubiquitin-proteasome system
(UPS; 2), a ubiquitin-independent proteasomal degradation pathway (3), chaperone-mediated autophagy (CMA; 4), macroautophagy (5),
secretion via endosomes (6) [162], and proteolytic digestion by intracellular (7) or extracellular proteases. Right: in aged organisms or
pathological conditions, the �-Syn burden surpasses the cellular PQC capacity, leading to �-Syn accumulation and subsequent aggregation.
Fibrillar �-Syn assemblies can trap several biomolecules, including molecular chaperones (8), which contributes to chaperone depletion and
decreases PQC capacity. Similarly, �-Syn aggregation has been linked to impairment of different steps of macroautophagy (9), CMA (10), and
proteasomal degradation (11). In some experimental setups, increased �-Syn levels can also lead to increased autophagic flux and destruction
of organelles, such as mitochondria (12). �-Syn species can also be secreted to the extracellular space and taken up by neighboring cells (13),
where they seed the aggregation of soluble �-Syn species (14). �-Syn aggregation additionally impairs the intracellular trafficking of other
proteins, such as the lysosomal enzyme glucocerebrosidase (GCase; 15). Decreased lysosomal GCase activity, due to either mislocalization
of wildtype (wt) GCase or mutant GCase variants (16), leads to accumulation of GCase substrates (such as glycosylceramide; 17), which
might potentiate �-Syn aggregation. See main text for further mechanistic details and references. ER: endoplasmic reticulum; Hsc70: heat
shock cognate 71 kDa protein; LAMP2a: lysosome-associated membrane protein 2 isoform a; poly-Ub: poly-ubiquitin.

fate of �-Syn. For instance, the co-chaperone CHIP421

(carboxyl terminus of Hsp70-interacting protein),422

a ubiquitous E3 Ub-ligase and crucial downstream423

effector of Hsp70 machineries [85], was shown to424

promote �-Syn degradation via both the UPS and425

ALP [107]. Also, while monoubiquitylation by the426

E3 ubiquitin-ligase SIAH targeted �-Syn to the UPS,427

removal of the ubiquitin moiety by the deubiquitylase428

USP9X favored �-Syn degradation via macroau-429

tophagy [108]. Yet another ubiquitin-ligase (Nedd4)430

facilitated the binding of K63-linked polyUb chains431

to �-Syn and promoted its lysosomal degradation432

via the ESCRT pathway [109]. Depending on its433

assembly state, other PTMs such as SUMOylation,434

phosphorylation, nitration, O-GlcNAcylation, oxida-435

tion, and dopamine-modification can also modulate436

�-Syn processing via downstream degradation path- 437

ways [30, 31, 110–114]. In this context, the main 438

findings associated to the partition of �-Syn between 439

the UPS and ALP are discussed below and illustrated 440

in Fig. 2. 441

Ubiquitin-proteasome system 442

In mammalian cells, the central player of the UPS 443

is the 26S proteasome, a large, ATP-dependent multi- 444

protein complex devoted to the selective destruction 445

of target proteins [115]. Evidence for the degrada- 446

tion of �-Syn via proteasomes comes from both 447

in vitro [116] and cellular studies [117–119], with 448

not only monomeric, but maybe also pre-fibrillar �- 449

Syn species (after dissociation) being targeted to this 450

pathway [30, 100]. Several Ub-ligases interact with 451
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�-Syn and catalyze the addition of either mono- or452

polyUb chains with either cytoprotective or toxic con-453

sequences depending on the specific experimental454

setup, presumably due to differential impact on cellu-455

lar �-Syn half-life [109, 117, 120, 121]. Unmodified456

�-Syn can also be degraded by proteasomes via an457

Ub-independent pathway [118], particularly relevant458

for phosphorylated �-Syn at serine 129 (�-SynpS129)459

[119]. A mutant mimicking �-SynpS129 (�-SynS129E)460

was shown to be a poor autophagic substrate [111],461

re-emphasizing the complementary importance of the462

different degradation pathways. Several lines of evi-463

dence also suggest that an increased �-Syn burden464

inhibits proteasomal activity, which in turn might465

lead to a further increase in �-Syn levels, thus estab-466

lishing a pathogenic feedback loop favoring �-Syn467

aggregation [100, 104, 122, 123].468

Autophagy-lysosome pathway469

The numerous reports on �-Syn degradation via470

the ALP highlight the importance of lysosomal-471

dependent regulation of �-Syn levels [124]. Not472

surprisingly, a plethora of therapeutic strategies473

targeting the ALP have been explored to tackle �-474

Syn aggregation and toxicity (reviewed in [125]).475

The ALP comprises catabolic processes that con-476

verge at the lysosome, being usually divided477

in three distinct types: macroautophagy, microau-478

tophagy, and chaperone-mediated autophagy (CMA)479

[126]. Macroautophagy relies on the engulfment480

of substrates within autophagosomes, which are481

double-layered membrane vesicles that sequester482

intracellular components and target them to lyso-483

somes for degradation [127]. Most long-lived484

proteins, protein aggregates and even whole damaged485

organelles are degraded via macroautophagy [92,486

128]. The importance of macroautophagy for nor-487

mal cellular function is exemplified by experiments488

in which loss of macroautophagy in neurons led to489

accumulation of ubiquitylated proteins and inclu-490

sion bodies, and neurodegeneration [129]. Moreover,491

mutations in different autophagy-related genes, such492

as ATG5, lead to genetic diseases with neurologic493

phenotypes in humans [130].494

Data supporting a role for macroautophagy in495

the degradation of monomeric and pre-fibrillar �-496

Syn assemblies come mainly from studies detecting497

�-Syn buildup upon exposure of cell lines over-498

expressing either WT or mutant �-Syn variants499

to the inhibitor of autophagosome formation 3-500

methyladenine [93, 95, 97, 131]. In vivo, overexpres-501

sion of beclin-1, which is involved in autophagosome502

formation via the phosphatidylinositol 3-phosphate 503

kinase complex, rescued neurological deficits of �- 504

Syn transgenic mice [131]. Yet, beclin-1 is involved 505

in other endosomal pathways, not directly linked to 506

macroautophagy [132], which may contribute to the 507

reduction of �-Syn levels and improved performance 508

of animals overexpressing �-Syn [131]. Impairment 509

of lysosomes, toward which all ALP components 510

converge, with bafilomycin A1 also resulted in �-Syn 511

buildup, further supporting a role for the ALP in �- 512

Syn degradation [96, 125, 133, 134]. Nonetheless, 513

whether macroautophagy is capable of degrading 514

aggregated, insoluble �-Syn assemblies, such as 515

those present in LBs, is still debated. For instance, in 516

a cell model of endogenous �-Syn aggregation upon 517

exposure to exogenous �-Syn pre-formed fibrils, �- 518

Syn inclusion resisted lysosomal degradation [134]. 519

In addition, increasing macroautophagy flux upon 520

�-Syn overexpression was also shown to have detri- 521

mental effects, ranging from increased degradation of 522

mitochondria (mitophagy) in both cellular [135], and 523

animal models of PD [136] to enhanced secretion of 524

�-Syn assemblies to the extracellular space [66], that 525

may contribute to the spreading of pathogenic �-Syn 526

aggregates. On the other hand, Gao and colleagues 527

(2019) have recently demonstrated enhanced degra- 528

dation of internalized exogenous �-Syn pre-formed 529

fibrils in neuronal cell lines upon treatment with dif- 530

ferent autophagy inducers, suggesting that lysosomes 531

might be capable of clearing seeded fibrillar �-Syn 532

[137]. 533

Different from macroautophagy, CMA encom- 534

passes the selective targeting of substrates to lyso- 535

somes via Hsc70 (HSPA8) and its co-chaperones, to 536

specifically recognize cargo proteins with a KFERQ- 537

like pentapetide motif, and lysosomal-associated 538

membrane protein 2a (LAMP2a)-mediated substrate 539

translocation across lysosomal membranes [138, 540

139]. Several lines of evidence support the involve- 541

ment of CMA in the processing of �-Syn [125]. 542

In an in vitro lysosomal reconstitution assay, �- 543

SynWT was selectively targeted to lysosomes by 544

LAMP2a, and mutations within a KFERQ-like motif 545

in �-Syn C-terminus abolished this activity [94]. 546

In cultured cells overexpressing �-Syn, macroau- 547

tophagy inhibition led to higher �-Syn clearance 548

via CMA [95, 140], while �-Syn protein levels 549

were increased upon specific knockdown of LAMP2a 550

[141], or HSPA8 [141, 142]. Compared to healthy 551

controls, lower LAMP2a protein levels were detected 552

in brains from early-stage PD patients, accompanied 553

by a buildup of �-Syn and other known CMA sub- 554
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strates, such as myocyte-specific enhancer factor 2D555

(MEF2D) and nuclear factor of kappa light polypep-556

tide gene enhancer in B-cells inhibitor alpha (IκB�)557

[143]. The importance of CMA in processing �-Syn558

monomers and dimers, but not pre-fibrillar assem-559

blies [111], is somewhat diminished by the finding560

that �-Syn steady-state levels were unchanged in561

Lamp2 knockout mice [144]. This however may be562

due to developmental adaptations in other PQC com-563

ponents, such as the UPS, as outlined above, thus564

masking the influence of CMA. Indeed, in vivo down-565

regulation of Lamp2a in rats resulted in accumulation566

of ubiquitin-positive �-Syn inclusions in the substan-567

tia nigra followed by loss of dopaminergic neurons568

[145]. Additional evidence for CMA involvement569

in �-Syn degradation comes from observations that570

distinct PTMs, including oxidation, nitration, and571

modification by oxidized dopamine, impair �-Syn572

degradation via CMA, resulting in its buildup [111].573

Importantly, similar to the rare �-SynA30P and �-574

SynA53T mutations [94], dopamine-modified �-Syn575

(present in sporadic PD cases) also interferes with576

the processing of other CMA substrates [111],577

further contributing to the imbalance of protein578

homeostasis.579

Upon convergence of distinct ALP routes at lyso-580

somes, soluble �-Syn assemblies can be degraded581

by acidic proteases, such as cathepsin D [146–148].582

Another lysosomal enzyme that has attracted much583

attention in synucleinopathies is glucocerebrosi-584

dase (GCase). While homozygous mutations in the585

GCase-encoding gene GBA1 cause Gaucher’s disease586

[149], heterozygous mutations are a well-established587

risk factor for developing PD [150]. Indeed, �-Syn588

buildup is observed in several models of GCase defi-589

ciency. This occurs upon pharmacological inhibition590

of GCase activity in cultured cells [151, 152] and591

also in GBA1 mutant backgrounds, both in mouse592

models overexpressing �-Syn [153–155] and in593

PD patient iPS-derived dopaminergic neurons [156,594

157]. �-Syn buildup impairs GCase trafficking and595

targeting to lysosomes [158, 159]. Conversely, rescue596

of GCase activity in mice overexpressing �-SynA53T
597

reduced �-Syn levels and toxicity [155], establish-598

ing a pathogenic feedback loop that promotes loss599

of GCase function, and �-Syn accumulation, aggre-600

gation and, potentially, cell-to-cell transmission of601

�-Syn seeds [160, 161]. Altogether, these results602

suggest that the upregulation of autophagy without603

a simultaneous improvement of lysosomal capacity604

might not be a true therapeutic strategy in synucle-605

inopathies.

CONCLUDING REMARKS 606

The topics discussed here paint a complex picture 607

of cellular strategies engaged in the tight regulation 608

of �-Syn protein levels, which ultimately determine 609

its aggregation propensity and associated toxicity. 610

Even though there are still some fundamental gaps 611

in our understanding of �-Syn biology, it has become 612

increasingly clear that the activity of dedicated PQC 613

components, such as molecular chaperones, the UPS, 614

and ALP is a crucial line of defense against �- 615

Syn-mediated pathology. Failure of these systems 616

(e.g., due to cellular stress, genetic predisposition, 617

or aging) will influence �-Syn levels and solubility, 618

eventually leading to disease. However, it is tempt- 619

ing to envision that novel therapeutic strategies to 620

prevent, slow down and/or halt progression of synu- 621

cleinopathies will emerge based on our understanding 622

of protein homeostasis in general and in particular in 623

components that prevent initiation of �-Syn protein 624

aggregation or help clearing them before they affect 625

neuronal health and synaptic integrity. 626
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Klucken J, Pereira MD, Popova B, Kruse N, Mollenhauer 852

B, Rizzoli SO, Braus GH, Danzer KM, Outeiro TF (2014) 853

Systematic comparison of the effects of alpha-synuclein 854

mutations on its oligomerization and aggregation. PLoS 855

Genet 10, e1004741. 856

[46] Conway KA, Harper JD, Lansbury PT (1998) Accelerated 857

in vitro fibril formation by a mutant �-synuclein linked to 858

early-onset Parkinson disease. Nat Med 4, 1318-1320. 859

[47] McLean PJ, Kawamata H, Hyman BT (2001) Alpha- 860

synuclein-enhanced green fluorescent protein fusion 861

proteins form proteasome sensitive inclusions in primary 862

neurons. Neuroscience 104, 901-912. 863

[48] Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, 864

Lansbury PT (2000) Acceleration of oligomerization, not 865

fibrillization, is a shared property of both alpha-synuclein 866

mutations linked to early-onset Parkinson’s disease: Impli- 867

cations for pathogenesis and therapy. Proc Natl Acad Sci 868

U S 97, 571-576. 869

[49] Samuel F, Flavin WP, Iqbal S, Pacelli C, Renganathan 870

SDS, Trudeau LE, Campbell EM, Fraser PE, Tan- 871

don A (2016) Effects of serine 129 phosphorylation 872

on �-synuclein aggregation, membrane association, and 873

internalization. J Biol Chem 291, 4374-4385. 874

[50] Outeiro TF, Lindquist S (2003) Yeast cells provide insight 875

into alpha-synuclein biology and pathobiology. Science 876

302, 1772-1775. 877

[51] Aprile FA, Källstig E, Limorenko G, Vendruscolo M, Ron 878

D, Hansen C (2017) The molecular chaperones DNAJB6 879

and Hsp70 cooperate to suppress �-synuclein aggregation. 880

Sci Rep 7, 1-11. 881

[52] Singleton AB, Farrer M, Johnson J, Singleton A, Hague 882

S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nuss- 883

baum R, Lincoln S, Crawley A, Hanson M, Maraganore 884

D, Adler C, Cookson MR, Muenter M, Baptista M, Miller 885

D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha- 886

Synuclein locus triplication causes Parkinson’s disease. 887

Science 302, 841. 888

[53] Nishioka K, Ross OA, Ishii K, Kachergus JM, Ishiwata K, 889

Kitagawa M, Kono S, Obi T, Mizoguchi K, Inoue Y, Imai 890

H, Takanashi M, Mizuno Y, Farrer MJ, Hattori N (2009) 891

Expanding the clinical phenotype of SNCA duplication 892

carriers. Mov Disord 24, 1811-1819. 893
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U, Tamgüney G (2015) Prion-like propagation of human 978

brain-derived alpha-synuclein in transgenic mice express- 979

ing human wild-type alpha-synuclein. Acta Neuropathol 980

Commun 3, 75. 981

[73] Prusiner SB, Woerman AL, Mordes DA, Watts JC, Ram- 982

persaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz 983

SN, Geschwind DH, Glidden DV, Halliday GM, Mid- 984

dleton LT, Gentleman SM, Grinberg LT, Giles K (2015) 985

Evidence for �-synuclein prions causing multiple system 986

atrophy in humans with parkinsonism. Proc Nat. Acad Sci 987

U S A 112, E5308-E5317. 988

[74] Kampinga HH, Bergink S (2016) Heat shock proteins as 989

potential targets for protective strategies in neurodegener- 990

ation. Lancet Neurol 15, 748-759. 991

[75] Huang C, Cheng H, Hao S, Zhou H, Zhang X, Gao J, 992

Sun Q-H, Hu H, Wang C-C (2006) Heat shock protein 70 993

inhibits alpha-synuclein fibril formation via interactions 994

with diverse intermediates. J Mol Biol 364, 323-336. 995

[76] Dedmon MM, Christodoulou J, Wilson MR, Dobson CM 996

(2005) Heat shock protein 70 inhibits �-synuclein fibril 997

formation via preferential binding to prefibrillar species. 998

J Biol Chem 280, 14733-14740. 999

[77] Redeker V, Pemberton S, Bienvenut W, Bousset L, Melki 1000

R (2012) Identification of protein interfaces between �- 1001

synuclein, the principal component of Lewy bodies in 1002

Parkinson disease, and the molecular chaperones human 1003

Hsc70 and the yeast Ssa1p. J Biol Chem 287, 32630- 1004

32639. 1005

[78] Roodveldt C, Bertoncini CW, Andersson A, van der Goot 1006

AT, Hsu S-T, Fernández-Montesinos R, de Jong J, van 1007

Ham TJ, Nollen EA, Pozo D, Christodoulou J, Dobson CM 1008

(2009) Chaperone proteostasis in Parkinson’s disease: Sta- 1009

bilization of the Hsp70/alpha-synuclein complex by Hip. 1010

EMBO J 28, 3758-3770. 1011

[79] Aprile FA, Arosio P, Fusco G, Chen SW, Kumita JR, 1012

Dhulesia A, Tortora P, Knowles TPJ, Vendruscolo M, Dob- 1013

son CM, Cremades N (2017) Inhibition of �-synuclein 1014

fibril elongation by Hsp70 is governed by a kinetic binding 1015

competition between �-synuclein species. Biochemistry 1016

56, 1177-1180. 1017

[80] Pemberton S, Madiona K, Pieri L, Kabani M, Bousset L, 1018

Melki R (2011) Hsc70 protein interaction with soluble and 1019

fibrillar �-synuclein. J Biol Chem 286, 34690-34699. 1020

[81] Klucken J, Outeiro TF, Nguyen P, McLean PJ, Hyman 1021

BT (2006) Detection of novel intracellular �-synuclein 1022

oligomeric species by fluorescence lifetime imaging. 1023

FASEB J 20, 2050-2057. 1024

[82] Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto 1025

T, Glabe C, Hyman BT, McLean PJ (2010) Heat-shock 1026

protein 70 modulates toxic extracellular �-synuclein 1027

oligomers and rescues trans-synaptic toxicity. FASEB J 1028

25, 326-336. 1029

[83] Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, 1030

Bonini NM (2002) Chaperone suppression of alpha- 1031

synuclein toxicity in a Drosophila model for Parkinson’s 1032

disease. Science 295, 865-868. 1033

[84] Hinault MP, Cuendet AFH, Mattoo RUH, Mensi M, 1034

Dietler G, Lashuel HA, Goloubinoff P (2010) Stable �- 1035

synuclein oligomers strongly inhibit chaperone activity 1036

of the Hsp70 system by weak interactions with J-domain 1037

co-chaperones. J Biol Chem 285, 38173-38182. 1038

[85] Kampinga HH, Craig EA (2010) The HSP70 chaperone 1039

machinery: J proteins as drivers of functional specificity. 1040

Nat Rev Mol Cell Biol 11, 579-592. 1041



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

12 E.P. De Mattos et al. / Alpha-Synuclein and Protein Quality Control

[86] Craig EA, Marszalek J (2017) How do J-proteins get1042

Hsp70 to do so many different things? Trends Biochem1043

Sci 42, 355-368.1044

[87] Hageman J, Rujano MA, van Waarde MAWH, Kakkar V,1045

Dirks RP, Govorukhina N, Oosterveld-Hut HMJ, Lubsen1046

NH, Kampinga HH (2010) A DNAJB chaperone sub-1047

family with HDAC-dependent activities suppresses toxic1048

protein aggregation. Mol Cell 37, 355-369.1049
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