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Abstract

We propose a new statistical physics model to study equilibrium solute segregation at grain boundaries and the resulting
embrittlement effect. This low-temperature expansion model is general and efficient, and its parameters can be obtained
from atomistic calculations. It is possible to take into account multiple species, multiple segregation sites with different
segregation free energies, account for configurational entropy, grain radius and site competition between solutes. As an
example, the model is then applied to the study of phosphorus and hydrogen co-segregation at Σ3 109.5°

[
01̄1

]
{111}

twin boundaries in α-Fe, using energetic parameters from density-functional theory calculations. We show that P–H
interactions may lead to increased P segregation at grain boundaries and cause additional embrittlement compared to
the case where P and H are considered separately.

Keywords: grain boundary, interface segregation, statistical thermodynamics, low-temperature expansion, ab initio,
density-functional theory, co-segregation

1. Introduction

Grain boundaries (GBs) are of prime importance in the
study of materials because they form an interconnected
network that spreads over the whole material and directly
affects its mechanical properties. Hence, the study of GBs
has drawn a lot of attention for more than 60 years [1–3].
Nowadays, a certain level of understanding of GB thermo-
dynamics and kinetics is reached, such that microstructure
optimization via GB engineering approaches are emerg-
ing [3, 4]. One of the most studied feature of GBs is their
interaction with solutes from the bulk material, because
segregation phenomena lead to large and very localized
chemical inhomogeneities [5], and atomic bonding at GB
planes are found very sensitive to the presence of solutes
[6].

There are many difficulties in investigating GB segrega-
tion experimentally: ideally, we would need a technique
that is able to probe very localized regions of the mate-
rial while making sure that the chemical distribution is
not altered by the measurement, and this technique should
be able to give accurate chemical information–sometimes
for very low concentrations–and crystallographic infor-
mation, as well as being fast enough to produce suffi-
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cient statistics over a large number of GBs. Consequently,
the study of GB segregation usually resorts to a combi-
nation of experimental techniques [7, 8] and results de-
pend on the annealing temperature, bulk chemical com-
position, chemical environment and GB structure. The
task becomes even more complicated when studying co-
segregation effects, i.e. the simultaneous segregation of
at least two chemical species which occurs all the time in
real-life materials. There are several mechanisms at work:
solute-GB interaction, solute-solute interaction at the GB
and in the bulk, site competition, concentration ratio be-
tween solutes and kinetic properties of each solute [9]. For
instance in Fe-P-C alloys, it was noted that intergranu-
lar P segregation decreases with increasing C content but
the reason why this happens is not clear [8, 10]. If Cr is
added to this alloy it seems that P segregation increases
only when C concentration is above a certain level [10].

The pioneering work of Wu et al. [6] on Σ3[11̄0](111)
GB in α-Fe showed that ab initio methods were able to
provide some insight on solute properties at GBs, as the
authors were able to explain the strengthening by B ad-
ditions and the embrittlement by P additions in terms of
electronic structure at the GB and at free surfaces. These
methods are fast-growing, and computation capabilities
have increased a lot such that ab initio studies on GBs
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are now standard. For instance, it is now possible to study
the segregation of various solutes (B,C,N,O,P) on various
GBs (Σ3 and Σ5) at various concentrations (1.0, 0.5 and
0.25 mono-layers) in a systematic manner [11]. More-
over, there are some efforts to regroup the large collec-
tion of ab initio data computed over the years and ex-
tract some trends as a function of solute properties [12–
14]. Most of this huge amount of data is restricted to the
segregation of one type of solute, and most of the time
one type of segregation site. Yet, there are some studies
focusing on more complex segregation phenomena, e.g.
strong co-segregation of Mn-C[15] or site exclusion be-
tween N and C[16]. These effects were shown using ab
initio calculations but a comprehensive analysis using sta-
tistical physics tool is still missing.

Of course these ab initio methods have their drawbacks,
mostly related to the complexity of properly taking into
account temperature effects, and the limited number of
atoms that can be included in a simulation box. Regarding
the latter, a question was raised about the reliability of ab
initio calculations for solutes with small solubility limits
[17, 18]. To shorten the introduction, we briefly comment
on this question in Appendix A.

A review of the various statistical models that have
been developed to study GB segregation can be found in
Refs. [2, 19]. The most widely used model is the sim-
plest one, the Langmuir-McLean isotherm [1, 20], which
was extended to multi-component systems by Guttmann
[9, 21]. The limitation of these approaches is that they are
derived from mean-field arguments. Even though there
are some semi-empirical procedures to derive the mean-
field interaction parameters [22], the mean-field model
cannot always render the full complexity of the segrega-
tion and the connection with ab initio binding energies is
not straightforward. There were some attempts to con-
sider explicitly the short-range order in the first nearest-
neighbor shell [23] but this model is not easy to gener-
alize to more complicated case. A model for multi-site
segregation was proposed [24], but again the extension
to multi-species segregation is not straightforward. The
embrittlement potency of a solute is defined as the solute
segregation energy difference between the GB and the two
free surfaces obtained after fracture [25]. As noted earlier
[26], this thermodynamic definition is not valid for more
complicated cases, namely multi-site segregation or co-
segregation with competing embrittlement potencies and
this data is now becoming available (e.g. with molecular
statics simulations[27]). In a nutshell, it seems that nowa-
days we have access to a large number of atomic-scale
data, but we are missing some efficient and general model

to take full advantage of this data.

Let us now focus on the practical case of P and H co-
segregation in α-Fe. H [28] and P [29] are both known to
alter fracture toughness of steels with very small amounts
of impurities. Aucouturier studied a Fe-P-H steels and
was not able to tell if P simply reduces the critical H con-
centration for hydrogen-induced cracking, or if GB em-
brittlement was due to P-H interactions at the GB [30].
According to Kameda et al. the effects of P and H are
additive [31] meaning that P and H do not interact at all,
or in other words, there is no co-segregation effect. Ac-
cording to Komazazki, P does not influence the H con-
tent of GBs but weakens the GB, which translates into
increased H embrittlement [32]. This was somehow con-
firmed by McMahon who emphasizes the dynamic ef-
fect of H and its low segregation enthalpy to GBs [33].
Solubilities of H and P are very low in these materials
which complicates the precise determination of P-H co-
segregation effects. It seems that modern modeling tools
can shed light on the interaction between P and H at the
GB. Σ3 109.5°

[
01̄1

]
{111} twin boundaries are among the

most common ones in lath martensite in low carbon steels
[34] and they are quite easily modeled with ab initio meth-
ods because they are high-angle symmetric tilt GBs with a
well-known structure [35]. Also, due to the dense coinci-
dence site lattice, the range of elastic deformation around
the GB is expected to be small such that segregation oc-
curs mainly in the grain boundary plane and we can reduce
the size of the simulation cell and the number of configu-
rations to explore.

In this paper, we study the co-segregation of P and H
at Σ3 109.5°

[
01̄1

]
{111} twin boundaries in α-Fe. First,

we introduce the modeling tools (Sec. 2), namely den-
sity functional theory to compute binding and segregation
energies, and low-temperature expansions. The latter pro-
vide a new type of statistical model to study grain bound-
ary segregation and has the advantage of being general
and straightforward to use in conjunction with ab initio
calculations. It can take into account competing segrega-
tions (fixed solute concentration distributed among bulk
and various GBs) and also the effect of grain size. Then
we present ab initio calculations of P-H interactions in the
bulk, at the GB and at a free surface (Sec. 3). This data
is finally used in the low-temperature expansion model to
conclude about the effect of the simultaneous presence of
H and P on segregation levels and embrittlement potency
(Sec. 4). Finally, we discuss our modeling assumptions
(Sec. 5).
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2. Methods

2.1. Density-functional theory

Density functional theory (DFT) calculations were per-
formed using the PWscf package from the Quantum
ESPRESSO software suite [36, 37]. The exchange and
correlation energy is computed with the PBE generalized
gradient approximation [38]. Hydrogen

(
1s1

)
, phosphorus(

[Ne] 3s23p3
)

and iron
(
[Ar] 4s23d6

)
nuclei and core elec-

trons are modeled by a projector augmented wave poten-
tial [39], as generated by Dal Corso [40, 41]. The kinetic
energy cutoff for wave-functions is set to 870 eV, which
ensures energy convergence below 0.01 eV/atom. Calcu-
lations are performed on 54, 76 and 144 atoms supercells
for bulk, surface and GB calculations, respectively, with
a 4 × 4 × 4, 5 × 5 × 2 and 5 × 5 × 2 gamma centered k-
point mesh. First-order Methfessel-Paxton smearing [42]
with an energy set to 0.27 eV ensures accurate evalua-
tion of forces for ionic relaxation. Binding energy cal-
culations are relaxed with a conjugate gradient method,
until the force on each ion is below 0.025 eV/Å. For GB
calculations, supercell relaxation is performed along the
direction perpendicular to the GB plane, with a pressure
threshold equal to 0.1 kbar. For surface calculations, a
void equal to the slab thickness was used. Using a void
that is half or twice as thick gives identical surface en-
ergy values within less than 1 meV. All calculations are
spin-polarized with collinear magnetization to reproduce
iron ferromagnetic state. With these settings the lattice
parameter for body-centered cubic Fe was found equal to
a = 2.826 Å, in good agreement with experimental mea-
surements a = 2.87 Å[43] and other DFT calculations
a = 2.832 Å[44]. We computed the elastic constants us-
ing three volume-conserving strains of a Fe primitive cell
[45, 46] and found the following values C11 = 305 GPa,
C12 = 146 GPa and C44 = 84 GPa, in fair agreement with
other DFT calculations (C11 = 278 GPa, C12 = 148 GPa
and C44 = 98 GPa [44]). Zero-point energies are included
for all supercells containing hydrogen atoms, as this cor-
rection is not negligible for hydrogen atoms [47, 48]. We
could not afford the rigorous calculation of the force con-
stant matrix where all atoms in the simulation cell are dis-
placed so we limit ourselves to displacing the hydrogen
atom only, by 0.02 Å in six directions. This approxima-
tion is justified by the large mass difference between hy-
drogen and iron atoms [47, 49]. The zero-point energy
correction at T = 0 K is then expressed as:

EH
zpe =

h
2

∑
i

νi =
~
2

∑
i

√
ki

mH
, (1)

where ~ is the reduced Planck constant, mH the hydrogen
atom mass and ki are the eigenvalues of the force-constant
matrix. For any temperature, the H atom vibration contri-
bution to the total energy of the system is [50, 51]:

FH
vib = kBT

∑
i

ln
(
2 sinh

(
hνi

2kBT

))
, (2)

and Eq. 2 reduces to Eq. 1 at T = 0 K. In the calcula-
tions performed in Sec. 4 Eq. 2 is used to compute the
vibrational contribution to the free energy of the system.

In this paper, a positive binding energy reflects a config-
uration which is more stable than all solutes being isolated
in their reference states. The reference states are chosen
as the most stable P and H sites in bulk Fe, substitutional
and interstitial tetrahedral, respectively. The binding en-
ergy Eb between P and H in a bulk system is defined as:

Eb (PH) = E [53Fe + Psub] + E [54Fe + Htet]

− E [54Fe] − E [53Fe + P + H] , (3)

where E [α] is the energy of a supercell containing α

atoms, computed using DFT. In order to keep the same
references to compute binding energies at surfaces or
GBs, the following definition is used:

Eb (PH) = E [53Fe + Psub] + E [54Fe + Htet] + E [nFe, d]

− 2E [54Fe] − E [(n − 1) Fe + P + H, d] , (4)

where E [α, d] is the energy of a supercell containing α
atoms and an extended defect d which in our case is either
a surface or a GB. With this definition (Eq. 4), the binding
energy at an interface contains the P-H interaction at the
interface, as well as the P-interface and H-interface inter-
actions.

2.2. Low-temperature expansion

The segregation of chemical species to interfaces is
generally quantified using the McLean model [1, 19, 52].
Unfortunately, this model is limited to one segregated
species at one specific segregation site. A generalization
of this model to multi-component framework was derived
by Guttmann [9, 21], based on a mean-field approach. The
mean-field does not allow to take into account configura-
tions with specific short-range order and segregation en-
ergies. In this paper, the concentrations of segregated el-
ements are computed using a low-temperature expansion
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formalism (LTE) [53–56]. This formalism is easier to gen-
eralize to several chemical species and a variety of segre-
gation sites and configurations. It is also able to treat sys-
tems in both canonical (fixed concentration) and grand-
canonical (fixed chemical potential) ensembles. Finally,
it is in principle straightforward–even though practically
challenging–to take into account the overlap and inter-
action between segregated species at large coverage. In
Appendix B, we show that the LTE formalism is rigor-
ously equivalent to McLean’s model in the limit of non-
interacting particles having the same segregation energy.

For the system of interest, the grand potential A is re-
lated to the grand-canonical partition function (Z) with the
standard relation:

A = −kBT ln (Z)

= −kBT ln

∑
i

Gi exp
(
−Ei +

∑
α nαi µα

kBT

) , (5)

where kB is the Boltzmann constant, T is the absolute tem-
perature and the sum runs over micro-states i character-
ized by energy Ei and containing nαi atoms of chemical
species α. Gi corresponds to the degeneracy of micro-state
i and µα is the chemical potential associated with species
α. Note that for substitutional solutes, µα denotes the dif-
ference µα−µm because it is necessary to remove a matrix
atom m from the system in order to insert the solute while
keeping the total number of sites constant. We now de-
fine a reference state with energy E0 and containing {nα0 }
atoms for each species α. In our case, the reference system
is the ideal interface without any atoms other than matrix
(Fe) atoms. The addition of solutes to the system will be
treated as excitations with respect to this reference state.

A = A0−

kBT ln

1 +
∑
i,0

Gi exp
(

E0 − Ei +
∑
α δnαi µα

kBT

) , (6)

where A0 = E0 −
∑
α nα0µα and δnαi = nαi − nα0 . The log-

arithm function is then Taylor expanded to infinite order
and the linked-cluster theorem shows that all terms that
are non-linear in the number of sites N cancel out [53].
The chemical potential is the energy required to take a
given atom from a reservoir to a reference site in the sys-
tem. Taking these reference sites identical to those in Eqs.
3 and 4, − (Ei − E0) = Eb

i , the binding energy of atoms in
configuration i. Also, because all remaining excited states
are proportional to N, we can define gi = limN→0 [Gi/N]
as the degeneracy per site.

A

N
=
A0

N
− kBT

∑
i,0

gi exp

Eb
i +

∑
α δnαi µα

kBT

 , (7)

The concentration of atoms of species α is computed as
the derivative ofA/N with respect to µα:

[α] = −
1
N
∂A

∂µα
=

nα0
N

+
∑
i,0

δnαi gi exp
 Eb

i

kBT

∏
α

X
δnαi
α . (8)

A similar equation must be written for each species α,
which gives a system of coupled polynomial equations
whose unknowns are quantities Xα = exp (µα/kBT ). Ei-
ther these variables Xα are known (grand-canonical en-
semble) and it is straightforward to compute the total
solute concentrations, or nominal concentrations [α] are
known and one needs to solve the system of equations.
The quantity gi exp

(
Eb

i /kBT
)∏

α X
δnαi
α represents the con-

centration per site of atoms in the specific configuration
of micro-state i.

The sum over micro-states i in Eqs. 7 and 8 is theoret-
ically infinite but states with a low energy value (binding
energy plus chemical potential contribution) are negligi-
ble. In other words, we only need to keep in the series
states of low excitation energies, which are usually the
states with a small number of solute atoms that are differ-
ent from those of the reference states.

There are two equivalent ways to deal with Eqs. 7 and
8 in our case: either consider a single system contain-
ing bulk and interface sites, or two separates systems in
equilibrium (i.e. with equal values of A). In this paper,
we will consider the first method, which then requires the
proportionality factor between the number of bulk and in-
terface sites. Degeneracy factors gi are given with respect
to the total number of lattice sites in the system, which are
in fact divided into Nb bulk sites and Nφ interface sites:
N = Nb + Nφ. Assuming that the interface is a spherical
grain boundary, we are able to assign specific values to Nb

and Nφ as a function of the grain radius r:

γ =
Nφ

Nb
=

4πr2Vat
4
3πr3S at

, (9)

where S at and Vat are the atomic surface and atomic vol-
ume, respectively. In our case, Fe is body-centered cu-
bic such that Vat = a3/2 (a is the lattice parameter) and
the GB plane that we study has orientation (111) hence
S at = a2

√
3. In the end, γ = a

√
3/2r. This quantity is

useful to define gi coefficients for configurations specific
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to bulk or interface environment because it is much easier
to count segregation sites per interface site for instance.
Thus, if we write gφi and gb

i the multiplicity per interface
and bulk site, respectively, the gi coefficients that appear
in Eq. 8 are computed as:

gi =
γ

1 + γ
gφi =

1
1 + γ

gb
i . (10)

Moreover, it is straightforward to generalize to more
complex microstructure with multiple GB types, for in-
stance: N = Nb + Nφ1 + Nφ2 and we compute the γ factor
for each interface. Also, in Eq. 9, the γ factor is defined
as the surface over volume ratio of a sphere, but one could
include a more sophisticated interface shape.

2.3. Embrittlement potency
Without any solute segregation, the energy of a system

containing an interface reads:

Eφ
0 = NEm + Nφρφγφ, (11)

where Em is the energy of one matrix atom, N is the total
number of sites in the system, γφ is the interface energy
per unit surface and ρφ is the interface area per interface
atom. Note that ρgb = ρ f s = ρ and N f s = 2Ngb because
the fracture of a GB creates two free surfaces. The ideal
(reversible) work of separation per GB site (W0

sep) quan-
tifies the energy change as two grains are separated from
each other,

W0
sep =

E f s
0 − Egb

0

Ngb
= ρ

(
2γ f s − γgb

)
. (12)

The embrittlement potency of a segregating element
translates its ability to promote or reduce the probabil-
ity of inter-granular fracture. It is commonly computed
as the difference in segregation energy at the grain bound-
ary and at the free surface, as originally proposed by Rice
and Wang [11, 25]: EP = −

(
Eb

gb − Eb
f s

)
and the minus

sign is added because in our convention, a positive bind-
ing energy represents an attractive configuration (see Eq.
4). When a single solute segregates to a single type of
interface sites without interacting with other solutes, the
solute embrittlement potency quantifies the difference in
the ideal work of separation due to the presence of the so-
lute. If the fracture occurs fast enough so that solutes do
not have time to redistribute between bulk and free sur-
faces:

Wsep = W0
sep − [X] EP, (13)

where [X] is the solute concentration per GB site. Hence,
a solute with a positive embrittlement potency (i.e. the so-
lute is more stable at the free surface than at the GB) will

promote inter-granular failure as it will reduce the abso-
lute value of Wsep.

When various solutes interact and are located at various
segregation sites, a generalized formula of the embrittle-
ment potency is required. First of all, let us consider vari-
ous fracture scenarios, as shown in Fig. 1. Figure 1a rep-
resents solutes segregated at the GB, at equilibrium where
pairs and isolated solutes exist. Figures 1b-1g represent
different scenarios of GB separation into two surfaces. In
Figs. 1b-1d it is assumed that fracture is much faster than
diffusion such that there is no solute equilibration at the
surface. In Fig. 1b, all solutes are located on the same
surface, while they are evenly distributed between both
surfaces in Fig. 1c. If pairs and monomers do not inter-
act (segregated solutes are sufficiently dilute), scenarios
1b and 1c will have the same energy, although scenario 1c
cannot result in flat surfaces. Figure 1d shows a scenario
similar to Fig. 1c except that solute pairs are possibly sep-
arated during the fracture, which might lead to a different
free surface energy. In Figs. 1e-1g it is assumed that diffu-
sion is fast compared with the fracture phenomenon, such
that atomic species redistribute at free surfaces. In Fig.
1e, all solutes are located on the same free surface, while
they are evenly separated between both surfaces in Fig. 1f.
Both scenarios might not lead to the same energy because
solute distribution depends on solute concentration. Con-
trary to previous cases, Fig. 1g shows an example where
the system is at fixed chemical potential, such that solutes
are added or removed in order to equilibrate with the free
surface.

Figure 1: Schematics of various scenarios of fracture at a GB con-
taining segregated solutes (a), into two free surfaces (b-g). Various
hypothesis are considered to quantify the amount of solutes segregated
to free surfaces (see text).

To evaluate the embrittlement potency, we will consider
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two fracture scenarios among those presented here (1b,
1f). Indeed, as our model assumes a dilute solid solution
with flat interfaces, scenarios 1b and 1c will give the same
energy difference with respect to the GB configuration,
and we have no way to quantify the distribution of solutes
after fracture in Fig. 1d, as the short-range order remain-
ing at the free surfaces is unknown. Scenario 1e could in
principle be computed but it is cumbersome and it is not
expected to provide much insight compared with scenario
1f which is much easier to compute. Scenario 1g requires
a very slow fracture to enable long-range diffusion during
the fracture event, which, in most cases, does not seem
realistic. Moreover, because segregation energies to free
surfaces are usually much higher than segregation ener-
gies to GBs (and this is the case in the Fe-P-H system, cf.
Table 2), such scenario would generate very large segre-
gations to free surfaces, much larger than at GBs, thus a
clear thermodynamic driving force for GB fracture, which
translates into solute embrittlement.

To generalize the definition of the embrittlement po-
tency, we use the results from the LTE calculations to
compute the work of separation. We consider the average
energy of the interface at thermodynamic equilibrium as
being representative of the system. The complete deriva-
tion of the following expressions are given in Appendix C.
We define the generalized embrittlement potency (GEP)
as the deviation from the ideal work of separation for pure
materials, a deviation that is caused by a given concentra-
tion of one or several chemical species. For scenario 1b,
the concentration is conserved and fracture is fast with re-
spect to the diffusion time scale of solutes, such that the
free surface solute segregation is identical to the GB so-
lute segregation:

GEPb =
∑
i∈GB

(
Eb

i, f s − Eb
i,gb

)
ggb

i exp
(
βAb

i,gb

)
, (14)

For scenario 1f, the fracture is slow compared to diffusion
time scales, allowing solutes to reach local equilibrium
at the free surfaces, with the constraint of constant local
concentration:

GEP f =
∑
α

[α]
(
µ

f s
α − µ

gb
α

)
+

∑
i∈GB

gφi
(
2Eb

i, f s exp
(
βAb

i, f s

)
− Eb

i,gb exp
(
βAb

i,gb

))
+

∑
i∈bulk

gb
i Eb

i,b

γ

(
(1 − γ) exp

(
βAb

i, f s

)
− exp

(
βAb

i,gb

))
,

(15)

These expressions will be used in Sec. 4 to compute the
general embrittlement potency in each case.

3. DFT computations

3.1. Bulk energies

First, we present our DFT results for bulk configura-
tions. The purpose of these calculations is to check the
correct convergence of our DFT calculations, and to quan-
tify the interaction between P and H atoms in the bulk,
which may affect their distribution and thus their segrega-
tion to GBs in fixed concentration samples. All calcula-
tions were performed at fixed volume.

The vacancy formation energy in a 3 × 3 × 3 cubic su-
percell (54 atoms) of ferromagnetic body-centered cubic
Fe was computed as:

E f (vac) = E [53Fe + vac] −
53
54

E [54Fe] , (16)

and we found E f (vac) = 2.19 eV, in good agreement with
previous calculations (2.02-2.20 eV [57]). To ensure that
our simulation cell was large enough we used the Aneto
code which computes the elastic self-interaction of a point
defect from elastic constants and residual stress in the su-
percell [58]. The energy of elastic interactions with super-
cell replicas amounts to 0.017 eV for the vacancy, which
is of the order of the error bar resulting from our choices
of DFT parameters. Hence, we consider that this 54-atom
supercell is large enough for bulk calculations.

The energy of a bulk system containing one substitu-
tional P atom was computed for 24- and 54-atom super-
cells. Both results agree within 0.02 eV and the energy
due to elastic interaction with supercell replicas amounts
to 0.007 eV. We also computed the energy of an interstitial
octahedral P atom but the energy was 3.2 eV above that of
substitutional P atom (taking into account elastic correc-
tions), slightly higher than previous calculations (2.8 eV
[59] and 3.1 eV [60]). Therefore we will only consider
substitutional P atoms hereafter.

The H atom is more stable as an interstitial atom, and
can occupy both octahedral and tetrahedral positions. The
tetrahedral site was found more stable, 0.15 eV lower in
energy than the octahedral site, in agreement with previ-
ous calculations (0.13 eV [47] and 0.12 eV [48]). Yet,
as pointed out in Sec. 2.1, it is important to account
for zero-point energy (ZPE) effects for light elements.
This ZPE correction amounts to 0.14 eV and 0.24 eV for
the octahedral and tetrahedral sites, respectively, again in
agreement with previous results (0.12 eV and 0.24 eV,
respectively[48]). After ZPE corrections, the energy dif-
ference between tetrahedral and octahedral sites reduces
to 0.045 eV only, meaning that both sites must be taken
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into account. The elastic interaction computed with Aneto
amounts to 0.017 eV and 0.002 eV, respectively for the
octahedral and tetrahedral sites, again indicating that our
54-atom supercell is large enough. The octahedral site is
found unstable (second-order saddle point) and will not
be included in our calculations. Therefore, the tetrahedral
site is chosen as the reference H configuration to compute
binding energies (see Eqs. 3 and 4).

Figure 2 and Table 1 show the various P-H configu-
rations and the associated binding energy. At small dis-
tance, P and H have a negative binding energy, resulting
from a repulsive configuration. We also tested the tetrahe-
dral site located in between octahedral sites 1 and 2, but
this configuration spontaneously relaxes towards config-
uration 3. As the P-H distance increases, binding ener-
gies converge towards 0, which is the expected behavior
with no long-range interactions. From this plot, we can
estimate the range of P–H interactions to be about one Fe
lattice parameter, with a strong repulsion at small P-H dis-
tances. The calculation of vibrational modes for H shows
that configurations PH1 and PH4 correspond to second-
order saddle-points, and configurations PH2 and PH6 cor-
respond to first-order saddle-points. These configurations
are therefore unstable and will not be included in the cal-
culations.

Figure 2: Evolution of the P-H binding energy as a function of the P-H
configuration, labeled by the H site index. The various P-H configura-
tions considered in this study are pictured in the bottom-right corner.
The numbered green spheres show the position of the H atom with re-
spect to the P atom. Sites 1, 2, 4 and 6 are octahedral sites and sites 3,
5 and 7 are tetrahedral sites.

Configuration Site geometry gb
i Eb,u Eb Distance

PH1 Octahedral 6 -0.67 -0.53 0.50a
PH2 Octahedral 12 -0.18 -0.15 0.71a
PH3 Tetrahedral 24 -0.05 -0.05 0.90a
PH4 Octahedral 24 -0.17 -0.07 1.12a
PH5 Tetrahedral 48 -0.00 -0.00 1.15a
PH6 Octahedral 24 -0.05 -0.00 1.22a
PH7 Tetrahedral 48 +0.02 +0.02 1.35a

Table 1: Numerical values of binding energies for P-H configura-
tions depicted in Fig. 2. The gb

i column corresponds to the number
of symmetry equivalent configurations per bulk lattice sites. Eb,u is
the uncorrected binding energies, while Eb is the ZPE-corrected bind-
ing energy value. The last column shows the P-H distance in units of
lattice parameter a.

3.2. Grain boundary and surface energies

This section presents the P and H segregation energies
to Σ3 109.5°

[
01̄1

]
{111} GB and {111} free surface, as

well as P-H binding energies at these interfaces. The sim-
ulation cells are shown in Fig. 3. They contain 4 atoms per
interface plane which is defined by two vectors of length
0.801 nm forming a 60°angle corresponding to 〈110〉-type
directions (see Fig. 5).

Figure 3: Side views of the simulation cells used for GB (top, 144
atoms) and free surface (bottom, 76 atoms) calculations. The red
dashed lines represent the GB or free surface planes, perpendicular
to the sheet plane.

The simulation cells were relaxed only in the direction
perpendicular to the interface plane. If we had a very large
box in the direction normal to the interface plane, and we
would relax the simulation cell in all three directions, the
relaxation would only occur in the direction normal to the
interface plane, because a relaxation in a direction paral-
lel to the interface plane would modify the inter-atomic
distance for all bulk atoms and thus increase their energy,
and as they would be much more numerous than interface
atoms, such relaxation would not be energetically favor-
able. In our calculations we are limited in the size of the
simulation cell we study. Even though we have checked
that the simulation cell was large enough to avoid elas-

7



tic interactions between both interfaces (10 mJ/m2 varia-
tion in going from 12 to 24 atoms in between interfaces),
the number of bulk atoms is not so large compared with
the number of interface or near-interface atoms, such that
some relaxation of the cell parallel to the interface plane
might be energetically favorable. Hence, it seems more
realistic to freeze the degrees of freedom parallel to the
interface plane when relaxing the simulation cell. This
may explain the difference in GB energy found with previ-
ous DFT calculations were the simulation cell was relaxed
in all three directions (all values are given in J/m2): 1.46
[61] and 1.52 [35, 62] whereas we find 1.23. This value is
consistent with molecular static simulations using semi-
empirical interatomic potentials, which are performed on
much larger cells than DFT calculations: 1.25 [63], 1.31
[27] and 1.55, 1.39, 1.30, 1.23, 1.22 using various poten-
tials [35]. We find the {111} free surface energy at 2.07
(previous DFT calculations give 2.69 [62]).

For the GB, we performed spin-polarized calculations
with both collinear and non-collinear magnetic moments.
Over all atoms, the maximum relative difference in mag-
netic moment was 0.6% which is negligible. Hence we
performed all subsequent calculations with collinear mag-
netic moments, which is cheaper in terms of computa-
tional cost.

To reduce the number of segregation sites to study we
analyzed the symmetry of our simulation cell, and found
an order 3 rotation symmetry around the [111] axis as
well as a symmetry plane normal to the [110] direction.
These symmetries are clearly seen in Fig. 4 where black-
diamond shape lines show the unit supercell for this GB,
and our actual supercell is composed of 4 unit supercells,
as shown in Fig. 5. Figure 4 additionally shows, for each
point in the simulation cell, the distance to the closest Fe
atom. This procedure aims at identifying potential inter-
stitial segregation sites for H atoms. Red regions are the
ones where there is the most space, so places where H
atoms are expected to segregate. Hence we identified a
collection of sites that are all equivalent when H is the
only segregating species and infinitely dilute, represented
by site 0 in Fig. 5. We tried to insert P on this intersti-
tial position but the calculation would not converge and
the site was unstable. We conclude that P segregation is
substitutional at this GB, in agreement with previous work
[64] but this might be true only for low temperatures [65].
For P–H pairs, when P is placed at a substitutional site
at the interface, interstitial sites in the GB plane become
nonequivalent (numbered from 1 to 6, a H atom located
at site 0 relaxes toward site 3 when P is added). Other
sites were tested (red/yellow regions which denote avail-

able space in Fig. 4) but relaxed towards one of these
sites.

Figure 4: Top view of the {111} interface (GB plane of free surface).
The black diamond-shaped lines represent six unit supercells (each one
being 1/4 of the actual supercell that we used). For each point at the in-
terface plane, the color shows the distance to the nearest Fe atom, dark
red being 0.75a and dark blue being 0.56a, which is the Fe-tetrahedral
site distance. Fe atoms are shown in black for interface atom, in grey
and light grey for Fe atoms located a/2

√
3 and a

√
3 away from the

interface plane, respectively.

Table 2 shows the results of these DFT calculations in
both GB and free surface for isolated P and H, P and H to-
gether but considered infinitely separated from each other,
and P-H pairs with P being at a substitutional interface site
and H being at an interstitial site numbered as in Fig. 5.
The last three columns show the difference between the P–
H pair being at short distance and P and H being infinitely
separated from each other, and thus quantifies the magni-
tude of the P–H interaction at the interface. First of all, the
binding energy of H to the GB (including ZPE correction)
is much higher than the binding energy of P to the GB.
Hence, at similar bulk concentration levels, P is expected
to be much less segregated to the GB than H. A similar
comment holds for a free surface, even though the differ-
ence between the two species is much smaller. However,
the embrittlement potency (EP = Eb

f s − Eb
gb) is positive

for both species and much smaller for H than for P, which
means that these solutes thermodynamically favor free
surfaces and thus GB fracture, but P has a much stronger
effect than H. We find an embrittlement potency of 0.25
eV/at for H–in good agreement with previous work: 0.26
eV/at [16, 66], 0.33 eV/at [67] and 0.41 eV/at [61]–and
1.48 eV/at for P while previous DFT results show widely
spread values: 1.63 eV/at [68], 0.79 eV/at [6], 0.17 eV/at
[69].

Looking at co-segregation effects in detail, all P–H con-
figurations are repulsive at the GB and only one configu-
ration is attractive at the free surface. Thus, P–H interac-
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Figure 5: Top view of the {111} interface (GB plane or free surface).
The green numbered circles correspond to hydrogen positions, as in
Table 2. Black circles are Fe atoms that are in the same plane as P
atoms; dark grey circles and light grey circles represent Fe atoms that
are respectively a/2

√
3 and a/

√
3 above and/or below the plane, a

being the lattice parameter. To help visualization, atoms are replicated
on the edges of the cells, but the supercell contain only one P atom in
our calculations.

tions will tend to lower slightly the segregation levels at
the GB and increase slightly the segregation levels at free
surfaces, meaning that they provide an additional thermo-
dynamic driving force for GB fracture. Looking at the last
column of Table 2, the embrittlement potency difference is
positive for 3 out of the 5 configurations tested, confirm-
ing the additional embrittlement of the GB caused by the
short-range order between P and H. Note that configura-
tion PH4 is in fact found unstable (first order saddle point)
when computing vibrational modes for the H atom, and
this configuration will not be included in our calculations.

gφi Eb,u
gb Eb

gb Eb,u
f s Eb

f s EP ∆Eb
gb ∆Eb

f s ∆EP

P 1 0.16 0.16 1.64 1.64 1.48 - - -
H0 3 0.52 0.64 0.82 0.95 0.31 - - -

P+H0 - 0.68 0.80 2.46 2.59 1.79 +0.00 +0.00 +0.00
PH1 3 0.66 0.77 2.44 2.56 1.79 -0.02 -0.03 +0.00
PH2 6 0.47 0.56 2.23 2.33 1.77 -0.23 -0.26 -0.02
PH3 3 0.67 0.79 2.55 2.68 1.89 -0.01 +0.09 +0.10
PH4 3 0.35 0.48 2.22 2.34 1.86 -0.32 -0.25 +0.07
PH5 6 0.65 0.76 2.44 2.57 1.81 -0.04 -0.02 +0.02

Table 2: P–H binding energies at the GB and free surface. The first two
lines are binding energies of a single atom at each interface, which are
related to segregation energies. The third line is the sum of the first
two. The last 5 lines are binding energies between P and H at each
interface. gφi is the degeneracy per interface site–accounting for con-
figurational entropy–and the u superscript indicates that the ZPE cor-
rection is not taken into account (stands for "uncorrected") while for
ZPE-corrected binding energies, Eq. 1 was used. EP is the embrittle-
ment potency for this configuration only, and the last three columns are
computed with respect to the third line, to emphasize co-segregation
effects.

In short, at equivalent bulk concentrations, P segrega-
tion to the GB is lower than that of H, but at equivalent
segregation levels, P makes the GB more brittle than H.
When P and H are included simultaneously in the system,
segregation levels are expected to be mostly as if there was
no interaction between P and H but some configurations
cause more GB embrittlement than isolated P and H. The
next step consists in computing how much of these P–H
pairs form as a function of temperature and nominal solute
concentrations and thus how the embrittlement potency of
the system is affected. To this end, we will use the LTE
model presented in Sec. 2.

4. Effect of co-segregation on embrittlement

4.1. Effect of grain size on segregation

One of the nice features of the LTE model is that it is
straightforward to take into account the effect of grain
size, which translates into a contribution to configura-
tional entropy: the larger the grain, the lower the number
of interface sites at constant total number of sites, hence
the lower the configurational entropy associated with in-
terface sites. In this study, the ratio between the number
of interface sites and the total number of sites is computed
in the ideal case of spherical grains (cf. Eq. 9).

Figure 6 shows the effect of grain radius for isolated
species (no P–H pair formation is allowed). As shown
in Table 2, the H binding energy to the GB is about 4
times larger than the P binding energy to the GB. Hence
H segregation is expected to be much more important
than P segregation. This is indeed found from the two
first sub-figures, where solute concentrations in the GB
plane and in the bulk were computed at T=300 K for a
10 appm nominal solute concentration. At identical tem-
perature and nominal solute concentrations, GB segrega-
tion is higher for H than for P, and for both species it de-
creases with increasing grain radius. This behavior is also
expected because higher grain size favor bulk sites over
GB sites in terms of configurational entropy.

A less-intuitive conclusion drawn from these calcula-
tions is that GB coverage increases and then seems to satu-
rate with increasing grain size. GB coverage is the number
of solutes at GBs per GB sites, while GB concentration is
the number of solutes at GBs per total number of sites in
the system. As grain radius increases, the average solute
energy in the system–its chemical potential–increases be-
cause more and more solutes are added to the bulk where
they are less stable than at GBs. At some point, most so-
lutes are in the bulk such that increasing the grain radius
further does not really affect the average solute energy in
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Figure 6: Solute concentrations as a function of grain radius for var-
ious temperatures and nominal concentrations. Three concentrations
are shown: GB concentration (blue circles) which is the number of
solutes at GBs divided by the total number of sites (bulk+GB); bulk
concentration (red squares) which is the number of solutes in the bulk
divided by the total number of sites; GB coverage (open black circles)
which is the number of solutes at GBs divided by the number of GB
sites. Note that P–H interactions are not taken into account in these
calculations.

the system, hence the saturation of GB coverage. Figure 6
shows that GB coverage and bulk concentration have the
same variations, which comes from the fact that they are
both proportional to the exponential of the solute chem-
ical potential. This variation of GB coverage with grain
size is clearly seen from LTE expressions, considering
only one species (H) without geometrical frustration ef-
fects, to keep the discussion simple. Also we assume that
1/(1 + γ) ' 1, which is true except for very small grains
(a few nm). Defining S H = 3 exp

(
Fb

gb

(
Hgb

)
/kBT

)
and

Y = exp (µH/kBT ), the total H concentration is the sum of
bulk H atoms and H atoms segregated at the GB:

[H] =
1

1 + γ
6Y +

γ

1 + γ
YS H ' Y (6 + γS H) . (17)

The GB coverage by H atoms is expressed as:

θH = YS H =
[H] S H

6 + γS H
=

[H]

6
S H(T )

+

√
3

2r

. (18)

Hence at given H nominal composition and temperature,
higher grain radius r results in high GB coverage until a
saturation value is reached, θH ' [H]S H/6.

The second sub-figure in Fig. 6 (H segregation at
T=300K) is particularly interesting because GB coverage
saturates at 1, which means that all interstitial sites in the
GB plane are occupied by H atoms. When concentrations
reach high levels on a specific type of sites, one must be

cautious with LTEs, because geometrical frustration ef-
fects must be added. They consist in adding excitation
states where solutes are non-interacting. These states have
a negligible probability at low solute concentrations but
become necessary when concentration rise above ' 1%.
Generally speaking it is a difficult task to compute these
frustration effects. Yet, we can perform the exact calcula-
tion when solutes are considered non-interacting, as it is
done in Appendix B and Appendix C. In this Section, all
calculations were performed taking into account geomet-
rical frustration in this ideal case for solutes at interfaces,
treated in a mean-field way. This way of dealing with in-
terface concentration issues is not exact but allows to keep
calculations not too complicated. Note that only geomet-
rical frustrations are treated in a mean-field way, segrega-
tion being treated exactly and independently for each type
of segregation site. Appendix D presents the derivation of
the mean-field geometrical frustration and an example of
the equations solved in this study.

4.2. Effect of temperature on co-segregation

Figure 7 shows how GB coverage evolves as a func-
tion of temperature in two cases: either P and H solutes
are treated separately, i.e. they do not interact (solid
lines); or P–H interactions–summarized in Tables 1 and
2–are accounted for (symbols). Hence, the difference be-
tween symbols and solid lines represents the effect of co-
segregation.
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Figure 7: GB coverage as a function of temperature for H solutes (red)
and P solutes (black) when they are non-interacting (solid lines, de-
noted by the 0 subscript in the legend) or interacting via the formation
of P–H pairs (symbols). Grain radius is fixed at 10µm and nominal
concentrations are set to 100 appm for both species. The inset shows
the ratio of P GB coverage, with and without H in the system.
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The decrease of GB coverage with temperature is triv-
ial as segregation is proportional to the exponential of
the segregation energy over kBT . It is interesting to note
the asymmetry in H and P behavior: P–H interactions in-
crease P segregation at GBs by a factor lower than 2, and
this effect is temperature dependent, with a maximum at
T ' 650K (see inset). On the other hand, H segregation is
not affected by 100 appm of P, whatever the temperature,
and additional calculations not shown here confirm that H
segregation is unaffected by the presence of P in the sys-
tem. This can be understood from Fig. 6: at a grain radius
of 10µm, H concentration at GBs is 1-2 orders of magni-
tude higher than that of P. Hence, most P atoms can pair
with H atoms while leaving most H atoms isolated, i.e.
without changing the H chemical potential. The reverse
asymetric behavior is expected at free surfaces because P
segregation energy is much higher than H segregation en-
ergy.

Binding energies being all repulsive for P–H pairs at
GBs (Table 2), the increase of P segregation in the pres-
ence of H is due to P–H pairs that are stabilized by con-
figurational entropy only. The inset shows that the co-
segregation effect–quantified by the ratio of P segregated
concentration with and without H in the system–presents a
maximum at T'650 K. As temperature increases, the con-
figurational entropy contribution to the free energy of the
system becomes more and more significant, and H con-
centration at GBs is more or less constant, close to a full
coverage of the GB plane. At some temperature, the H
coverage at GBs decreases, which reduces the probability
of forming P–H pairs, and therefore the stabilization of P
atoms by configurational entropy also decreases.

To summarize, co-segregation effects on segregation
are mainly independent of P concentration and triggered
by a large H concentration at GBs, which increases P seg-
regation. It is therefore interesting to take a look at H
segregation at GBs which depends on H nominal concen-
tration, temperature and grain radius. Figure 8 shows the
H GB coverage (H concentration per GB site at the inter-
face plane) as a function of grain radius and H nominal
concentration for two temperatures.

At low temperature, constant GB coverage contours ap-
pear as straight lines in Fig. 8, either vertical or with a
slope equal to -1. This may be explained from the LTE
expressions. Taking the natural logarithm of Eq. 18 we
get:

ln [H] = ln
(
6θH

S H

)
+ ln

1 +

√
3S H

12r

 , (19)

from which we identify two limiting behaviors: if√
3S H � 12r (large grain radius and/or high tempera-
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Figure 8: H GB coverage as a function of H nominal concentration and
grain radius for two temperatures: T=400K and T=700K. P nominal
concentration is set to 50 appm for these plots.

ture), Eq. 19 simplifies to ln [H] ' ln (6θH/S H), which
does not depend on the grain radius and should indeed
give vertical constant coverage contour in Fig. 8; on the
contrary, if

√
3S H � 12r (low grain radius and/or low

temperature) we get a linear relation with a slope equal
to -1 between the logarithms of grain radius and nominal
H concentration ln [H] ' ln

(√
3θH/2

)
− ln (r). Hence,

Eq. 19 qualitatively explains the trends observed in Fig.
8 and shows that the comparison between the H segre-
gation energy over kBT and the grain radius is the key
quantity to predict H coverage and thus the possible P–H
co-segregation effects.

4.3. Combined effects of grain radius, temperature and H
nominal concentration on co-segregation

As in the inset of Fig. 7, the magnitude of co-
segregation effects is expressed as the ratio between the
computed P concentration at the GB and the P concen-
tration obtained when H is removed from the calculation
(hence no P–H interactions, denoted by subscript 0). The
additional segregation of P to GB due to H is a function of
temperature, grain radius and H nominal concentration.
In this section we want to understand the interplay be-
tween these parameters. To this end, Fig. 9 presents the
[P]gb/[P]gb

0 ratio as a function of temperature for various
combinations of grain radius and H concentration. The
lower plot shows the corresponding GB coverage of H,
which is a function of the three same parameters. The
curves that we obtain have the same shape as the one
in Fig. 7, with a maximum located more or less at the
point where H concentration at the GB becomes lower
than unity.

Focusing first on the lower plot of Fig. 9, the curves
show three values of H coverage at room temperature.
This behavior is explained in Eq. 19 by the comparison
between S H and r. By comparing some of the curves, we
see that increasing the grain radius by one order of mag-
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nitude while decreasing the nominal concentration by the
same amount does not change the low temperature cover-
age, but modifies the temperature evolution of θH .
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Figure 9: (Top) [P]gb/[P]gb
0 ratio as a function of temperature, which

measures how H increases the segregation of P atoms to GBs; (Bottom)
GB coverage of H atoms as a function of temperature. These plots
were obtained at a constant P nominal concentration of 50 appm, for
various grain radii and H nominal concentration. Filled and empty
symbols are obtained for a one order of magnitude difference in H
concentration, while going from green, to black, to blue, to red curves,
grain radius increases by one order of magnitude each time.

Looking now at the top plot of Fig. 9, the curves also
seem to form three groups of curves, the ones with a max-
imum [P]gb/[P]gb

0 ratio between 1.4 and 1.7, the ones with
a maximum ration between 1.1 and 1.2, and finally the one
with almost constant ratio, and these "groups" correspond
to the ones identified for H coverage. Generally speaking,
increasing the grain radius increases the co-segregation ef-
fects (higher maximum of the curves) and translates the

maximum ratio towards lower temperatures; increasing
the H nominal concentration increases the co-segregation
effect and translates the maximum ratio towards higher
temperatures. Hence, these two variables do not have the
same effect, because they do not affect the temperature
evolution of the H coverage in the same way. The com-
parison between the top and bottom plots of Fig. 9 clearly
demonstrates that the magnitude of co-segregation effects
is directly linked with the fraction of interface sites occu-
pied by H atoms.

4.4. Generalized Embrittlement Potency: rapid fracture
at constant concentration

We now discuss the general embrittlement potency
(GEP) obtained for scenario 1b where segregated solutes
are assumed to be immobile during the fracture phenom-
ena, such that they are simply transferred from the GB
to the free surface, and the GEP is expressed by Eq. 14.
Figure 10 shows the ratio between the GEP and the one
that would be obtained without P–H interactions, so as to
characterize co-segregation effects on embrittlement po-
tency. This ratio is shown as a function of solute nominal
concentrations for various temperatures and grain sizes.
From previous paragraphs, we know that P–H interactions
lead to larger concentrations of segregated P for H cov-
erage close to unity, hence low temperature and/or large
grain radius, such that the qualitative trends shown in Fig.
10 are expected. In addition to larger quantities of seg-
regated P, ab initio calculations showed that P–H pairs
mostly lead to increased embrittlement potency (cf. Ta-
ble 2), adding up with increased segregation levels and
leading to larger GEP, i.e. more brittle interfaces. Nev-
ertheless, note that the GEP potency increase due to co-
segregation remains quite low, always lower than 10% and
occurs only at fairly high nominal concentrations of P (at
least 100 appm). This is at variance from the effect on seg-
regation levels which was mainly independent from the
concentration of segregated phosphorus. In the P–H sys-
tem, the embrittlement potency is essentially an average
of the embrittlement potency of each species, weighted
by their concentration. Hence, if H is much more concen-
trated than P at the interface, the contribution of P atoms
on the embrittlement potency will be essentially negligi-
ble. If H concentration at the interface is low, then there
is no co-segregation effect.

4.5. Generalized Embrittlement Potency: slow fracture at
constant concentration

The general embrittlement potency obtained for sce-
nario 1f characterizes what happens during a slow frac-
ture, when segregated solutes may diffuse locally and

12



T = 300 K T = 400 K T = 500 K

r
=

0.
5

µ
m

r
=

5
µ
m

r
=

50
µ
m

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]

10
−6

10
−5

10
−4

10
−3

[H
]

10
−6

10
−5

10
−4

10
−3

[P]
10

−6

10
−5

10
−4

10
−3

[H
]

1.00 1.02 1.04 1.06 1.08 1.10

GEPb/GEPb,0

T=400K
 r=1µm

Figure 10: Generalized embrittlement potency for scenario 1b (cf. Eq.
14). These plots show the ratio between the GEP obtained in the FePH
alloy normalized by the GEP that would be obtained if P and H were
not interacting. Hence it directly quantifies the effect of co-segregation
on the embrittlement potency. The black line shows the contour at a
ratio of 1.02.

equilibrate at the free surface during the fracture. The cor-
responding GEP is expressed by Eq. 15. As shown in Fig.
11, the effect of co-segregation on embrittlement is lower
in this scenario than in the one describe in the previous
paragraph, as in the range of parameters investigated, the
GEP do not exceed a 5% increase due to co-segregation,
even though it occurs at lower nominal concentrations.
The plots are also more symmetric than the ones obtained
for fracture scenario 1b, because, as H would increase P
segregation at GBs, P increases H segregation at free sur-
faces, and this feature is now accounted for since solutes
are equilibrated at free surfaces. Hence for each species
there is some threshold concentration value above which
co-segregation translates into increased GEP, either be-
cause the GB plane is covered with H atoms, or because
the free surface plane is covered with P atoms. When both
species are simultaneously in concentrations close to these
threshold values, the increased GEP is also observed.

5. Discussion about current model limitations

The aim of this paper was mainly to introduce the new
LTE statistical model for solute segregation at interfaces.
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Figure 11: Generalized embrittlement potency for scenario 1f (cf. Eq.
15). These plots show the ratio between the GEP obtained in the FePH
alloy normalized by the GEP that would be obtained if P and H were
not interacting. Hence it directly quantifies the effect of co-segregation
on the embrittlement potency. The black line shows the contour at a
ratio of 1.01.

The application to P–H co-segregation effects in α-Fe was
limited by the amount of computational time available for
DFT calculations.

The first way to improve the model is to perform addi-
tional DFT calculations, either on other sites around the
GB because some out-of-plane sites may be found very
stable [26, 64]. Also, a similar type of work should be
performed on other GBs because a real material contains
various types of GBs [34]. Moreover, highly coherent
GB such as first-order twins considered in this study may
exhibit huge property changes if the GB plane is mis-
aligned by only a few degrees [4]. These types of com-
plex structures–for instance non-symmetric GBs–are now
becoming accessible, especially using molecular dynam-
ics approaches based on semi-empirical interatomic po-
tentials [63, 70, 71]. Note that having a statistical model
such as the one proposed in this paper that is able to treat
each segregation site individually but also collections of
segregation sites (i.e. short-range order) is particularly
useful for grain boundaries in ordered structures, e.g. ox-
ides [18].

Another point which is crucial–especially for compar-
ison with experiments–is to take into account tempera-
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ture effects. For instance, DFT calculations at 0 K indi-
cate substitutional segregation of phosphorus while there
is experimental evidence for interstitial segregation at
higher temperature [65]. The discrepancy may be due
to the temperature dependence of the segregation energy
(entropy contribution) and magnetism evolution as the
Curie temperature is approached. More generally speak-
ing about finite temperature effects, segregation entropy
is important to consider for relevant modeling/experiment
comparison[18, 52]. In our LTE model, we can easily
use a free energy for each configuration. As a matter
of fact, we already included configurational entropy and
a first-order approximation of vibrational entropy for H
atoms in the present work. Other forms of entropy (e.g.
electronic, magnetic and vibrational) can sometimes be
computed with state-of-the-art DFT tools, but these re-
main computationally expensive, especially for complex
GB structures. Temperature also affects the lattice pa-
rameter, magnetic ordering and GB structure which are all
non trivial contributions. Because DFT calculations can-
not consider all these contributions altogether, a closely
bound experimental/numerical work is probably the best
way to obtain meaningful data on solute segregation at
GBs.

One limitation of LTE models is their inability to treat
phase transitions in the case of solute precipitation at
the GB. There is a workaround though, but two sepa-
rate LTE calculations must be performed–one with a ref-
erence free interface and the other with a reference pre-
cipitate phase at the GB–and then both systems must be
put in equilibrium to solve concentrations and/or chemi-
cal potentials[72]. The main difficulty in performing LTE
calculations is the computation of the so-called "counter-
terms", i.e. the geometrical multiplicity of states that are
dissociated[55]. These states are usually negligible for di-
lute concentrations (typically < 1at% for a given type of
site). For more concentrated cases these terms should be
added, but it is always possible to check whether or not
the next term in the expansion is negligible. Hence, one
can safely use LTE expressions in more and more concen-
trated states without knowing the full (infinite) partition
function of the system.

Finally, we were only focused on equilibrium segrega-
tion, while real materials contain multiple segregating ele-
ments, each having their own kinetic properties [73]. Thus
out-of-equilibrium segregations may arise, for instance
during quenching [74, 75], under irradiation [76, 77] or
because of GB migration [78]. Note that in all these
cases the elastic field around the GB modifies the diffu-
sion properties of solutes [79] and thus the segregation.

This rather long list of model limitations does not mean
that DFT calculations are useless to study GB segregation,
but rather points towards some critical points to keep in
mind when using such models and comparing them with
experiments.

6. Conclusion

The main contribution of this paper is the development
of the low-temperature expansion model to study interface
segregation. The strength of this model is its general for-
mulation which makes it suitable to address various seg-
regation problems, for instance taking into account multi-
species and multi-sites per species segregation, as well the
effect of grain size on segregation.

To demonstrate the applicability of the LTE formula-
tion, we applied it to the study of P–H co-segregation ef-
fects in α-Fe twin boundaries. We performed ab initio
calculations to obtain the input data necessary for the LTE
model, mainly binding and segregation energies.

We showed the importance of grain size on GB cov-
erage, especially for small grains. The classic McLean
segregation isotherm [1] is basically restricted to the large
grain size limit, where the solute chemical potential is
given by the bulk solution energy. P and H solutes show
asymmetric co-segregation behavior at the GB plane. H
segregation levels are insensitive to the presence of P,
while H atoms can slightly increase P segregation to GBs
due to configurational entropy. For this to happen, the GB
plane must be almost saturated with H atoms, to maxi-
mize the probability of forming P–H pairs. Hence, the H
coverage at GBs is the key quantity, and depends on the
grain radius, temperature and H nominal concentration.
The situation is reversed at free surfaces where H may be
stabilized by P atoms.

A general formula for embrittlement potency is pro-
posed, and we show that co-segregation can lead to in-
creased embrittlement potency, up to 10% depending on
solute concentrations, temperature, grain size and the
fracture scenario considered (comparison between frac-
ture and local diffusion time scale).

Larger co-segregation effects would be obtained if P
and H showed attractive interaction in the GB plane. This
might be the case in other GBs, or for other solutes at a
twin boundary.

Because H easily saturate GBs, future work on segrega-
tion at α-Fe twin boundaries should focus on concentra-
tion effects, introducing other clusters (H–H interactions
for instance) and out-of-plane configurations. For other
types of GBs, the strain field around the GB may favor
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these out-of-plane configurations. Finally, let us stress
that the ideal work of interfacial separation is predicted
to have an important but probably not exclusive role in
controlling embrittlement [25]: for instance, McMahon
emphasizes the dynamic effect of H as an explanation to
GB embrittlement [33]. Hence, equilibrium segregation
studies provide necessary but not sufficient insight into
embrittlement phenomena.
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Appendix A. Discussion about the reliability of DFT
calculations for solutes with low solubil-
ity limits

Ab initio methods have their drawbacks, mostly related
to the complexity of properly taking into account temper-
ature effects, and the limited number of atoms that can be
included in a simulation box. Regarding the latter, let us
comment on some question that was raised about the reli-
ability of ab initio calculations for solutes with small sol-
ubility limits [17, 18]. We do not question the discrepancy
between experimentally measured and computed segre-
gation energy that was identified by the authors, but the
"low solubility limit" argument is not convincing, mainly
because it is not an intrinsic parameter of a solute in a
matrix: the solubility limit depends on the phases in the
material, not only on the thermodynamically stable ones
but on the ones that are actually formed. So even though
a solute with a solubility around 1 appm is severely su-
persaturated in a 100-atom simulation cell, it cannot pre-
cipitate because at best it will form a lattice with more
than 1 nm between each atom, which is usually not the
stable phase required to impose this solubility limit. The
convergence of the energy of the system with the cell size
demonstrates that there is no interaction between a solute
and its replicas such that in the simulation cell, the so-
lute cannot be out-of-equilibrium because solubility limit

is not really defined. In our opinion, the discrepancy is
rather due to complicated temperature effects and exper-
imental difficulties in measuring segregation energies, all
of which being emphasized for the solutes with "small sol-
ubility limits". But the ab initio calculation itself is correct
at T = 0 K.

Appendix B. Equivalence between LTE and McLean
formalisms

In this Appendix, we demonstrate the equivalence be-
tween the low-temperature expansion formalism that is
used in this paper, and the standard McLean model which
is commonly used to compute the amount of segregated
species [1, 19, 20, 52]. In the Langmuir-McLean model,
there is only one type of solute, segregating at one type
of site (single segregation energy) and segregated atoms
do not interact with one another. Hence, the solute-GB
binding energy of state i containing nαi = i solutes α is
Eb

i = iEb
α, where Eb

α is the segregation energy of species
α at the GB.

From Eq. 6, we need to compute the degeneracy for
each state to be able to compute the partition function of
the system. Fortunately, for the specific case we are in-
terested in, it is possible to give a general formula for
each Gi factor and write the infinite series of the parti-
tion function. The change in Gi values as a function of the
number of solutes in the system is mainly related to exclu-
sion effects, because two solutes cannot occupy the same
site. These exclusion effects are taken into account via
"counter-terms" in the LTE formalism, which corresponds
to Gi factors for non-interacting of dissociated configura-
tions. Also note that all solutes are not distinguishable
hence the division by the number of permutations for i
solutes.

G1 = N, (B.1)

G2 =
N (N − 1)

2!
, (B.2)

G3 =
N (N − 1) (N − 2)

3!
, (B.3)

Gi =
N (N − 1) · · · (N − i + 1)

i!
, (B.4)

The total energy of each state is given by i
(
Eb

i + µα
)
.

Hence, defining X = exp
((

Eb
α + µα − µm

)
/kBT

)
, Eq. 6
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becomes:

A = A0 − kBT ln

1 +
∑
i,0

N (N − 1) · · · (N − i + 1)
i!

Xi


= A0 − kBT N

∑
i,0

(−1)i−1

i
Xi

= A0 − kBT N ln (1 + X) , (B.5)

and the second equality makes use of the linked-cluster
theorem [53].

Matrix m and solute α concentrations at the interface φ
are obtained from the derivatives of Eq. B.5 with respect
to the corresponding chemical potentials:

[m]φ = 1 −
X

1 + X

[α]φ =
X

1 + X
, (B.6)

such that [m]φ + [α]φ = 1 and :

[α]φ

[m]φ
= exp

(
Eb
α + µα − µm

kBT

)
. (B.7)

The exact same work can be performed in the bulk rather
than at the interface, the only difference being that there
is no segregation energy in the bulk: Eb

α = 0. Thus, we
recover the Langmuir-McLean segregation isotherm:

[α]φ

1 − [α]φ
=

[α]b

1 − [α]b exp
(

Eb
α

kBT

)
.

Appendix C. Generalized embrittlement potency

Appendix C.1. Average energy of a system
In this Appendix we derive the expressions presented in

Sec. 2.3. To generalize the definition of the embrittlement
potency, we use the results from the LTE calculations to
compute the work of separation. We consider the average
energy of the interface at thermodynamic equilibrium as
being representative of the system. Let β = 1/kBT and
Ai = Ei −

∑
α nαi µα. Then the partition function of the

system reads Z =
∑

i Gi exp(−βAi), which is nothing but
the sum of the probability of each micro-state. The av-
erage energy of the system (including chemical potential
contributions in the grand-canonical ensemble) is:

〈A〉 =

∑
iAiPi∑

i Pi
=

∑
iAiGi exp (−βAi)

Z
= −

1
Z
∂Z
∂β

= −
∂ ln Z
∂β

=
∂ (βA)
∂β

= A + β
∂A

∂β
. (C.1)

Let us define the binding grand potential of a micro-
state, defined with respect to reference state i = 0: Ab

i =

− (Ai −A0) = Eb
i +

∑
α δnαi µα. Using the expression from

Eq. 7 and these notations:

A = A0 −
N
β

∑
i,0

gi exp
(
βAb

i

)
, (C.2)

leading to:

〈A〉 = A0 − N
∑
i,0

Ab
i gi exp

(
βAb

i

)
, (C.3)

which is conveniently rewritten as:

〈A〉

N
=

E0

N
−

∑
i,0

Eb
i gi exp

(
βAb

i

)
−

∑
α

µα [α] , (C.4)

where [α] is the total concentration of species α in the
system, given by Eq. 8. The transition from Eq. C.3 to Eq.
C.4 is exact as long as all entropy contributions inAb

i are
temperature-independent, as the configurational entropy
for instance. In our calculations, we consider temperature-
dependent vibrational entropy for H atoms (cf. Eq. 2) but
for simplicity we still use Eq. C.4 to compute the general
embrittlement potency.

Appendix C.2. Comparison with the ideal embrittlement
potency in the dilute case

With this expression of the average energy of the sys-
tem, let us recover the basic expression of the embrittle-
ment potency in the case where there is only one segre-
gating species, one segregation site, and the interface con-
centration of solute is very low.〈
A

N

〉
=

E0

N
− Eb Nφ

N
exp

(
β
(
Eb + µα

))
− µα [ᾱ] , (C.5)

If all the atoms segregated at the GB stay at free surfaces
without short-range order re-organization (fast fracture, as
in scenario 1b or 1c), then the probability of each config-
uration–roughly exp

(
β
(
Eb

i + µα
))

is identical at the GB
and at the free surface. Also the chemical potential is
not really defined once the system is fractured because
the system is not at equilibrium. Yet, if we assume that
there are more solute atoms in the bulk than in the GBs or
free surfaces-–because grains are large enough so that the
number of bulk sites is much larger than the number of
interface sites—then we can assume that the solute chem-
ical potential is mainly given by bulk solute atoms such
that µgb

α ' µ
f s
α . For scenario 1b, we will always make this

assumption since the chemical potential is ill-defined after
fracture. The ideal work of separation per GB site is:
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Wsep =

〈
A

Ngb

〉 f s

−

〈
A

Ngb

〉gb

= W0
sep − XgbEPα, (C.6)

with Xgb = exp
(
β
(
Eb

gb + µα
))

is the concentration of so-
lute atoms at the interface, sometimes called the interface
coverage (this expression is valid for low coverage only)
and the embrittlement potency for solute α is defined as in
Sec. 2.3: EPα = Eb

f s − Eb
gb. If the solute is more stable

at the GB than at the free surface (Eb
gb > Eb

f s), the embrit-
tlement potency will be negative and solute segregation
increases Wsep meaning it strengthens the GB.

Appendix C.3. Comparison with the ideal embrittlement
potency including geometrical frustration
effects

Now let us do a comprehensive calculation for this spe-
cific case of one type of solute segregating at one type of
interface site, taking full account of concentration effect.
The expressions for Gi coefficients are the ones shown in
Appendix B (Eq. B.4), with N = Ngb and we want to
compute the ideal work of separation per unit GB site, us-
ing gi = limNgb→0

[
Gi/Ngb

]
. The energy of state i where

nαi = i solute atoms have been added is Eb
i = iEb because

solutes are non-interacting.

〈A〉

Ngb
=

E0

Ngb
− Eb

∑
i,0

(−1)i+1 i (i − 1)!
i!

Xi −
∑
α

µα [ᾱ] .

(C.7)
Knowing that∑

i,0

(−1)i+1 i (i − 1)!
i!

Xi =
X

1 + X
, (C.8)

we find the following expression, which is similar to Eq.
C.6 for low Xgb values:

Wsep = W0
sep −

Xgb

1 + Xgb
EPα. (C.9)

Appendix C.4. Generalized embrittlement potency ex-
pressions

We now derive the expressions presented in Sec. 2.3
to define the generalized embrittlement potency for sce-
narios b, f and g in Fig. 1. We define the generalized
embrittlement potency (GEP) as the deviation from the
ideal work of separation for pure materials, a deviation
that is caused by a given concentration of one or several
chemical species:

GEP = −
(
Wsep −W0

sep

)
= W0

sep +

〈
A

Ngb

〉gb

−

〈
A

Ngb

〉 f s

.

(C.10)

The GEP is expressed as a per GB site quantity and the
minus sign is to conserve the convention that a positive
GEP translates into GB embrittlement.

For scenario 1b, concentration is conserved because the
fracture event is much faster than the solute diffusion time
scale. Also, because the final state is not at equilibrium,
we assume that the chemical potential is mainly fixed by
bulk atoms and thus unchanged during fracture. The con-
tribution of bulk atoms and solutes to the overall energy
of the system is also identical before and after fracture be-
cause solutes do not have time to diffuse. The probability
of finding a segregated solute at a free surface is identical
to the probability of finding a segregated solute at the GB,
only the segregation energy changes.

GEPb =
∑
i∈GB

(
Eb

i, f s − Eb
i,gb

)
ggb

i exp
(
βAb

i,gb

)
, (C.11)

where the sum runs over excited states i involving GB
sites only.

Scenario 1f is a bit more complicated because upon
fracture the system initially containing Nb bulk sites, Ngb

GB sites and {Nα} solutes is split into two independent
sub-systems, each containing (Nb −Ngb)/2 bulk sites, Ngb

free surface site and {Nα/2} solutes. The concentration in
each sub-system after fracture is:

[α] f s =

Nα

2
Nb − Ngb

2
+ Ngb

=
Nα

Ngb + Nb
= [α]gb . (C.12)

Still there is a difference when we solve the LTE equations
because the Nφ/Nb ratio is not the same in a sub-system
containing a free surface and in the initial system contain-
ing the GB:

γ f s =
Ngb

Nb − Ngb

2

=
2γgb

1 − γgb , (C.13)

with γgb being defined in Eq. 9. When using Eq. 10
to switch from per interface site multiplicities to per total
number of sites multiplicities, the value γ f s defined in Eq.
C.13 will be used to compute the grand potential of the
system containing a free surface. The GEP for scenario 1f
requires two separate LTE calculations (where the same
total species concentrations are imposed) and is written
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as:

GEP f =
∑
α

[α]
(
µ

f s
α − µ

gb
α

)
+

∑
i∈GB

gφi
(
2Eb

i, f s exp
(
βAb

i, f s

)
− Eb

i,gb exp
(
βAb

i,gb

))
+

∑
i∈bulk

gb
i Eb

i,b

γ

(
(1 − γ) exp

(
βAb

i, f s

)
− exp

(
βAb

i,gb

))
,

(C.14)

Appendix D. Mean-field derivation of geometrical
frustration at the interface

In this Appendix we derive a mean-field version of the
geometrical frustration at the interface. This contribu-
tion must be taken into account in LTE calculations when
one type site or configuration has a concentration per site
above a few percent. Due to the effect of grain size on
segregation (cf. Sec. 4.1) and the high segregation en-
ergies of solutes to interfaces (even more so for free sur-
faces), interface coverage close to unity often arises. With
LTEs, one can take into account chemical short-range or-
der exactly; while it is straightforward to do so for a set
of well-identified configurations, it is much more com-
plicated to do the combinatorics for "dissociated" con-
figurations (meaning all configurations that are not well-
identified). Therefore, in this study, we simplify the calcu-
lation of the geometrical multiplicity of these dissociated
configurations using a mean-field approach. Short-range
order for well-defined configurations is still taken into ac-
count exactly. Let us introduce some handy notations to
write the derivation in a more concise manner.

X = exp (βµP) , (D.1)

Y = exp (βµH) , (D.2)

BPH =
∑

i=3,5,7

gb
i exp

(
βFb

(
PHb

i

))
, (D.3)

S P = exp
(
βFb

φ

(
Pφ

))
, (D.4)

S H = 3 exp
(
βFb

φ

(
Hφ

))
, (D.5)

S PH =
∑

i=1,2,3,5

gφi exp
(
βFb

φ

(
PHφ

i

))
, (D.6)

where Fb and Fb
φ are the free energies (including vibra-

tional entropy contributions for H) for bulk and inter-
face configurations, with values taken from Tables 1 and
2. With these handy notations, let us introduce all these
configurations–without introducing any geometrical frus-
tration effect–in the expression of the grand potential of

the system (Eq. 6), the γ factors being introduced from
Eq. 10 to take into account the effect of grain radius.

A = A0 − kBT ln
(
1 +

N
1 + γ

[
X + 6Y + XYBPH + γZφ

])
,

(D.7)
for which we define the total concentration of segregated
solutes at the interface:

Zφ = XS P + YS H + XYS PH . (D.8)

This is where the mean-field approximation comes in: we
assume that each segregated solute–whatever its chemi-
cal species and/or short-range order–occupies a number of
sites at the interface which are therefore no longer avail-
able for other species. The exact calculation would require
to distinguish between solute type and local configuration.
The advantage of this mean-field approximation is that we
can use the expressions that have already been used in the
previous appendices to take into account geometrical frus-
tration for a single type of solute, the concentration of the
unique type of solute becoming the mean quantity of so-
lutes segregated at the interface, Zφ. Hence, Eq. D.7 be-
comes:

A = A0 − kBT ln
(
1 +

N
1 + γ

[X + 6Y + XYBPH

+γ
∑
n≥1

(N − 1)!
(N − n)!n!

Zn
φ


 . (D.9)

As previously, we use the linked-cluster theorem to get rid
of all terms that are non-linear in the number of sites in the
system N,

A = A0 −
kBT N
1 + γ

[
X + 6Y + XYBPH + γ ln

(
1 + Zφ

)]
,

(D.10)
and the total P concentration is obtained as follows:

[P] = −
1

kBT N
∂A

∂ ln (X)

=
X

1 + γ

[
1 + YBPH + γ

S P + YS PH

1 + Zφ

]
. (D.11)

The geometrical frustration appears in the 1/(1 + Zφ) di-
vision, and we verify that it is equal to 1 at low interface
coverage (i.e. Zφ � 1). Note that bulk configurations
are always dilute in the system under study, such that a
similar treatment is not required. Equation D.11 can be
recast into a second-order polynomial of variable X (first
unknown) where each coefficient is a polynomial function
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of variable Y (second unknown).

0 = X2
(
Y2BPHS PH + Y (S PH + S PBPH) + S P

)
+ X

(
Y2S H BPH + Y (γ̃PS PH + BPH + S H) + S Pγ̃P + 1

)
− [P] (1 + γ) (1 + YS H) . (D.12)

A similar equation is obtained for the total H concentra-
tion:

0 = Y2
(
X2BPHS PH + X (6S PH + S H BPH) + 6S H

)
+ Y

(
X2S PBPH + X (γ̃HS PH + BPH + 6S P) + S H γ̃H + 6

)
− [P] (1 + γ) (1 + XS P) , (D.13)

and Eqs. D.12 and D.13 introduce γ̃α for α =H or P:

γ̃α = γ (1 − [α]) − [α] . (D.14)

Equations D.12 and D.13 correspond to the system of cou-
pled polynomial equations that we solve to obtain P and H
chemical potentials at fixed nominal concentrations, and
determine whether the presence of one solute alters the
segregation behavior of the other.
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