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ABSTRACT

Context. The interior of a neutron star is usually assumed to be made of cold catalyzed matter. However, the outer layers are unlikely
to remain in full thermodynamic equilibrium during the formation of the star and its subsequent cooling, especially after crystalliza-
tion occurs.
Aims. We study the cooling and the equilibrium composition of the outer layers of a non-accreting neutron star down to crystalliza-
tion. Here the impurity parameter, generally taken as a free parameter in cooling simulations, is calculated self-consistently using a
microscopic nuclear model for which a unified equation of state has recently been determined.
Methods. We follow the evolution of the nuclear distributions of the multi-component Coulomb liquid plasma fully self-consistently,
adapting a general formalism originally developed for the description of supernova cores. We calculate the impurity parameter at the
crystallization temperature as determined in the one-component plasma approximation.
Results. Our analysis shows that the sharp changes in composition obtained in the one-component plasma approximation are
smoothed out when a full nuclear distribution is allowed. The Coulomb coupling parameter at melting is found to be reasonably
close to the canonical value of 175, except for specific values of the pressure for which supercooling occurs in the one-component
plasma approximation. Our multi-component treatment leads to non-monotonic variations of the impurity parameter with pressure.
Its values can change by several orders of magnitude reaching about 50, suggesting that the crust may be composed of an alternation
of pure (highly conductive) and impure (highly resistive) layers. The results presented here complement the recent unified equation
of state obtained within the same nuclear model.
Conclusions. Our self-consistent approach to hot dense multi-component plasma shows that the presence of impurities in the outer
crust of a neutron star is non-negligible and may have a sizeable impact on transport properties. In turn, this may have important
implications not only for the cooling of neutron stars, but also for their magneto-rotational evolution.

Key words. stars: neutron – dense matter – nuclear reactions, nucleosynthesis, abundances – plasmas

1. Introduction

Formed in the aftermath of gravitational core-collapse supernova
explosions, neutron stars (NSs) are initially very hot. With tem-
peratures exceeding 1010 K, the outer part of the newly born NS
is expected to be made of a dense Coulomb liquid containing
various nuclear species in a charge compensating electron back-
ground. It is generally assumed that as the NS cools down by
emitting neutrinos and photons, this multi-component plasma
(MCP), which crystallizes at the temperature Tm, remains in
full thermodynamic equilibrium (with respect to all possible pro-
cesses) until the ground state at T = 0 K is eventually reached.
According to this so-called “cold catalyzed matter” hypothesis,
the outer crust of a mature NS is, thus, expected to be strati-
fied into pure layers, each of which consists of a one-component
Coulomb crystal (except, possibly, at the boundaries between
adjacent layers; see Chamel & Fantina 2016a for a discussion).

However, if the interior of a NS cools down rapidly enough in
comparison to the various reaction rates, the composition of the
stellar material may be frozen at some finite temperature so that
the ground state may never be attained, see, e.g. Goriely et al.

? The table of the impurity parameter at the crystallization temper-
ature shown in Fig. 8 is only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/633/A149

(2011) (see also Haensel et al. 2007; Chamel & Haensel 2008).
Even in the simplified scenario of an adiabatic cooling process,
the full thermodynamical equilibrium of the outer layers of the
star is unlikely to be maintained after the crystallization, mean-
ing that a more realistic picture of the outer crust of a NS is
that of a multi-component Coulomb solid. With the crystalliza-
tion temperature as low as ≈106−107 K (see Haensel et al. 2007),
the most probable ion species would presumably be close to
or coincident with the one corresponding to the ground state.
Consequently, the static properties of the frozen crust are not
expected to be appreciably different from those of catalyzed
crust. On the other hand, the co-existence of various nuclear
species may have a dramatic impact on transport properties.
However, the nuclear distributions in different crustal layers are
to a large extent unknown. For this reason, NS cooling simu-
lations have been generally performed using the ground-state
composition. The presence of other nuclear species is taken into
account by introducing an “impurity factor”, treated as a free
parameter directly fitted to the cooling data. This parameter is
important not only for thermal properties but for other trans-
port properties as well, such as electrical conductivity (see e.g.
Schmitt & Shternin 2018 for a recent review). The presence of
impurities is, thus, also expected to have a strong impact on the
magneto-rotational evolution of NSs, see e.g. Pons et al. (2013)
(see also Gourgouliatos & Esposito 2018 for a recent review).
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In this paper, we study the composition and formation of the
outer crust of a non-accreting unmagnetized NS. After deter-
mining the crystallization temperature in the one-component
plasma (OCP) approximation, the nuclear distributions and the
impurity parameter are calculated fully self-consistently, adapt-
ing a general formalism originally developed for the description
of a hot dense MCP under conditions prevailing in supernova
cores (Gulminelli & Raduta 2015; Grams et al. 2018). Our treat-
ment of a OCP and a MCP plasma are presented in Sects. 2 and 3,
respectively. Results are discussed in Sect. 4 and conclusions are
drawn in Sect. 5. In Appendix A, we derive the expression for
the pressure of the MCP, while in Appendices B and C, we report
for completeness the expressions used in this work for the free
energy and pressure of the uniform electron gas and for the free
energy of the Coulomb plasma of ions, respectively.

2. One-component Coulomb plasma

2.1. Main assumptions

In this study, we consider matter at densities high enough so that
full ionization can be supposed, i.e. ρ & 11AZ g cm−3, which for
iron, whose mass number A and charge number Z are A = 56
and Z = 26, yields ρ & 104 g cm−3. The nuclei are, thus, sur-
rounded by a gas of highly-degenerate electrons, matter being
electrically charge neutral. At finite temperatures, a free nucleon
(neutron and proton) gas could also be present. However, this
gas is expected to be very dilute at temperatures T < 3 × 109 K,
which are of interest here (see, e.g. Haensel et al. 2007). We
shall, therefore, ignore the nucleon gas.

The properties of such dense matter in full (beta) equilib-
rium at temperature T and pressure P are determined by min-
imizing the Gibbs free energy under the constraint of baryon
number conservation. In the OCP (single-nucleus) approxima-
tion, this procedure yields the mass number and charge number
of the (unique) equilibrium nucleus (A,Z) at each temperature
T in each layer at pressure P (see e.g. the pioneer works of
Tondeur 1971; Baym et al. 1971 at T = 0 K). As a consequence,
the baryon number density nB may vary discontinuously at the
interface between two adjacent layers. These density jumps may
be reduced (though not entirely removed) if one allows for the
existence of multinary compounds (see Chamel & Fantina 2016a
for a recent discussion).

The total Gibbs free energy per nucleon g to be minimized is
defined as

g = f +
P
nB
, (1)

where f is the total free energy per nucleon1 and the baryon
density nB is numerically calculated from the pressure P. The
total free energy per ion reads

F = Fi + Fe. (2)

In this expression, Fe is the electron free energy, that accounts
for the free (non-interacting) part, plus the corrections (exchange
and correlation) in a uniform electron system. The term Fi cor-
responds to the ion free energy including the Coulomb contribu-
tion, and is given by (see Chapt. 2 in Haensel et al. 2007)

Fi = M′(A,Z)c2 + F id
i + F int

i , (3)

1 We use capital letters for the energy per ion, i.e. F is the ion free
energy, small letters for the energy per baryon, i.e. f is the free energy
per baryon, and the notation F for the free energy density.

where M′(A,Z) is the ion mass (which coincides with the
nuclear mass since atoms are fully ionized), c being the speed
of light, F id

i is the non-interacting (“ideal”) contribution to the
ion free energy, and F int

i accounts for interactions. Specifically,
F int

i = Fii + Fpol
ie , where Fii includes all the Coulomb inter-

actions (between ions, between electrons, and between ions
and the uniform electron gas) and Fpol

ie represents the polar-
ization correction that accounts for the deviation of the elec-
tron background from uniformity. For M′(A,Z), we make use of
experimental masses, whenever available, from the 2016 atomic
mass evaluation (AME; Wang et al. 2017), supplemented with
the microscopic HFB-24 theoretical mass table based on the
nuclear energy-density functional theory2 (Goriely et al. 2013).
The underlying functional has been recently used to determine
the ground-state composition and the equation of state in all
regions of a non-accreting NS (Pearson et al. 2018). Usually,
atomic masses are tabulated instead of the nuclear ones, which
can be calculated as

M′(A,Z)c2 = M(A,Z)c2 − Zmec2 + Bel, (4)

where M(A,Z)c2 = ∆ε + Amuc2 is the atomic mass (∆ε being the
mass excess and mu being the atomic mass unit), me is the elec-
tron mass, and Bel is the binding energy of the atomic electrons
(see Eq. (A4) in Lunney et al. 2003)

Bel = 1.44381 × 10−5Z2.39 + 1.55468 × 10−12Z5.35. (5)

Similarly to the free energy, the total pressure can be written
as

P = Pi + Pe, (6)

where the ion pressure Pi can be decomposed into a non-
interacting (“ideal”) part and a contribution due to the Coulomb
interactions

Pi = Pid
i + Pint

i , (7)

while Pe is the pressure of the (uniform) electron background.

2.2. OCP in the liquid phase

At temperatures T > Tm, ions form a Coulomb liquid. In this
case, the non-interacting (“ideal”) contribution to the ion free
energy is given by (see Eq. (2.71) in Haensel et al. 2007)

F id
i = kBT

[
ln

(
nNλ

3

gs

)
− 1

]
, (8)

where the ion density is the inverse of the Wigner–Seitz cell vol-
ume V , nN = 1/V , gs is the spin degeneracy, and λ is the de
Broglie wavelength,

λ =

√
2π(~c)2

M′(A,Z)c2kBT
, (9)

kB being the Boltzmann constant and ~ the Planck-Dirac con-
stant. Baryon number conservation requires nB = AnN . The
interacting part of the ion free energy can be decomposed as:

F int
i = Fii,liq + Fpol

ie,liq. (10)

Analytical formulae have been derived by Potekhin & Chabrier
(2000) for these two terms; see their Eqs. (16) and (19),
respectively.

2 The mass table is available on the BRUSLIB online database http:
//www.astro.ulb.ac.be/bruslib/ (Xu et al. 2013).
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2.3. OCP in the solid phase

Below the crystallization temperature Tm, we assume that ions
arrange themselves in a perfect body-centred cubic (bcc) lattice
(see, e.g. Chamel & Fantina 2016a).

Since ions can still oscillate about their equilibrium posi-
tions, the “ideal” part of the free energy, Eq. (8), is now replaced
by the zero-point motion energy Ezp with (an)harmonic correc-
tions (see Sect. 2.3.3 in Haensel et al. 2007). The ion free energy,
Eq. (3), thus becomes

Fi,sol = M′(A,Z)c2 + Ezp + Fii,sol + Fpol
ie,sol, (11)

where Fii,sol accounts for the Coulomb interactions (static lat-
tice energy, plus thermal and anharmonic corrections), and Fpol

ie,sol
includes the (electric charge) polarization corrections. The zero-
point quantum vibration term is given by (Haensel et al. 2007)

Ezp =
3
2
~ωpu1, (12)

where u1 ≡ 〈(ω/ωp)〉 is a numerical constant (for a bcc crystal,
u1 = 0.511, see Table 2.4 in Haensel et al. 2007) and the ion
plasma frequency ωp is

~ωp =

√
(~c)24πnN(Ze)2

M′(A,Z)c2 , (13)

e being the elementary charge. The Coulomb interaction term is
given by

Fii,sol = EL + Fth + Fanharm − kBT ln(gs), (14)

where the temperature-independent static lattice term reads
(Haensel et al. 2007)

EL = −CM
(Ze)2

aN
, (15)

with CM the Madelung constant (for a bcc lattice, CM =
0.895929, see Table 2.4 in Haensel et al. 2007) and aN =
(4πnN/3)−1/3 is the ion-sphere radius. As for the thermal cor-
rections in the harmonic approximation, Fth, and for the anhar-
monic corrections, Fanharm, to the ion vibration, analytical
representations have been derived in Baiko et al. (2001) and
Potekhin & Chabrier (2010), respectively (see also Appendix C
for the complete expressions used in this work). The last term
in Eq. (14) accounts for the spin entropy. Although the spin
degeneracy remains poorly known for several nuclei, this term
has no direct effect on the determination of the melting temper-
ature since it is the same in both the liquid and solid phases.
However, the spin entropy might affect the determination of the
equilibrium nucleus. Finally, the polarization correction, Fpol

ie,sol,
is given by Eq. (42) in Potekhin & Chabrier (2000) (see also
Appendix C).

3. Multi-component plasma in nuclear statistical
equilibrium

While matter at each pressure in the OCP can be described by
identical Wigner–Seitz cells, centred on each ion, in the MCP,
we expect that different configurations of the Wigner–Seitz cell
are realized.

3.1. MCP in a liquid phase

Let us consider a very large volume containing different ion
species (A( j),Z( j)) and, therefore, different Wigner–Seitz cells of
volume V ( j), such that p j is the frequency of occurrence or prob-
ability of the component ( j), with

∑
j p j = 1.

The different (A( j),Z( j)) configurations are associated with
different baryonic densities n( j)

B = A( j)/V ( j) but share the same
total pressure P (see Eq. (6)) imposed by the hydrostatic equilib-
rium. Moreover, it is supposed that charge neutrality is realized
in each cell. This implies that the proton density np associated
with the different components is the same (and equivalent to the
electron density ne), i.e. ne = np = Z( j)/V ( j).

The total free energy per ion of the system is given by:

FMCP ≡ 〈F〉 =
∑

j

p jF( j), (16)

where the free energy per ion of the component ( j), F( j) =

F( j)
i + F( j)

e , accounts for the contribution of the ion and the elec-
trons, including their interactions. We make the hypothesis that
this free energy depends only on the characteristics of the com-
ponent ( j), namely (A( j),Z( j),V ( j)), and on the global thermody-
namic quantities, but it does not depend on the other components
( j′) , ( j). This assumption is exact at the thermodynamic limit
if the different components are associated with macroscopically
separated domains. Even in the case of negligible interaction
among different ion species, F( j) does not coincide with the free
energy of a single Wigner–Seitz cell, as we shall later show. As
discussed in Sect. 2.1, we neglect the effect of the nucleon gas.

We can also define the free energy density of the multi-
component system as:

FMCP =
∑

j

n( j)
N F( j), (17)

where n( j)
N is the ion density associated with the cell ( j), with∑

j n( j)
N A( j) = nB. The ion density is related to the probability p j

through

n( j)
N =

p j

〈V〉
= p j

Z( j)

〈Z〉V ( j) , (18)

or equivalently

p j =
n( j)

N∑
j n( j)

N

· (19)

Ensemble averages are given by:

〈V〉 =
∑

j

p jV ( j) ; 〈Z〉 =
∑

j

p jZ( j), (20)

and similar relations hold for the other average quantities.
Under the hypothesis of uncorrelated Wigner–Seitz cells

(linear mixing approximation), the most probable values for A
and Z correspond to those found in the OCP approximation in the
same thermodynamic conditions and are denoted by AOCP and
ZOCP, respectively. However, the average composition, 〈A〉 and
〈Z〉, will generally be different due to the co-existence of various
nuclear species. Accounting for non-linear mixing effects leads
to larger deviations. It is important to note that a first deviation to
the linear mixing rule appears due to the translational degree of
freedom in the liquid phase (Gulminelli & Raduta 2015). Indeed,
the centre-of-mass position of each ion j of the MCP in the liquid
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phase is not confined to the single cell volume V ( j) but can freely
explore the whole volume, leading to Eq. (18) above3. Upon
replacing this expression in Eq. (8), the single-ion free energy
of the MCP in the liquid phase, Eq. (3), becomes:

F( j)
i = M′( j)c2 + kBT

ln n( j)
N (λ( j))3

g
( j)
s

 − 1

 + F( j),int
i

= F( j),OCP
i + kBT ln

(
p j

Z( j)

〈Z〉

)
, (21)

where M′( j) = M′(A( j),Z( j)) and F( j),OCP
i ≡ Fi,liq, as given by

Eqs. (3), (8), and (10) (in Eq. (8), nN = 1/V ( j)). The extra term
on the right hand side of the previous equation is known as the
mixing entropy term in the literature, see Medin & Cumming
(2010).

Using standard methods in statistical mechanics and follow-
ing Gulminelli & Raduta (2015), Grams et al. (2018), the prob-
abilities p j and the densities n( j)

N are calculated such as to maxi-
mize the thermodynamic potential in the canonical ensemble. In
view of the chosen decomposition between Fi and Fe, we have

F
({

n( j)
N

})
= Fi

({
n( j)

N

})
+ Fe. (22)

Since the electron part Fe of the free energy density does not
depend on n( j)

N , the variation can be performed on the ion part
only:

dFi =
∑

j

F( j)
i + n( j)

N

∂F( j),int
i

∂n( j)
N

+ kBT

 dn( j)
N

=
∑

j

(
Ω

( j)
i + kBT ln n( j)

N

)
dn( j)

N , (23)

where the single-ion canonical potential is given by:

Ω
( j)
i = M′( j)c2 + kBT ln

(
λ( j)

)3

g
( j)
s

+ F( j),int
i + n( j)

N

∂F( j),int
i

∂n( j)
N

· (24)

In Eq. (23), the variations dn( j)
N are not independent because of

the normalization of probabilities, and the baryonic number and
charge conservation laws:

1
〈V〉

=
∑

j

n( j)
N , (25)

nB =
∑

j

n( j)
N A( j), (26)

np =
∑

j

n( j)
N Z( j). (27)

These constraints are taken into account by introducing
Lagrange multipliers (α, µn, µp) leading to the following equa-
tions for the equilibrium densities n( j)

N :∑
j

(
Ω

( j)
i + kBT ln n( j)

N − α
)

dn( j)
N

− µn

∑
j

N( j)dn( j)
N − µp

∑
j

Z( j)dn( j)
N = 0, (28)

3 Quantum mechanically, the ion centre of mass is described by a plane
wave which has to be normalized to the whole volume.

with N( j) = A( j) − Z( j). Considering independent variations, the
solutions are given by

p j = 〈V〉n( j)
N = N exp

− Ω̃
( j)
i

kBT

 , (29)

with the normalization

N = exp
(
α

kBT

)
=

∑
j

exp

− Ω̃
( j)
i

kBT

 . (30)

The single-ion grand-canonical potential Ω̃
( j)
i reads:

Ω̃
( j)
i = Ω

( j)
i − µnN( j) − µpZ( j), (31)

where µn and µp can be identified with the neutron and proton
chemical potentials, respectively. In the definitions above, the
ion free energy contains the rest-mass energy, thus the chemical
potentials include the rest-mass energies as well.

The origin of the rearrangement term, R( j) =

n( j)
N ∂F( j),int

i /∂n( j)
N in Eq. (23) deserves a short discussion.

Due to the uniformity of the electron background included in
the expression for Fe, charge conservation must be realized at
the level of each cell:

ne = np =
∑

j

n( j)
N Z( j) =

Z( j)

V ( j) . (32)

This is at variance with the baryonic density that can fluc-
tuate from cell to cell. In Gulminelli & Raduta (2015) and
Grams et al. (2018), it was pointed out that this introduces a
self-consistency problem. Indeed, the OCP ion free energy FOCP

i
given by Eqs. (3), (8), and (10) depends on the local cell pro-
ton density n( j)

p = np because of the Coulomb interaction, and in
turn this implies a dependence on the local density n( j)

N through
Eq. (32). For this reason, a rearrangement term has to be added
to guarantee the thermodynamic consistency of the model. The
rearrangement term is calculated using Eqs. (18) and (32) (see
Eqs. (15), (22), and (23) in Grams et al. 2018):

R( j) = n( j)
N

∂F( j),int
i

∂n( j)
N

∣∣∣∣∣∣∣
{n(i)

N }i, j

= V ( j)P( j),int
i

≈ V ( j)(P − Pe) − kBT, (33)

where in the last equality the following approximation has been
made: P( j),int

i ≈ 〈P( j),int
i 〉 = P−Pe−P( j),id

i , i.e. the pressure in each
cell has been taken equal to its average value. This avoids the
self-consistency issue due to the dependence of the cell pressure
on p j (see Eq. (34) below and Appendix A). R( j)/V ( j) can be
interpreted as the interaction part of the partial pressure of the
(pure-phase) component ( j), while, in the MCP, the total pressure
reads:

PMCP
i =

ne

〈Z〉
kBT +

∑
j

p j
Z( j)

〈Z〉
P( j),int

i . (34)

We can observe that the partial pressure of the MCP is modified
with respect to the pressure defined in the OCP picture, POCP

i =

−∂FOCP
i /∂V; in other words, the total pressure of the MCP can-

not be calculated via a simple linear mixing rule employing the
OCP pressures. The proof of Eq. (34) is given in Appendix A.
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To evaluate the MCP composition, with the probability given
by Eq. (29), we still have to evaluate the chemical potentials. To
this aim, we exploit the thermodynamic relation:

G = F + P = µnnn + µpnp + µene, (35)

where G is the total Gibbs free energy density, nn is the neu-
tron density, and µe is the electron chemical potential. Using the
chemical equilibrium condition µn = µp + µe and the definition
of the free energy density, Eq. (17), we get

µn = 〈g〉 =

∑
j n( j)

N F( j)∑
j n( j)

N A( j)
+

P
nB
, (36)

ypµe = 〈ge〉 =

∑
j n( j)

N F( j)
e∑

j n( j)
N A( j)

+
Pe

nB
, (37)

where 〈g〉 (〈ge〉) is the total (electron) Gibbs free energy per
baryon of the MCP, and yp = 〈Z〉/〈A〉 is the average proton frac-
tion of the mixture, and 〈g〉 = 〈gi〉+〈ge〉, 〈gi〉 being the ion Gibbs
free energy per baryon.

The uniformity of the electron density over the different cells
n( j)

e = ne allows for another representation for the electron chem-
ical potential µe. We can introduce the Gibbs free energy of each
cell:

G( j) = F( j) + P( j)V ( j) = G( j)
i + G( j)

e , (38)

where

G( j)
i = F( j)

i + P( j)
i V ( j) , (39)

G( j)
e = F( j)

e + P( j)
e V ( j), (40)

G( j)
i (G( j)

e ) being the ion (electron) Gibbs free energy in the cell
j. The following equalities then hold:

G( j)
i = A( j)g

( j)
i = µ

( j)
p Z( j) + µ

( j)
n N( j), (41)

G( j)
e = A( j)g

( j)
e = µ

( j)
e Z( j), (42)

where the quantities µ( j) coincide with the respective physical
chemical potentials only in the OCP approximation. Dividing
Eq. (42) by the cell volume yields

Ge = Fe + Pe = n( j)
B g

( j)
e = µ

( j)
e ne, (43)

where Ge is the Gibbs free energy density of electrons. Since Ge
and Fe depend solely on the electron density ne (and are thus
the same in each cell), the quantity µ

( j)
e on the right-hand-side

of Eq. (43) must, therefore, coincide with the electron chemical
potential, which can be equivalently written as

µe = g
( j)
e

A( j)

Z( j) · (44)

Using Eqs. (36), (37), and (44), we can finally express the single-
ion grand-canonical potential in terms of the Gibbs free energies
per particle as:

Ω̃
( j)
i = M′( j)c2 + kBT ln

(
λ( j)

)3

g
( j)
s

+ F( j),int
i

+ R( j) −
(
〈g〉 − g

( j)
e

)
A( j). (45)

In a perturbative treatment of nuclear statistical equilibrium, the
average quantities can be replaced with the OCP solution, 〈g〉 ≈
gOCP

liq .

It is also interesting to express the single-ion grand-canonical
potential in terms of the thermodynamic quantities calculated in
the OCP approximation. Introducing a OCP single-ion grand-
canonical potential as

Ω
( j),OCP
i = F( j),OCP

i − µA( j) + µeZ( j), (46)

where µ = µn is the baryonic chemical potential and F( j),OCP
i is

given by Eq. (3), Ω̃
( j)
i can be equivalently written as

Ω̃
( j)
i = Ω

( j),OCP
i + δΩ( j), (47)

with the correction term given by

δΩ( j) = kBT
(
ln V ( j) + 1

)
+ P( j),int

i V ( j). (48)

3.2. MCP in a solid phase

In the solid state, the equilibrium distribution of ions is given by
an equation similar to Eq. (29), but using an appropriate expres-
sion for the single-ion grand-canonical potential:

p j,sol =
exp(−Ω̃

( j)
i,sol/(kBT ))∑

j exp(−Ω̃
( j)
i,sol/(kBT ))

· (49)

Similarly to the liquid state, the single-ion grand canonical
potential Ω̃

( j)
i,sol in the solid state can be written as

Ω̃
( j)
i,sol = Ω

( j),OCP
i,sol + δΩ

( j)
sol(p1, . . . , pm), (50)

with

Ω
( j),OCP
i,sol = F( j),OCP

i,sol − µA( j) + µeZ( j), (51)

and δΩ( j)
sol is the deviation from linear mixing in the solid phase,

see Medin & Cumming (2010). This term contains the rear-
rangement that can be analytically worked out, but it also couples
the probabilities of the m components, and the set of Eq. (49)
should be numerically solved.

3.3. Thermodynamic conditions for crystallization

From the thermodynamical point of view, the crystallization
temperature at each pressure is, thus, obtained from the Gibbs
conditions of phase equilibrium for all ion species. For a system
of m components, these conditions correspond to a set of m − 1
coupled equations (Medin & Cumming 2010):

∂FMCP
sol

∂p j
(p1,sol, . . . , pm,sol) =

∂FMCP
liq

∂p j
(p1,liq, . . . , pm,liq), (52)

where FMCP
liq(sol) = 〈Fi〉 is the ion part of the free energy per ion in

the MCP liquid (solid) phase and the partial derivatives should
be computed at the equilibrium solutions of each phase given
by Eqs. (29) and (49), respectively. Equation (52) has to be sup-
plemented with the extra condition ensuring that the two phases
share the same thermodynamic potential:

FMCP
sol = FMCP

liq +∇p∇p∇pFMCP
liq · (pppsol − pppliq), (53)

with ppp = (p1, . . . , pm) and the gradient operator ∇p∇p∇p has compo-
nents ∂/∂p j. If the complete set of equations is satisfied by the
equilibrium solid and liquid solutions, Eqs. (29) and (49), this
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means that the two phases can coexist at equilibrium, and crys-
tallization occurs.

An alternative procedure consists of directly solving the
Gibbs equilibrium conditions, Eq. (52), for the unknown frac-
tions pppsol = (p1,sol, . . . , pm,sol) in the solid phase, together with
the condition (53). Both procedures are numerically costly.
Moreover, they suppose that the crystallization occurs at the ther-
modynamical transition point. In the case of NS cooling, time
scales are such that it is not clear whether nuclear statistical equi-
librium is maintained until the transition point, see Goriely et al.
(2011). Depending on the dynamics of the process, the ion dis-
tribution could be frozen at temperatures higher than the crys-
tallization temperature. In view of these uncertainties, we do not
solve the full equations of phase equilibrium. Rather, we con-
sider the much simpler crystallization condition of a OCP:

gOCP
liq = gOCP

sol , (54)

where gOCP
sol(liq) is the OCP solution for the Gibbs free energy per

baryon in the solid (liquid) phase.
We can see from Eq. (36) that in the case of MCP, the local

condition 〈g〉liq = 〈g〉sol, where both terms are calculated at the
composition pppliq = (p1,liq, . . . , pm,liq) obtained from the MCP
equilibrium in the liquid phase, is equivalent to the local equality
of the free energy per ion, FMCP

sol (pppliq) = FMCP
liq (pppliq). This condi-

tion identifies the central zone of the spinodal region in a first
order co-existence zone. Since the spinodal is always included
inside the binodal, we can expect that our simplified condition
for the crystallization transition, Eq. (54), will yield a lower limit
estimate for the crystallization temperature.

In our approach for the MCP, it is also possible to calculate
the so-called impurity parameter of the solid crust, defined as

Qimp =
∑

j

p(Z( j))(Z( j) − 〈Z〉)2, (55)

where p(Z( j)) is the normalized probability distribution (inte-
grated over all N( j)) of the element Z( j) and it is assumed
that the most abundant species (contributing the most to 〈Z〉)
form a crystalline structure. This quantity, which also repre-
sents the variance of the ionic charge distributions, is impor-
tant for the calculation of transport coefficients hence also for
NS cooling simulations (see, e.g. the discussion in Sect. 9 in
Chamel & Haensel 2008 and in Sect. 7 in Meisel et al. 2018 for
a review).

4. Numerical results

4.1. Method

We computed the finite-temperature composition of the outer
crust of non-accreting unmagnetized NSs, both in the OCP
approximation and in the MCP, thus including a distribution of
nuclei in nuclear statistical equilibrium, as well as the crystal-
lization temperature for a OCP. We started our calculations at
P = 10−9 MeV fm−3, which also ensures that the atoms are com-
pletely ionized, and repeated the process until the neutron drip
sets in, the condition for which is µn = g = mnc2, mn being the
neutron mass (see, e.g. Chamel & Fantina 2015; Pearson et al.
2018 for a recent discussion on the neutron drip). For each value
of the pressure, which we increased in steps of ∆P = 0.003P, we
determined the composition as follows:
(1) Starting from a high-enough temperature for the plasma to be

in a liquid phase, we first minimized the Gibbs free energy
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Fig. 1. Crystallization temperature for the one-component plasma
(OCP) with all corrections included (black solid line) or without tak-
ing into account either the exchange (red dotted line), the polarization
(blue dashed line), or the anharmonic (green dot-dot-dashed line) cor-
rections. The inset shows a zoom in the high-pressure regime. See text
for details.

per baryon in the OCP approximation, gOCP
liq (see Sect. 2.2),

thus yielding (AOCP
liq ,ZOCP

liq ) and the corresponding neutron
and proton chemical potentials, µOCP

n and µOCP
p ;

(2) For the same nucleus (AOCP
liq ,ZOCP

liq ) ≡ (AOCP,ZOCP), we
calculated the Gibbs free energy per baryon of the solid
phase, gOCP

sol (see Sect. 2.3), and we checked whether crys-
tallization had occurred for the OCP, that is, whether
gOCP

sol (AOCP,ZOCP) ≤ gOCP
liq (AOCP,ZOCP); see Eq. (54);

(3) Starting from the OCP solution, that is, from µOCP
n and µOCP

p ,
we performed the calculation of the MCP in the liquid phase,
as described in Sect. 3. We went beyond the perturbative
approach and computed a self-consistent calculation of the
MCP, updating the neutron and proton chemical potentials
at each iteration. We found that convergence is reached only
after a few additional iterations since the chemical potentials
of the OCP are already very close to the self-consistent MCP
solution4;

(4) We repeated the first three steps, decreasing the temperature
until the crystallization temperature, Tm, was reached for the
OCP. Step (3) allowed us to calculate the average 〈A〉 and
〈Z〉, as well as the impurity parameter at Tm.

To reduce the computational time, we first estimated the
crystallization temperature for the OCP from Eq. (2.28) in
Haensel et al. (2007),

T OCP
m =

Z2e2

kBΓm

(
4π
3

nB

A

)1/3

, (56)

assuming the Coulomb parameter at melting Γm = 175 and
(A,Z) to be the same as in cold catalyzed matter, for which the
composition had been already calculated in Pearson et al. (2018)
with the same functional5. The density nB in Eq. (56) was esti-
mated from the zero-temperature equation of state (see Table 4 in
Pearson et al. 2018) using a linear interpolation of the pressure.
4 The criterion for converge is determined by requiring the difference
in the average Gibbs energy per baryon between two consecutive itera-
tions to be below 10−9 MeV.
5 We actually started the calculations from a value of temperature
slightly higher than that given by Eq. (56), thus ensuring that the OCP
is in the liquid phase.
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Fig. 2. Variation with pressure P of the average (solid lines) and most probable (dotted lines) values of the charge number Z and mass number A
of ions in a multi-component liquid plasma in full equilibrium for two selected temperatures: T = 109 K (panel a) and T = 2 × 109 K (panel b).
For comparison, results obtained in the one-component plasma approximation (dashed lines) are also shown. See text for details.

All the results presented in this Section were obtained
making use of the experimental masses from AME2016
(Wang et al. 2017) complemented with the HFB-24 nuclear
mass model (Goriely et al. 2013). Unless explicitly stated, we
included the following corrections to the free energy: in both
the liquid and solid phases, we included the electron exchange
and polarization corrections, Eqs. (B.5), (C.3), and (C.19), but
we dropped the electron correlation energy. For the solid phase,
we included the zero-point vibration energy, Eq. (12), as well as
the thermal harmonic correction, Eq. (C.14), and the anharmonic
corrections, Eq. (C.17).

4.2. Crystallization temperature

In Fig. 1 (black solid line), we show the crystallization temper-
ature for the outer crust obtained in the OCP approximation,
see Eq. (54). We do not expect that the obtained values of Tm
will be substantially affected if we replace gOCP

liq in Eq. (54) by
the average Gibbs energy per baryon in the liquid phase 〈g〉.
Indeed, we verified that the relative differences between gOCP

liq
and 〈g〉 lie below 0.5%, except at the interface between the
outer crust and the inner crust where the deviations become very
large. This may be attributed to the neglect of a free nucleon
gas which becomes questionable near the neutron drip and at
the relative high crystallization temperature (above 2 × 109 K).
For the considered mass model, the crystallization temperature
varies between ≈ 108 K and ≈ 2.8 × 109 K in the outer crust.
These values are in agreement with those presented in the left
panel of Fig. 3.17 in Haensel et al. (2007) and obtained with the
model of Haensel & Pichon (1994) for the outer crust.

The results are quite sensitive to the (even small) corrections
included in the free energy. While the inclusion of the exchange
correction to the electron energy, Eq. (B.5), has a negligible
impact on the determination of Tm, including the polarization
correction, Eqs. (C.3) and (C.19), changes the crystallization
temperature of about a few %, and up to about 40%−50% around
P ≈ 1.25× 10−4 MeV fm−3, where the curve becomes very steep
and the composition changes from the liquid 80Ni to the solid
124Mo (also see the discussion in Sect. 4.3 and Fig. 5). Concern-
ing the anharmonic correction to the ion vibrations, its inclusion
lowers the crystallization temperature in almost all the explored
pressure interval, reducing Tm up to ≈10%. This is shown in
Fig. 1, where we plot the crystallization temperature for the OCP
with all corrections included (black solid line) or without taking
into account either the exchange (red dotted line), the polariza-
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Fig. 3. Same as Fig. 2 at the crystallization temperature Tm.
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Fig. 4. Coulomb parameter at melting, Γm, as a function of pressure.
The dashed horizontal line indicates the value of Γm = 175.

tion (blue dashed line), or the anharmonic (green dot-dot-dashed
line) corrections.

4.3. Equilibrium composition of the MCP

The average and most probable values for the mass and charge
numbers of ions in a MCP in full equilibrium are plotted in Fig. 2
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as a function of the pressure P for two different temperatures:
T = 109 K (left panel) and T = 2 × 109 K (right panel). At these
temperatures and pressures, the MCP is in a liquid state. Results
obtained in the OCP approximation are also shown for com-
parison. As expected, the discontinuous changes of composition
with pressure found in the OCP approximation are smoothed out
when the co-existence of different nuclear species is taken into
account. Moreover, the most probable ions are found to coincide
with the OCP predictions except for a few values of the pres-
sures, e.g. P ∼ 8×10−7 MeV fm−3 for T = 2×109 K. This shows
that the linear mixing rule is generally a very good approxima-
tion in the liquid phase.

The equilibrium composition of the MCP at the crystallization
is shown in Fig. 3. The average values for the mass and charge

numbers, 〈A〉 and 〈Z〉, follow the OCP values closely, with two
noticeable exceptions around P1 ≈ 4.2 × 10−7 MeV fm−3 and
P2 ≈ 1.2×10−4 MeV fm−3. The deviations appear more clearly as
spikes in the pressure variations of the Coulomb coupling parame-
ter at melting, Γm, displayed in Fig. 4, as calculated using Eq. (C.2)
with T = Tm (solid line) andΓm = 175 (horizontal dashed line, see
Haensel et al. 2007). The two pressures P1 and P2 signal changes
of compositions associated with supercooling in the OCP approx-
imation: the liquid phase of the newly formed ionic species turns
out to be unstable, the equilibrium state of those species corre-
sponding to the solid phase for the same pressure. This is illus-
trated in Fig. 5, where the variations with pressure of the Gibbs
free energy per baryon (with respect to the neutron mass) around
P1 and P2 are plotted. As shown in panel a for P . P1 the
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Fig. 7. Normalized probability distribu-
tion of ions p(Z) as a function of the
charge number Z, for pressures P =
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d). Upper (lower) panels: distributions
of the multi-component plasma in the
liquid phase around (above) the crys-
tallization temperature. Arrows indicate
the charge number ZOCP predicted by
the one-component plasma approxima-
tion. See text for details.

OCP made of 66Ni crystallizes when the temperature decreases to
Tm ≈ 3.3 × 108 K, before 66Ni could be converted into 86Kr (this
would occur at the lower temperature≈3×108 K if 66Ni remained
liquid). On the contrary, for a slightly higher pressure, the compo-
sition of the liquid changes from 66Ni to 86Kr at T ≈ 3.9 × 108 K
before 66Ni crystallizes, as shown in panel b. However, the liquid
made of 86Kr at this temperature is supercooled, the solid phase
of 86Kr having a lower Gibbs free energy per baryon. A similar
behaviour can be inferred around P2 for 80Ni and 124Mo, as shown
in panels c and d of Fig. 5. However, such supercooling instabil-
ities are the direct consequence of the OCP and are, therefore,
spurious. They would disappear in the MCP approach. Except for
the two pressures P1 and P2, the Coulomb coupling parameter at
melting varies from ≈155 to ≈180 over almost all the explored
range of pressures, in fairly good agreement with the canonical
value Γm = 175. The crystallization temperature can thus be well
estimated by Eq. (56). The abrupt changes in composition found
in the OCP approximation at pressures P1 and P2 disappear in
the MCP approach. This is best seen in Fig. 6, where the nor-
malized probability distribution p(Z) is plotted for temperatures
close to the crystallization temperature and for two different pres-
sures around P1 (left panel) and P2 (right panel). The distribution
exhibits a bimodal character around 66Ni and 86Kr in the former
case, and around 80Ni and 124Mo in the latter case, leading to a
gradual change of the most probable nuclide from one to the other
as the pressure is increased. For this reason, the change in the most
probable nucleus in the MCP is shifted to a slightly higher pres-
sure with respect to the OCP case, see Fig. 3. Moreover, despite
the apparent discontinuity in the most probable nucleus, the com-
position actually varies very smoothly, as can be seen from the
average values of the mass and charge numbers.

To better assess the validity of the OCP approximation, we
plot in Fig. 7 the normalized probability distribution p(Z) as a
function of Z, for two different pressures, P = 10−5 MeV fm−3

(left panels) and P = 2 × 10−4 MeV fm−3 (right panels), and for
two different temperatures, T ≈ Tm (upper panels) and Tm < T =
5 × 109 K (lower panels). The charge numbers ZOCP predicted
in the OCP approximation are indicated by arrows. As can be
seen, ZOCP coincides with the most probable Z, thus indicating

that deviations from the linear mixing rule are negligibly small.
At relatively low pressure and temperature (panel a), the OCP
treatment is a very good approximation since the distribution
is very peaked around the most thermodynamically favoured
nuclide. With increasing pressure and temperature, the broaden-
ing of the distribution makes the OCP approximation less accu-
rate. In particular, panel d shows that for some pressure and
temperature the distribution may even become bimodal (a simi-
lar situation is also displayed in Fig. 6).

4.4. Impurity parameter

We show, in Fig. 8, the impurity parameter, Eq. (55), as a func-
tion of pressure at the crystallization temperature Tm (solid line).
These data are available in tabular format at the CDS. Since the
impurity parameter represents the variance of the charge distri-
bution, low values of Qimp (say below 1) indicate that the dis-
tribution is quite peaked and, therefore, the OCP treatment is a
good approximation. This is in accordance with Fig. 7, where it
can be seen that low values of Qimp correspond to pressures for
which 〈A〉 and 〈Z〉 are very close or nearly coincide with AOCP

and ZOCP, respectively. On the contrary, appreciable deviations
from the OCP predictions translate into large values for Qimp,
reaching, for P ≈ 1.2−1.3 × 10−4 MeV fm−3, about 50 at crys-
tallization (see also panel b of Fig. 6). The variations of Qimp
with pressure suggest that the outer crust may actually consist
of an alternation of pure (highly conductive) and impure (highly
resistive) layers.

This calculation was performed based on the hypothesis that
the statistical equilibrium is maintained during the cooling pro-
cess down to the crystallization temperature. However, if the
interior of a NS cools down rapidly enough in comparison to the
various reaction rates, the composition may be frozen at some
finite temperature Tf > Tm, see e.g. Goriely et al. (2011) (see
also Haensel et al. 2007; Chamel & Haensel 2008). A realistic
calculation of Tf requires dynamical simulations and is left for
future works. For comparison, we show in Fig. 8 the impurity
parameter, assuming that the composition is frozen at a fixed
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Fig. 8. Impurity parameter Qimp as a function of pressure inside the
outer crust assuming that the composition is frozen at the crystallization
temperature Tm (black solid line) and at a fixed temperature of T =
109 K (red dashed line). See text for details.

temperature of T = 109 K (dashed line). The most prominent
deviations are seen in the shallowest layers of the crust, where
the differences between Tf and Tm are the largest.

5. Conclusions

In this work, we studied the cooling and the equilibrium com-
position of the outer layers of a non-accreting unmagnetized NS
down to crystallization. To this end, we took into account the co-
existence of different nuclear species in a self-consistent nuclear
statistical equilibrium treatment using the latest experimental
atomic mass data supplemented with the microscopic nuclear
mass table HFB-24. We calculated the crystallization tempera-
ture in the OCP approximation for the range of pressures rele-
vant for the outer crust, starting from P = 10−9 MeV fm−3. We
found that the crystallization temperature varies from ≈108 K to
≈2.8×109 K. The corresponding Coulomb coupling parameter at
melting is found to be reasonably close to the canonical value of
175, except for specific values of the pressure for which super-
cooling occurs.

As for the composition, the discontinuous behaviour with
pressure observed in the OCP approximation is smoothed out
when matter is modelled according to a MCP approach. How-
ever, the average and most probable values for the mass and
charge numbers follow the OCP predictions closely at the crys-
tallization temperature, except when supercooling occurs in the
OCP approximation. This confirms that the linear mixing rule
usually adopted in the description of the liquid phase is gener-
ally a very good approximation, as long as the thermodynamical
equilibrium is maintained during the NS cooling, down to the
crystallization temperature.

Within our approach for the MCP, we also consistently cal-
culated the impurity parameter in the range of pressure of inter-
est for the outer crust. The non-monotonic variations of Qimp,
whose values can change by several orders of magnitude, amount-
ing up to about 50 at crystallization, suggests that the crust may
be composed of an alternation of pure (highly conductive) and
impure (highly resistive) layers. In the scenario where a NS
cools down sufficiently rapidly and the composition is frozen at
some finite temperature Tf higher than the crystallization tem-
perature Tm, the impurity parameter may be significantly larger

than that obtained at Tm, especially in the shallowest layer of the
crust where the deviations between Tf and Tm are expected to
be the largest. Therefore, the results that we obtained for Qimp
at crystallization can be considered a lower limit. The precise
determination of Tf (hence, of the impurity parameter as well)
would require dynamical simulations with a nuclear reaction net-
work and is left for future studies. The results we obtained are
based on the same nuclear energy-density functional BSk24 for
which a unified equation of state of non-accreting NSs has been
recently calculated and can be directly implemented in NS cooling
simulations.

In this work, we applied our treatment for the MCP in the
outer layers of the NS, however, a similar approach can be also
employed in the deeper layers of the NS with a proper account of
the free nucleon gas. This improvement deserves further inves-
tigation in view of the significance of the presence of impurities
for the evolution of NSs.
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Appendix A: Pressure of the multi-component
plasma

The pressure of the MCP is more easily worked out if we con-
sider the canonical ensemble,

P = Pi + Pe = −
∂F
∂V

∣∣∣∣∣
{p j},T

, (A.1)

where Pi (Pe) is the ion (electron) pressure, T is the temperature
and {p j} is the set of probabilities of the different ion species, p j
being the probability of the component j characterized by an ion
with mass (charge) A( j) (Z( j)). In Eq. (A.1), the total free energy
F = Fe + Fi (electron plus ion part), volume V , baryonic number
A, and charge Z, are calculated per ion6. Specifically, the volume
entering Eq. (A.1) is the average volume per ion:

V =
∑

j

p jV ( j). (A.2)

The ion and electron parts of the free energy are given by

Fi =
∑

j

p jF
( j)
i ; Fe =

∑
j

p jF
( j)
e , (A.3)

where F( j) is the free energy per ion of the component ( j) as
given for the liquid phase by Eq. (21):

F( j)
i = M′( j)c2 + kBT

ln n( j)
N (λ( j))3

g
( j)
s

 − 1

 + F( j),int
i , (A.4)

where M′( j) is the ion mass and n( j)
N is given in Eq. (18). Omitting

for simplicity the constant variables (p j,T ) in the derivatives,
Eq. (A.1) can be written as

P = −
∂

∂V

∑
j

p jF( j) + Fe

 . (A.5)

Since the electron density ne is the same in each cell, the deriva-
tive of the electron free energy yields directly the electron pres-
sure

−
∂Fe

∂V
= n2

e
∂ fe
∂ne
≡ Pe. (A.6)

As for the ion contribution, we consider separately the ideal
part (second term in Eq. (A.4)) and the interaction part (last term
in Eq. (A.4)). Using the definition of the partial density, Eq. (18),
n( j)

N = p j/V , we have

−
∂F( j)

i

∂V
=

kBT
V
−
∂F( j),int

i

∂V
· (A.7)

The ionic pressure becomes:

Pi =
kBT
V

+
n2

B

A

∑
j

p j
∂F( j),int

i

∂nB
, (A.8)

where we have used nB = A/V , nB being the baryon density,
with A =

∑
j p jA( j). Making use of the charge conservation,

ne = nBZ/A, and considering that in the canonical ensemble the
derivatives are evaluated for fixed numbers of particles,

6 As in the main text, also in the appendices we use capital letters for
the energy per ion, e.g F for the free energy per ion, small letters for the
(free) energy per baryon, e.g. f , and the notation F for the free energy
density.

Pi =
kBT
V

+
n2

e

Z

∑
j

p jA( j) ∂ f ( j),int
i

∂ne

=
kBT
V

+
1
Z

∑
j

p jZ( j)P( j),int
i , (A.9)

where P( j),int
i is the interaction part of the pressure as calculated

in the (pure phase) OCP approximation:

P( j),int
i ≡ POCP, int

i =
−∂F( j),int

i

∂V ( j) =
A( j)

Z( j) n2
e
∂ f ( j),int

i

∂ne
· (A.10)

In the case of a MCP, we can still define the partial pressure of
the (pure) ( j) component as

P( j)
i =

A( j)

Z( j) n2
e
∂ f ( j)

i

∂ne
, (A.11)

but the total pressure in a MCP is not just the sum of the pres-
sures of the (pure) OCP phases. Rather, it is given by

P = Pe +
kBT
V

+
1
Z

∑
j

p jZ( j)P( j),int
i , (A.12)

with P( j),int
i calculated as in Eq. (A.10).

Appendix B: Free energy and pressure of the
electron gas

For completeness, we give the expressions for the free energy
and pressure of the (uniform) electron gas at finite temperature.
The former can be written as

Fe = Fkin
e + Fexc

e + Fcorr
e + Zmec2, (B.1)

where the first term denotes the kinetic (“ideal”) contribution
(without the rest-mass energy), Fexc

e is the exchange part, and
Fcorr

e accounts for the electron-correlation free energy. The last
term is the rest-mass energy, me being the electron mass. We
note that the correction due to the polarization is not included
here since it is explicitly included in Fpol

ie , and accounted for in
the ion free energy, Eq. (3).

The kinetic free energy density, without the rest mass energy,
is given by (see, e.g. Chapt. 24 of Weiss et al. 2004 and Sect. 2
in Lattimer 1996)7

F kin
e =

Fkin
e

V
=

mec2

24π2λ3
e

[
g(xr) + 4

π2(kBT )2

(mec2)2

×

xr

√
1 + x2

r −
1 + 2x2

r

xr
+

√
1 + x2

r

xr

 , (B.2)

where λe = ~/(mec) is the electron Compton wavelength,

xr =
pF

mec
=
~(3π2ne)1/3

mec
(B.3)

7 We note that with respect to the expression for F kin
e given by

Eq. (2.65) in Haensel et al. (2007) there are two differences: (i) the
term −8x3 of Eq. (B.4) is not present in Eq. (2.65) in Haensel et al.
(2007) because the latter equation includes the rest-mass energy while
our Eq. (B.2) does not; (ii) the finite-temperature corrections are not the
same. This second discrepancy comes from a different expansion of the
integrals at finite temperature. Therefore, also the temperature correc-
tions in the pressure are different, see our Eq. (B.11) and Eq. (2.67) in
Haensel et al. (2007).
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is the relativity parameter, pF being the Fermi momentum, and

g(x) = −8x3
r + 3xr(1 + 2x2

r )
√

1 + x2
r − 3 sinh−1(xr). (B.4)

The exchange correction to the free energy density for a strongly
degenerate electron system is given by (see Eq. (2.151) in
Haensel et al. 2007; see also Stolzmann & Blöcker 1996)

F exc
e =

e2

4π3λ4
e

 f0 + f2

(
kBT
mec2

)2

+ f4

(
kBT
mec2

)4 , (B.5)

where

f0(xr) =
3
2

B2

1 + x2
r
− 3xrB +

3
2

x2
r +

x4
r

2
(B.6)

f2(xr,T ) =
π2

3

[
Cexc + 2 ln

(
2x2

r mec2

kBT

)
+ x2

r −
3B
xr

]
(B.7)

f4(xr) =
π4

18

(
1 −

1.1
x2

r
−

3.7
x4

r
−

6.3
x5

r
B
)

(B.8)

B(xr) =

√
1 + x2

r ln(xr +

√
1 + x2

r ), (B.9)

and Cexc = −0.7046. As for the correlation energy, since it is
expected to be negligible, especially in the relativistic regime
(see, e.g. the discussion in Pearson et al. 2011 and in Sect. 2.4.3
in Haensel et al. 2007), we neglect it here.

The pressure can be similarly decomposed as

Pe = Pkin
e + Pexc

e + Pcorr
e , (B.10)

where the kinetic term reads (Weiss et al. 2004)

Pkin
e =

mec2

24π2λ3
e

[
xr

√
1 + x2

r (2x2
r − 3) + 3 ln(xr +

√
1 + x2

r )

+
4π2(kBT )2

(mec2)2

(
xr

√
1 + x2

r

)]
. (B.11)

The exchange term can be written as (Stolzmann & Blöcker
1996)

Pexc
e = Gexc

e − F
exc

e , (B.12)

where F exc
e is given by Eq. (B.5) and the Gibbs free

energy density is expressible as (see Eqs. (49)–(51) in
Stolzmann & Blöcker 1996)

Gexc
e = ne

e2

2πλe

g3

g4
, (B.13)

with

g3 = xr −
3B

1 + x2
r

+
π2

6x4
r

(
kBT
mec2

)2 (
xr + 2x3

r +
3B

1 + x2
r

)
+

π4

18x8
r

(
kBT
mec2

)4 (
17
4

xr +
11
10

x3
r +

63
20

(5 + 4x4
r )B

1 + x2
r

)
(B.14)

g4 = 1 −
π2

6x4
r

(
kBT
mec2

)2

(1 − 2x2
r ) −

7π4

24x8
r

(
kBT
mec2

)4

. (B.15)

The correlation correction to the pressure being negligible, as for
the free energy density, we neglect it here.

Appendix C: Free energy of the Coulomb plasma
of ions

For the completeness and reproducibility of the results, here we
report the expressions for the free energy of the Coulomb plasma
of ions that we have used in this work.

C.1. Coulomb liquid

In the liquid phase, the ion free energy in the OCP approximation
is given by Eq. (3), with the “ideal” and interaction parts given
by Eqs. (8) and (10), respectively. The analytical representation
of the total Coulomb contribution, Fii,liq, has been derived by
Potekhin & Chabrier (2000)8:

Fii,liq = kBT
{
A1

[ √
Γ(A2 + Γ)

− A2 ln
√ Γ

A2
+

√
1 +

Γ

A2


+ 2A3

[√
Γ − arctan(

√
Γ)

]
+ B1

[
Γ − B2 ln

(
1 +

Γ

B2

)]
+

B3

2
ln

(
1 +

Γ2

B4

)}
, (C.1)

where A1, A2, A3 = −
√

3/2 − A1/
√

A2, B1, B2, B3, and B4 are
numerical constants, and Γ is the Coulomb parameter,

Γ =
Z2e2

aNkBT
, (C.2)

aN = (4π/3 ne/Z)−1/3 being the inter-ion spacing.
As for the polarization correction to the free energy, Fpol

ie,liq, an
analytical fit is given by Eq. (19) in Potekhin & Chabrier (2000):

Fpol
ie,liq = kBT

−Γe
cDH
√

Γe + cTFaΓνeg1h1

1 +
[
b
√

Γe + ag2
Γνe
rs

]
h2

 , (C.3)

where rs ≡ ae/a0 is the density parameter with ae = (4πne/3)−1/3

the electron-sphere radius and a0 = ~2/(mee2) the Bohr radius,
Γe is the coupling parameter for non-degenerate electrons,

Γe =
e2

aekBT
, (C.4)

and

cDH(Z) =
Z
√

3

[
(1 + Z)3/2 − 1 − Z3/2

]
, (C.5)

cTF(Z) =
18

175

(
12
π

)2/3

Z7/3

× (1 − Z−1/3 + 0.2Z−1/2), (C.6)

a(Z) = 1.11Z0.475, (C.7)

b(Z) = 0.2 + 0.078(ln Z)2, (C.8)
ν(Z) = 1.16 + 0.08 ln Z, (C.9)

g1(Z, ne) = 1 +
0.78

21 + Γe

(
Z
rs

)3

(
Γe

Z

)1/2

, (C.10)

8 Note that in the second line of Eq. (16) in Potekhin & Chabrier
(2000), B2 ln(1 + Γ/B1) should be replaced by B2 ln(1 + Γ/B2). The
correct expression is given by Eq. (2.87) in Haensel et al. (2007) and
implemented in the FITION9 routine available on the Ioffe website
http://www.ioffe.ru/astro/EIP/index.html
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g2(Z, ne) = 1 +
Z − 1

9

(
1 +

1
0.001Z2 + 2Γe

)
×

r3
s

1 + 6r2
s
, (C.11)

h1(Z, ne) =
1 + x2

r /5

1 + 0.18
Z1/4 xr + 0.37

Z1/2 x2
r +

x2
r

5

, (C.12)

and

h2(ne) = γ−1
r = (1 + x2

r )−1/2. (C.13)

C.2. Coulomb crystal

For a Coulomb crystal, the free energy in the OCP is given by
Eq. (11), with Eqs. (12) and (14). Analytical expressions for the
thermal contribution due to the ion vibrations around their equi-
librium position in the harmonic approximation and the anhar-
monic correction have been derived by Baiko et al. (2001) and
Potekhin & Chabrier (2010), respectively. The analytical fitting
formula for the thermal (harmonic) contribution, Fth, can be
found in Baiko et al. (2001, see their Eq. (13)),

Fth = kBT

 3∑
n=1

ln(1 − e−αnθ) −
A(θ)
B(θ)

 , (C.14)

where θ ≡ ~ωp/(kBT ) = Tp/T , ωp being the ion plasma fre-
quency, Eq. (13), and

A(θ) =

8∑
n=0

anθ
n, (C.15)

B(θ) =

7∑
n=0

bnθ
n + α6a6θ

9 + α8a8θ
11, (C.16)

with αn, an, and bn numerical constants (see Table II in
Baiko et al. 2001). The anharmonic correction, Fanharm, is only
known for a bcc lattice. Analytical expressions have been
derived in Potekhin & Chabrier (2010); see their Eq. (8):

Fanharm = F(0)
anharme−c1θ

2
− kBTd1

θ2

Γ
, (C.17)

where

F(0)
anharm = kBT

[
f1
Γ

+
f2

2Γ2 +
f3

3Γ3

]
, (C.18)

with c1, d1, and fn numerical constants9. In Eq. (C.17) (Eq. (8)
of Potekhin & Chabrier 2010), the anharmonic correction for
a classical Coulomb crystal derived in Farouki & Hamaguchi
(1993), Eq. (C.18), has been modified by the inclusion of two
additional terms reproducing the zero-temperature and classi-
cal limits. This expression is valid for any value of θ and
ensures that the anharmonic corrections to the heat capacity and
entropy do not exceed the dominant (harmonic-lattice) contribu-
tion (Potekhin & Chabrier 2010).

The polarization correction in the solid phase has been ana-
lytically fitted in Potekhin & Chabrier (2000) as

Fpol
ie,sol = −kBT f∞(xr)Γ

[
1 +A(xr)

(
Q(θ)

Γ

)s]
, (C.19)

9 With respect to Potekhin & Chabrier (2010), we have indicated d1
instead of b1, and fn instead of an to avoid conflicting notation for the
numerical coefficients with previous expressions of the thermal (har-
monic) term.

where

f∞(xr) =
54

175

(
12
π

)1/3

αZ2/3b1

√
1 +

b2

x2
r
,

A(xr) =
b3 + a3x2

r

1 + b4x2
r
,

Q(θ) =

√
1 + (qθ)2, (C.20)

with α the fine structure constant. The parameters s and b1–b4,
that depend on Z only, are given by Potekhin & Chabrier (2000)

s =
[
1 + 0.01 (ln Z)3/2 + 0.097 Z−2

]−1
,

b1 = 1 − a1 Z−0.267 + 0.27 Z−1,

b2 = 1 +
2.25
Z1/3

1 + a2 Z5 + 0.222 Z6

1 + 0.222 Z6 ,

b3 =
a4

1 + ln Z
,

b4 = 0.395 ln Z + 0.347 Z−3/2. (C.21)

For a bcc lattice, a1 = 1.1866, a2 = 0.684, a3 = 17.9, a4 = 41.5,
and q = 0.205 (see Table III in Potekhin & Chabrier 2000).

In the limit of low temperature, θ ≡ Tp/T � 1, for which
Q(θ)→ qθ, the polarization correction to the free energy density
reduces to (see Appendix B in Pearson et al. 2018)

F
pol

ie,sol = − f∞(xr)
(

4π
3

)1/3

e2Z2/3n4/3
e[

1 +A(xr)
(

q
Γp

)s]
, (C.22)

where

Γp =
Z2e2

aNkBTp
, (C.23)

with Tp = ~ωp/kB. Note that for finite values of Z, and assuming
Γp � 1, the electron polarization correction to the energy for a
bcc lattice at zero temperature can be approximately expressed
as (Chamel & Fantina 2016b)

Epol
ie,sol ≈ b1(Z)ETF

ie , (C.24)

where the Thomas-Fermi correction is given by Salpeter
(1961)

ETF
ie =

36
35

(
4

9π

)1/3

αZ2/3EL, (C.25)

with EL the static lattice term given by Eq. (15).
The corresponding pressure terms can be derived from the

thermodynamic definition, Eq. (A.1). The routines that compute
the analytical representations of both the free energy and pres-
sure of Eqs. (C.1), (C.3), (C.14), and (C.19) are available on the
Ioffe Institute website10.

10 http://www.ioffe.ru/astro/EIP/index.html. We have
employed here the routines for unmagnetized plasmas.
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