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A multiscale model is developed to simulate the climb-assisted glide of edge dislocations anchored by a random
distribution of nanosized vacancy clusters. Atomic-scale simulations allowed us to characterize the interactions
between an edge dislocation and nanovoids as a function of their sizes and shapes. The atomic-scale data were
used to calibrate the parameters of an elastic line model, which we employed to evaluate the average glide distance
of a dislocation with realistic dimensions. To complete our scheme, a standard model for the climb velocity of
edge dislocations was enhanced with atomic-scale inputs in order to determine the deformation rate expected
through the climb-assisted glide. Our predictions made for the archetypical case of Al are in good agreement with
experiments of different types, i.e., tensile deformation tests and steady creep tests.
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I. INTRODUCTION

According to direct observations through transmission elec-
tronic microscopy (TEM) in various face centered cubic (fcc)
metals, vacancy clusters may form along the processes of
cold deformation or quenching (see papers of Kiritani [1,2],
Kojima et al. [3], and Loretto et al. [4,5]). Dai and Victoria
[6] observed these defects in a single crystal of Cu, where
they show that their density increases with strain. In parallel,
molecular dynamic studies, carried out by Wang et al. [7–11]
and Brinckmann et al. [12] confirmed that the vacancy clusters
can be formed by nonscrew dislocation annihilations, a clue
suggesting that some nanovoids might continually form during
the deformation process, as expected earlier by Saada [13]. At
room temperature, vacancy clusters seem to take the shape of
Stacking-Fault Tetraedra (SFT) [1,3,4,6] with a typical size
of 2.5 nm, in average [6]. After quenching from very high
temperatures, some faceted voids were also observed in Al
[1]. In course of a deformation process, the vacancy clusters
anchor the dislocations and therefore they could contribute
to the hardening of materials. Under the combined effects of
thermal activation and applied shear stress, the dislocations
may eventually pass the obstacles by simple glide [14–18]
or by cross-slip for screw-type dislocations [19,20]. However,
when the applied shear stress is much smaller than the critical
stress to glide or to cross-slip, the diffusion of vacancies is
possible at sufficiently high temperatures. Then the climb of
edge dislocations becomes efficient and these dislocations may
circumvent the obstacles perpendicularly to their glide plane,
before they glide until they encounter another pinning config-
uration [21–26]. Such a process was proposed by Weertman
to explain the stress exponent of the deformation rate in the
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steady creep [27]. Therefore, provided that voids could exist
in a certain range of temperature [28,29], the deformation of
an fcc crystal is expected to proceed through the glide of edge
dislocations assisted by climb. In order to predict the strain
rate γ̇ associated with such a process, we constructed a model
made of three components, treating the different space and time
scales that are involved in the climb-assisted glide: (i) atomic-
scale simulations allowed us to characterize the interaction
between dislocations and the vacancy clusters. They were used
also to determine the formation of jogs along the climb of an
anchored dislocation. (ii) A two-dimensional elastic line model
[30–34] is employed to determine the typical glide distance of
dislocations, denoted by d̄ . The parameters of such a model
were calibrated according to our atomic-scale simulations.
(iii) Finally, we used the standard theory of dislocations [35] to
determine the time required for dislocation climb tclimb, which
allowed us to complete the Orowan equation and to fix the
strain rate as γ̇ = ρbd̄/tclimb, where ρ stands for the dislocation
density and b is the norm of the dislocation Burgers vector. The
predictions of the theory agree well with experimental data
either from tensile deformation tests [36] or from steady-state
creep (SSC) experiments [37–40]. SSC is a complex process
to which multiple mechanisms may contribute concurrently
and many propositions were made about its theoretical frame
[41–52]. Although the presence of vacancy clusters was not
confirmed in SSC experiments, we think that our study could
motivate some interest about the possibility of such obstacles,
in addition to the more standard dislocation forest [21,22,27].
Furthermore, the mechanism of glide assisted by climb could
be of some importance in more complex materials such as
steels, where the obstacles could be formed by impurities
and precipitates [53], instead of vacancy clusters. In the
present work, the activity of dislocation sources as well as the
interaction between the dislocations were not accounted for.
To that respect, simulations based on discrete the dislocations
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dynamics method [21,22,54] or continuous mean-field theory
[55] are more appropriate. Our study is concentrated on an
essential parameter needed in such methods, i.e., the single
dislocation mobility.

The present paper is organized as follows. The simulation
methods are detailed in Sec. II and our results are presented
and discussed in Sec. III. In Sec. IV, we summarize our work
and draw some perspectives.

II. SIMULATION METHOD

A. Interaction between a nanovoid and a dislocation

Molecular static simulations were employed to determine
the interaction between a single edge dislocation and a vacancy
cluster in Al. The interatomic forces were computed from
the embedded atom method (EAM), which allowed us to
treat large simulation cells in comparison to more accurate
methods based on the density functional theory [56]. We used
an EAM version proposed by Liu et al. [57] for a potential
developed originally by Ercolessi et al. [58]. Such a potential is
commonly used to study dislocations because of its robustness
in that field (see Refs. [16,59] for the proper validation of the
potential). The simulation cell involves 750 000 atoms and its
orientation is [110] along X, [1̄12] along Y, and [11̄1] along
Z [see Fig. 1(a)]. The size of the simulation cell has been
determined to avoid artifacts due to boundary conditions. The
atoms are placed according to the fcc symmetry. We performed
simulations with periodic boundary conditions in the X and Y
directions. In order to study the dislocation motion under an
applied shear stress, we introduced free surfaces orthogonal
to Z. The details of the simulation cell and the introduction
of an edge dislocation are detailed in Refs. [20,34]. The
dislocation Burgers vector is a0

2 [110] where a0 corresponds
to the lattice parameter of the perfect fcc crystal. The norm of
the Burgers vector is b = a0/

√
2. In order to add a spherical

cavity, we merely removed atoms located at a distance less
than r , from a selected position in the crystal. Then the atomic
positions were relaxed by adding a Langevin damping into the
dynamical equation of motion. The latter was integrated with
a standard velocity VERLET algorithm [60]. The convergence
criterion on the interatomic forces was 10−5 eV/Å. To apply
a stress on the free surfaces, we added constant forces on
each atom located near these surfaces [20]. At each stress
increment (<1 MPa), the relaxation was repeated with the same
convergence criterion. Increasing gradually the shear stress
component τ , corresponding to the orientation [110]{111}, we
determined the critical shear stress τc allowing the dislocation
to pass the cavity [61]. An example of a dislocation anchored
by a cavity is presented in Fig. 1(a), where the atoms were
colored according to the configuration of their first neighbor
cell.

The pinning force fp of vacancy clusters was determined
through the balance with the Peach-Koehler force:

fp = τcbL, (1)

where τc is the minimum shear stress required to unpin the
dislocation from the void and L is the length of the dislocation
line in the Y direction, i.e., the dimension of the simulation
cell. From the atomic-scale simulations, we computed τc for

FIG. 1. (a) 3D view of our simulation cell where we have selected
atoms situated in the stacking fault ribbon of an edge dislocation
(purple), pinned by a nanovoid (gray). (b) Pinning force fp against
the cluster size in Al and Cu, for different shape of clusters (spherical
voids and SFT), computed in molecular static simulations (symbols)
and from BKS theory [63,64] (lines), see Eq. (3). The simulation size
in the Y direction, noticed by L, is 26 nm for Cu, and 29 nm for Al.

voids with different radius r (see Table I) in order to obtain a
relation between fp and r . We followed the same procedure as
Ref. [61]. For comparison, we performed the same calculations
in the case of Cu, using the EAM developed by Mishin et al.
[62], with the same simulation cell geometry as for Al. As
expected, the results reported in Fig. 1(b) show that the larger
the cluster the stronger the pinning force fp. Our computations
show a dependence of fp on the cluster shape. We determined
the effective radius r for SFT by counting the number of
vacancies nv in the cluster and equating it to the number
vacancies in a spherical void of radius r. This yields the formula
nv = 4

3πr3/Vat, where Vat is the atomic volume.

TABLE I. Critical stress τc to unpin an edge dislocation from a
cavity of radius r . Activation energy Eact for the same process under
zero stress (see Fig. 2).

r (Å) = 4 4.5 5 5.5 6 6.5

τc (MPa) 42 47 45 46 50 60
Eact (eV) 2.37 2.32 2.79 2.82 3.70
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Bacon, Kocks, and Scattergood (BKS) [63,64] derived an
analytical formula for τc, which is written as follows:

τBKS = μ0b

2πL

[
ln

(
2rL

(2r + L)b

)
+ B

]
, (2)

where B is a parameter adjusted to fit the simulation data, r is
the vacancy cluster radius, and μ0 is the shear modulus equal to
25.4 GPa for Al and 42.1 GPa for Cu [65]. For both Al and Cu,
the adjustment of B against our atomic-scale simulations yields
B = 0.01 [see Fig. 1(b)]. The logarithmic variation predicted
by BKS agrees rather well with the atomic-scale simulations.
Combining Eqs. (1) and (2), we obtained for 2r � L,

fp = μ0b
2

2π

[
ln

(
2r

b

)
+ B

]
. (3)

This unequivocal relation between the obstacle size r and
the pinning force fp is used to fix the pinning strength of
obstacles in the elastic line model presented in the following
section. The difference in fp obtained from simulations for
voids and for SFTs [see Fig. 1(b)] is not described in BKS
theory, so we assumed that it is negligible for clusters of sizes
comparable to those observed experimentally.

In order to compute the interaction potential between the
cavity and the dislocation, we used the nudged elastic band
method (NEB) [66,67] with a constant spring force of kNEB =
10 eV/Å and 130 NEB images. The starting configuration for
each image was determined previously from the molecular
quasistatic simulations realized at a stress level above the
critical shear stress. Since the stress was sufficiently large to
permit the dislocation to pass the obstacle, we recorded regu-
larly the atomic configurations along the dislocation trajectory
and we used them as starting configurations for the NEB.
The relaxation in NEB was performed until the maximum
interatomic force becomes less than 10−4 eV/Å, which allows
us to determine the minimum energy path (MEP). The MEPs
associated to different cavity radii r are presented in Fig. 2(a).
We noticed that the interaction between a dislocation and a
vacancy cluster is attractive. When the dislocation crosses
the cavity, the latter is sheared and a step corresponding to
one Burgers vector is formed as shown in Fig. 2(b). Hence
the initial and the final energy along the MEP are not equal. We
noticed that the larger is the cavity the larger is the difference
between the initial and the final energies. The difference in
energy between the final state and the bottom of the MEP [see
Fig. 2(a)] corresponds to the thermal energy required to unpin
the dislocation, denoted by Eact . The mechanical work required
to cross a cavity can be approximated by the product between
the pinning force fP and the distance that the dislocation has
to progress in order to cross the cavity. The latter is less than
2r . Therefore one deduces that Eact ≈ 2rfp, where fp is given
by Eq. (3). The simulation data obtained by the NEB method
were reported in Table I and they were plotted in Fig. 2(c)
along with the analytical approximation Eact = 2rfp. A quite
good agreement was obtained, therefore showing that the BKS
theory can be used to estimate the height of the potential energy
barrier that corresponds to the dislocation unpinning from a
nanovoid.

FIG. 2. (a) Potential energy of the simulation cell against the
position of the dislocation bypassing a vacancy cluster of radius r ,
computed from the NEB method [66,67] with no applied stress. Each
symbol corresponds to a NEB image. (b) Cavity before (A) and after
(B) the dislocation crossing. The upper and the lower parts of the cavity
were shifted by one Burgers vector with respect to each other, thereby
forming steps indicated by red circles. (c) Variation of the energy
barrier for a dislocation crossing a nanovoid of radius r , according to
simulations (symbols) and to the analytical estimation derived from
BKS theory [63] (see text).

B. Climb process

To verify how the dislocation climb proceeds at the atomic
scale, we introduced vacancies in the simulation cell one by
one, and the relaxation procedure was repeated. For each
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FIG. 3. (a) Formation energy of a vacancy against the distance
in [11̄1] direction to the dislocation anchored by a vacancy cluster
(which radius is r = 6 Å). The applied shear stress is τ = 40 MPa.
(b) Atomic configuration corresponding to the minimal formation
energy for the process described in (a). The color code is the same as
in Fig. 1(a).

addition of a vacancy, we chose the atom to be removed
according to an energy criterion which states that the vacancy
is located where its formation is most favorable, i.e., where
the formation energy is the smallest. The formation energy
is computed for every atomic position in the simulation cell
before we introduce a new vacancy. A kinetic Monte Carlo
simulation as those proposed in Refs. [68,69] would be more
appropriate to capture the time scale and the configuration
entropy. Simulations with the KMC algorithm would also allow
us to treat the dislocation mobility in the three-dimensional
distribution of various obstacles. Here we need to determine
only the series of the more favorable configurations in order
to sketch out an average evolution of the system. We also
neglected the contributions from crystal vibrations.

We computed the formation energy Ef of a vacancy in the
vicinity of a dislocation anchored by a cluster as follows:

Ef = E(cell+d+c+v) − Nat − 1

Nat
E(cell+d+c), (4)

where E(cell+d+c) stands for the potential energy of the sim-
ulation cell including a dislocation and a vacancy cluster and
E(cell+d+c+v) is the same but with one single vacancy in addition
(Fig. 3). The number of atoms in the former is denoted by
Nat. The formation energy Ef in the compression zone is
lower than in the tensile zone (see Fig. 3), as expected from
the standard theory of dislocation [70]. At the Z coordinate
where Ef is minimum, i.e., in the {111} plane contiguous to
the glide plane located in the compression zone, we tested all
the atomic positions. We noticed that the formation energy

FIG. 4. Snapshot of our simulations along the introduction of
vacancies one after the other (see text): (a) no additional vacancy,
(b) after addition of 30 vacancies, and (c) after addition of 45
vacancies. The atom colors are fixed according to the formation
energy of the vacancy which could be located at the position of the
corresponding atom.

reaches a minimum on the trailing partial in the vicinity of the
void [see Figs. 3(b) and 4(a)].

When adding more vacancies, we found that the adsorption
of vacancies occurs essentially in the first-neighbor positions
to the primary vacancy. After a certain number of adsorptions,
it yields a pair of jogs [see Figs. 4(b) and 4(c)]. The subsequent
adsorption is always more favorable at the bottom of a jog such
that the step formed by the jog moves one lattice distance after
each vacancy adsorption. We found that such a propagation is
more favorable on the side of the obtuse jog. The difference
between the formation energy on the obtuse jog and on the
acute jog [35] is 0.2 eV in favor of the former. Such asymmetry
between jogs due to the presence of the void is expected to have
barely no consequences on the velocity of the climb process.
However, we admit that a study devoted to such an asymmetry
would be useful in various fcc crystals.

C. Elastic line model

In order to compute the average distance over which a dis-
location may glide through a random distribution of obstacles,
we employed a 2D elastic line model [30–34]. It allowed us
to consider realistic dislocation length and glide distances, not
feasible directly in atomic-scale simulations. The dislocation
line is discretized in segments of length b and the position of
each segment labeled by i is determined by its coordinate xi

along the line direction. For the sake of simplicity, an attractive
potential W (x) was used to model the dislocation-obstacle
interaction, computed in atomic scale simulations. We chose
the simple form W (x) = −A(x2 − w2)4/w8, where w is the
range of the interaction beyond which the potential is zero,
x is the distance between the dislocation and the obstacle,
and A is the amplitude of the potential. The latter was fixed
according to the pinning force [Eq. (3)], which means that we
adjusted the parameters of the potential W (x) such that fp is
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the extrema of dW (x)/dx, obtained at x = w/
√

7. It yields
A = 343

√
7wfp/1728. The interaction range in X direction,

denoted by w was fixed to w = 5b, such that we neglected the
long-range elastic interactions. We assumed that the interaction
potential is limited in the direction of the elastic line to only
one segment of width b, which proved sufficient in different
situations [34]. Therefore the total force on the segment i is

Fi =−
∑

j

W ′(|xi−Xi,j |) − τb2 − �(xi+1 + xi−1−2xi )/b,

(5)

where Xi,j corresponds to the position of the obstacle ranked
by j along the X direction situated in front of segment i. The
second term in Eq. (5) corresponds to the Peach-Koehler force
on a segment of length b, while the third one represents the
line tension contribution, which we determined as follows.
Setting the same length for the elastic line and the dislocation
in the atomic scale MS simulations, we applied the same shear
stress in both simulations after having introduced a single
obstacle whose the pinning force was sufficient to anchor
the dislocation. Then we merely adjusted the coefficient �

such that we obtain similar curvature for the dislocation and
the elastic line. Since the dislocation is dissociated in two
partial dislocations in the atomic scale MS simulations, we
have compared the elastic line profile to the average profile
between the two partial dislocations. A more complete elastic
line model allows to capture thoroughly the properties of
the dissociated dislocation [34]. The elastic line profile is
superimposed to the MS computation for the dislocation profile
in Fig. 5(a). Through such a procedure we found for the edge
dislocation in Al, � = 3.0 eV/nm. For comparison, the elastic
theory predicts �el = μ0b

2 1−2ν
4π (1−ν) ln(R/b) [71], where R is the

distance between the dislocation and its first periodic images,
which corresponds roughly to the box size in the direction Y
[1̄12], Ly = 104b. It gives numerically �el = 2.7 eV/nm.

For a dislocation of length L in interaction with a single
obstacle situated at Xn,1, the sum of the forces in Eq. (5) at equi-
librium leads to τbL = −W ′(|xn − Xn,1|). It reaches a max-
imum when |xn − Xn,1| = w/

√
7 and thus when τbL = fp.

The equilibrium configuration of the elastic line is computed
through a simple gradient algorithm where the gradient is given
by Eq. (5). A random distribution of obstacles is constructed in
the glide plane of the elastic line. Each obstacle is associated
to a pinning force fp and the probability to find an obstacle on
a given site of the plane is fixed by c, which we have identified
to the probability of finding a cluster on a site of the crystal,
which gives c = nsVat, where ns is the number of clusters per
volume unit and Vat is the atomic volume in the crystal. Vat =
1.66 × 10−29 m3 in Al crystal. Different random configurations
were generated by changing the seed of the random number
generator. Once the gradient algorithm has fulfilled the force
criterion (|fi | < 10−6 eV/nm), we assumed that the disloca-
tion was at rest. Then, the dislocation is supposed to climb
and circumvent the obstacles. We mimicked such a process
by removing all the obstacles contiguous to the anchored
elastic line. We are aware that the present model needs to be
refined in terms of the process of dislocation unpinning as well
as the dislocation interactions with clusters out of the glide
plane. As it was shown in our atomic-scale computations (see

FIG. 5. (a) Profile of the elastic line (blue line) in interaction
with an obstacle whose the pinning force fp corresponds to a radius
r = 6.5 Å, under an applied shear stress τ = 50 MPa. For comparison,
we superimposed the profile of an edge dislocation in Al, in interaction
with a void of radius r = 6.5 Å, under the same shear stress. The color
code is the same as in Fig. 1(a). The dislocation length and the elastic
line have the same length L = 119b. (b) Snapshot of an elastic line
(lines) anchored by a random distribution of obstacles (points). Each
line corresponds to a different equilibrium configuration. The geom-
etry of the glide plane is defined by LX = LY = 1000b. The average
distance between anchored configurations, d̄(τ, r, c), is computed
against the resolved shear stress τ for different obstacle concentration
c = nsVat: (c) with a pinning force fp (r = 8.5 nm) = 8.5 eV/nm and
(d) with a pinning force fp (r = 2.5 nm) = 5.9 eV/nm. The symbols
are for simulation results and the lines correspond to a fit [see Eq. (6)].

Sec. II B), the jogs form in the vicinity of a void and propagate
all along the dislocation length. The repetition of such a
process allows to circumvent the obstacles of the anchored
configuration. Eventually, it yields the dislocation unpinning,
which supports our assumption in the elastic line model. For
the present time, we are compelled to make assumptions that
seem confirmed by the comparison, made later on, between
our predictions and the experimental results. After the elastic
line unpinning, the relaxation procedure was then repeated
until the elastic line finds another anchored configuration [see
Fig. 5(a)]. The difference between the initial and the final
positions of the elastic line provides us an estimation of the
jump distance for the dislocation. Repeating the computation
for different random distributions allowed us to establish a
thorough sampling for the jump distance and thus to compute
its average d̄ (τ, r, c), against τ , c, and fp [see Figs. 5(b) and
5(c)]. Let us recall that thanks to the atomic scale computations,
fp and the radius of the obstacle r are unequivocally related
[see Eq. (3)].
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In Figs. 5(b) and 5(c), we reported the variation of d̄(τ, r, c)
against the applied stress for different pinning forces fp(r ), i.e.,
for different obstacle sizes and for several concentrations. We
introduced a phenomenological fit to reproduce the variation
of d̄ (τ, r, c), which we computed from simulations:

d̄(τ, r, c) =
√

a0(c)τ + exp [a1(c, fp(r ))τ ]

− a2(c, fp(r ))τ − 1, (6)

with

a0(c) = 0.95c−0.8,

a1(c, fp(r)) = 2.19 × 10−3fp(r )−1.4c−0.62 (7)

a2(c, fp(r)) = 9.91fp(r )−0.237 exp(−1064c),

where the units are b for d̄ (τ, r, c), MPa for the shear stress
τ , and eV/nm for the pinning force fp. When the resolved
shear stress τ is much smaller than the critical shear stress,
i.e., the stress limit above which the dislocation passes the
obstacles with no resistance, the jump distance varies smoothly
with stress [i.e., a square root variation according to our fit
Eq. (6)]. By contrast, when τ approaches the limit of the critical
stress, the jump distance increases at an exponential rate. Such
a dramatic rise comes from the scarcity of configurations able
to stop the dislocation at the approach of the critical stress.

III. RESULTS

The simulation method that we described in Sec. II allows
us to determine the parameters needed for a climb assisted
glide model. According to the Orowan law [72], the shear rate
γ̇ can be written as

γ̇ = ρbv, (8)

where ρ is the density of mobile dislocations, which is assumed
to follow the Taylor law [73–75] τ = 0.3μb

√
ρ, v is the

dislocation velocity, and b is the norm of the Burgers vector.
The average time tclimb required for the dislocation to climb
over obstacles is much larger than the time required for the
dislocation to glide between two anchored configurations.
Therefore the dislocation velocity corresponds to the glide dis-
tance between two successive anchored configurations divided
by tclimb. Hence γ̇ can be written as

γ̇ = ρb
d̄ (τ, fp(r ), c)

tclimb
, (9)

where d̄ (τ, fp(r ), c) is the average glide distance computed
in Sec. II C. The time required for a dislocation to climb
over a distance equal to the average size of obstacles r is
merely tclimb = r/vclimb. The dislocation climb velocity vclimb

is estimated from the theory presented in Appendix B, which
is derived in standard textbooks [70], such that

tclimb = r/
2πDbulk

b ln(R∞/rc )

[
exp

(
Vatσ

kBT

)
− 1

]
, (10)

where σ = τ/S is the tensile stress, with S as the Schmid factor,
which takes usually the value of 1/2 for geometrical reasons in
polycrystals [53]. The radius rc ≈ 2b corresponds to the cutoff
radius introduced in the elastic theory of dislocations [70],
intending to represent the dislocation core. Vat is the atomic

FIG. 6. Comparisons between the theoretical predictions (lines)
and the experimental data (symbols) in Al: tensile tests [36] and creep
tests [37–40]. The obstacle concentration c in the theory was adjusted
to fit the deformation experimental data. The symbols are colored
according to the temperature of the corresponding experiment. The
color code is reported on the right-hand side of the figure.

volume and R∞ stands for the average distance between dislo-
cations, which is generally assumed to be given by R∞ ≈ 1√

ρ
.

kB is the Boltzmann constant, T is the temperature and Dbulk

is the bulk self-diffusion coefficient. The latter is computed
via the law Dbulk = D0

bulk exp (−Qbulk/kBT ) with D0
bulk =

1.76 × 10−5 m2/s and Qbulk = 1.31 eV (see Appendix A and
Refs. [76–79]). Hence γ̇ could be written as

γ̇ = ρ
d̄ (τ, fp(r ), c)

r

2πDbulk

ln(R∞/rc )

[
exp

(
Vatσ

kBT

)
− 1

]
. (11)

For the purpose of comparison with experiments, we remark
that for the same geometrical reasons as for σ = τ/S, the
global strain rate is given by ε̇ = Sγ̇ . However, we have veri-
fied that such a geometrical factor has barely no consequences
on the final computational results. The pinning force fp is
related to the size of the vacancy cluster through Eq. (3), where
the size of the clusters was fixed according to experimental
observations by Dai et al. [6], i.e., r = 2.5 nm in single crystals
of Cu. Since we did not found any measures in Al for the cluster
size, we assumed that it is similar in both materials. The average
distance between anchored configurations d̄(τ, fp(r ), c) was
computed through the elastic line model (Sec. II C). In the
experimental observations by Dai et al. [6], it was found that
for the small deformation γ = 0.05 the number of clusters
per volume unit was ns = 1.1 × 1022 m−3, while for the large
deformation γ = 1.39, the experimental observations indicate
ns = 6.9 × 1022 m−3. Although the observations from Dai
et al. were realized at room temperature in single crystals of Cu,
it seems reasonable to argue that the concentration of clusters
increases also as the total strain in Al. In our computations, we
therefore used two different values for the cluster concentration
c, which we have adjusted according to the experimental strain.
The results of our fits were reported in Fig. 6. We obtained
a good agreement for the two types of experimental defor-
mation tests. Concerning tensile deformation tests [36] where
the maximum strain was γ > 1, we found c = 5.0 × 10−6,
which corresponds to a number of clusters per volume unit
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ns = 3.0 × 1023 m−3. Concerning the creep deformation tests
[37–40], where the maximum strain is much smaller [37], i.e.,
γ < 0.1, we found that c = 1.15 × 10−6, which corresponds
to ns = 6.9 × 1022 m−3.

We emphasize that no parameter other than the concentra-
tion in the theory needs to be adjusted against experimental
deformation tests. The experimental data were reported after
normalization [51] by the diffusion coefficient Dbulk in Fig. 6.
The tensile stress is divided by the Al crystal shear modulus,
whose temperature variation is fixed according to the law [65]
μ = μ0(1 + Tm

μ0

dμ

dT

(T −300)
Tm

), with Al melting temperature Tm =
933 K, the Al shear modulus at 300 K being μ0 = 25.4 × 103

MPa, and with Tm

μ0

dμ

dT
= −0.50. These values were found in the

same reference [65]. This normalized representation allows us
to plot the experimental data over a broad range of temperatures
and stresses. In Fig. 6, the experimental measurements form
a well-marked hockey-stick curve where two regimes can be
distinguished: (i) the intermediate stress level highlighted by
Kassner in SSC of Al [28] where ε̇ ∝ σ 5; (ii) the high-stress
regime, which some authors [51] interpreted as ε̇ ∝ σ 10. The
fact that the experimental data fall on a same, well defined
curve after being divided by the diffusion coefficient indicates
that the self-diffusion process plays a key role in that regime of
stress and temperature. In the present model as in many others
[27,45,47,48], this interplay between the self-diffusion and
the deformation process is a reflection of the edge dislocation
climb.

The model predictions show a satisfactory agreement with
experimental deformation tests in regard of the fact that we
avoided the adjustment of parameters except the concentration
of nanovoids, which has not been measured in the different de-
formation tests. The characteristic hockey-stick curve formed
by experimental data is well reproduced in the present theory.
The transition between the two regimes of low and high stresses
is well marked at σ = 10−3μ (see dashed line in Fig. 6) for
both values of concentration. According to our computations,
such a transition is essentially due to the variation of the
dislocation glide distance. In Fig. 5, it appears that the average
jump distance has clearly the behavior that corresponds to a
hockey-stick curve.

IV. CONCLUSION

Our simulations allowed us to quantify the interaction
between dislocation and vacancy clusters and to determine
the corresponding pinning forces for various cluster sizes and
shapes. At very low stress, the dislocation is anchored on
the cluster and can not pass the cluster through simple glide.
In such a situation, we simulate the formation of jog that
initiates the climb process. We show that the jog begins to
form in the vicinity of the void and propagates along the line
by absorption of vacancies. Then the elastic line model was
used to account for the random distribution of the obstacles
and to treat realistic geometries with respect to the dislocation
glide distance and the dislocation length. Then we employed
a classical theory for dislocation climb [47,70], which we
supplemented with (i) atomic-scale simulations to describe the
dislocation-cluster and dislocation-vacancy interactions and

(ii) with an elastic-line model to compute the average glide
distance of dislocations.

It is remarkable that we obtained a good agreement between
the predictions drawn from such a simple glide assisted
climb model with the two different sets of experimental
data realized for stringently different strain rate. We admit
that more experimental data, in particular about the vacancy
cluster concentration, which was adjusted in the present study,
would be required to make a conclusion. Along the strain rate
curves (see Fig. 6), our simulations predict a stress transition.
The physical origin of such transitions may come from the
scarcity of anchored configurations encountered as the stress
approaches the critical stress for pure glide. Such a transition
coincides with the experimental transition observed in SSC
experiments, which can be interpreted in a phenomenological
manner as an abrupt change of the stress exponent in Norton’s
law (see for instance Ref. [45]). We show that a quantitative
agreement between that theory and the experimental data is
possible. We believe that this approach could be supported
by direct simulations for dislocation climb [68,80] that would
permit to treat both climb and glide of dislocations on equal
footing. In particular, we think that it is important to take
into account (i) the interaction of the dislocation with a three-
dimensional distribution of obstacles and (ii) the competition
between the thermal activation of glide on the dislocation
climb, which could contribute to the kinetics of strain.
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APPENDIX A: EXPERIMENTAL DATA FOR BULK
SELF-DIFFUSION COEFFICIENT

Experimental data concerning the bulk self-diffusion coeffi-
cients measured in Al [76–79] are reported in Fig. 7. To model
Dbulk as a function of the temperature, we have used the typical
Arrhenius equation [65]

Dbulk = D0
bulk exp (−Qbulk/kBT ). (A1)

The bulk diffusion parameters are D0
bulk = 1.76 × 10−5 m2/s

and Qbulk = 1.31 eV. We have challenged this model with the
experimental measures of different authors (see Fig. 7). The
model agrees well with experiments in the range of temperature
used in Fig. 6.

APPENDIX B: THEORETICAL DEMONSTRATION
OF THE CLIMB VELOCITY

The derivation for the climb velocity of edge dislocations
is guided by Hirth and Lothe’s textbook [70]. The dislocation
climb is determined by the flux of vacancies toward dislocation
cores. According to the Einstein mobility relation, the drift
velocity of vacancies is vd = DvF/kBT , where Dv stands
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FIG. 7. Experimental data (symbols) for the bulk self-diffusion
coefficient in Al [76–79] challenged with theoretical models (lines)
(see text and Ref. [65]).

for the diffusivity and F is a force field, which can be
derived from the chemical potential of an ideal solution of
vacancies: μv (Cv ) = kBT ln Cv/C0

v , where C0
v is the vacancy

concentration in the bulk at thermodynamical equilibrium.
This expression accounts for the configurational entropy of
a random distribution. The flux of vacancies along direction X
is thus given by

Jx = Cvvd = −DvdCv/dx. (B1)

At the steady state, the divergence of the flux is zero, which
means with C0

v and Dv constant in space, the Laplacian of Cv

is also null, which yields in cylindrical coordinates a solution
of the form

Cv = C0
v + δC

ln(R∞/r )

ln(R∞/rc )
, (B2)

where R∞ is the standard cutoff radius (usually taken equal
to the half distance between dislocations), rc is the extension
of the dislocation core, and δC is a constant to be fixed.
To obtain such a solution, it has been assumed that the
vacancy concentration Cv reaches its equilibrium value C0

v

far from the dislocation cores, i.e., at R∞, and that inside

the core, Cv is a constant Ccore
v = C0

v + δC determined by the
competition between the osmotic force and the elastic one. The
former is due to the creation or the annihilation of vacancies
in the dislocation core while the latter is merely related to
the effect of the applied stress. In the present coordinate
[see Fig. 1(a)], the Peach-Koehler force perpendicular to the
glide plane of an edge dislocation is F el

z = σxxbL, where L

represents the dislocation length. The osmotic force F osmo
z

is due to the variation of the chemical potential μv when a
row of vacancies is created along the dislocation line, which
corresponds to a number of vacancies Lbh/Vat, where h stands
for the distance the dislocation has moved. The total chemical
potential variation is then G = μv (Ccore

v )Lbh/Vat from which
the osmotic force can be easily derived against h to obtain
F osmo

z = −μv (Ccore
v )Lb/vat, where we have noticed Ccore

v , the
vacancy concentration inside the region of the core, limited by
rc. At the steady state, the balance between the osmotic and
the elastic forces allows us to equate the previous expressions,
which gives kBT ln Ccore

v /C0
v = σxxvat, which also means

Ccore
v = C0

v e
σxx vat
kB T . (B3)

Combining Eqs. (B2) and (B3), we deduce that
δC = C0

v (e
σxx vat
kB T − 1), which fully determines the

concentration field for vacancies. Here, we do not take
the linear approximation for this expression as in the
textbook [81] since we aim to compute the creep rate over
a broad stress range. The number of vacancies that move
away from the dislocation core per unit of time is given
by the integral of the flux J [Eq. (B1)] on a cylindrical
surface centered on the dislocation line with radius r > rc,
which is given by I = −2πrLDv∂Cv/∂r . Using Eq. (B2),
we obtain I = 2πLDvδC/ln(R∞/rc ). When a vacancy
has been emitted, the distance the dislocation core has
climbed is roughly vat/b/L, the elementary crystal dimension
perpendicular to the glide plane, which allows us to write the
climb velocity vclimb = Ivat/b/L and to obtain

vclimb = 2πDbulk (e
σxx vat
kB T − 1)

bln(R∞/rc )
, (B4)

where Dbulk = vatC
0
vDv corresponds to the self-diffusion co-

efficient. In our study, we consider that σxx is roughly given by
the tensile stress σ , noting that in principle the relation between
both components is linear.
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