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Abstract

Interatomic machine learning potentials have achieved maturity and became worthwhile alterna-
tive to conventional interatomic potentials. In this work we profile some characteristics of linear
machine learning methods. Being numerically fast and easy to implement, these methods offer
many advantages and appear to be very attractive for large length and time scale calculations.
However, we emphasize that in order to be accurate on some target properties these methods
eventually yield overfitting. This feature is rather independent of training database and descrip-
tor accuracy. At the same time, the major weakness of these potentials, i.e., lower accuracy
with respect to the kernel potentials, proves to be their strength: within the confidence limits
of the potential fitting, one can rely on less accurate but faster descriptors in order to boost
the numerical efficiency. Here, we propose a hybrid type of atomic descriptor that combines
the original forms of radial and spectral descriptors. Flexibility in choice of mixing proportions
between the two descriptors ensures a user defined control over accuracy / numerical efficiency
of the resulting hybrid descriptor form. The performance and features of the above linear ma-
chine learning potentials are investigated for the interatomic interactions in metals of primary
importance for fusion and fission applications, Fe and W. The suggested hybrid approach opens
many avenues in the field of linear machine learning potentials that up to now are preferentially
coupled with more robust and computationally expensive spectral descriptors.

Keywords: Interatomic potentials, Machine learning, Descriptors, SNAP, Molecular dynamics

1. Introduction

An accurate description of condensed matter properties requires a precise knowledge of the
material at the atomic scale. Generally, the properties of materials are well described by ab

initio methods, however, their numerical cost increases drastically with the system size, length
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and time scale. Thus, the study of complex atomic configurations and their physical properties
far from the equilibrium state (e.g., of irradiated systems, which typically contain in the order
of 10°-10° atoms) is often pushed beyond the scope of the first principle methods.

For metallic materials, the search for alternative theoretical methods has led to the develop-
ment of various many-body interatomic models that span from second moment of tight binding
approximation (1; 2; 3) to embedded-atom model (EAM) (4; 5), modified embedded-atom model
(MEAM) (6), and higher order tight binding approximations (7; 8; 9; 10; 11; 12). Based on well-
established physical models, these potentials use rigid and non-linear functional forms with few
adjustable parameters. The optimization of the function parameters is a keen process, which is
typically done using relatively small databases that contain few tens of ab initio or experimental
observables. This approach ensures high computational efficiency, however, it implies a lack of
transferability.

In the last decade, a prompt progress in machine learning (ML) methods has fueled a devel-
opment of “flexible” interatomic potentials that can learn on the fly to predict atomic energies
and/or forces. To a certain degree, both approaches, conventional and machine learning, are
similar: an output (observable) is extrapolated from a given input (database). Compared to
the traditional approach, the process of ML potential design differs by few points. Firstly, for
ML potentials, the database is on an equal footing with the fitting formalism. As such, the
definition of the potential is framed by these two characteristics. Consequently, ML potentials
require using an extensive training database because its content has a strong impact on accuracy
and transferability of the potential. Secondly, before performing the fit, all the database con-
figurations, with different number of atoms, are mapped into a unique space called descriptor
space. This projection is ensured by a descriptor or feature function, which also influence the po-
tential accuracy and, therefore, represents an important intrinsic characteristic of the potential.
And lastly, the fitting algorithm is performed in the descriptor space and the (statistical) ML
procedure of the fit defines the performance and limitations of the potential. Below we briefly
describe each of the points that define the performance of ML potentials, namely the database,
the type and dimensionality of descriptors and ML procedures.

As for any interatomic potential, the target observables to extrapolate using a ML potential
are mainly defined by the interests of the materials science community. The objective char-
acteristics commonly include formation and migration energies of defects, phonon frequencies,
elastic constants, etc. Very often the observables can be described by smooth continuous func-
tions, e.g., by the total energy F(r) of the system, which is a function of 3N atomic coordinates

(r € R3V), with N being the number of atoms. However, fitting the observables of the system



directly as a function of atomic coordinates r using statistical ML methods is impractical. Here,
ML approaches propose a notion of atomic descriptors, also known as fingerprints. The descrip-
tors enable a specific representation of the crystal structure and its invariant description with
respect to physical principles and symmetry including permutation of atoms, transnational and
rotational invariance. These functions allow to capture the essential features of the individual
atomic environments in a space of lower dimensionality, referred hereafter as the descriptor
space. Thus, instead of using R3N dimensional description of the local atomic environments,
one employs a lower space R with K < N.

The first attempt to couple artificial intelligence and atomic-scale materials science was
proposed by Behler and Parrinello in 2007 (13). This seminal paper has introduced the notion
of descriptors adapted to the complexity of atomistic materials science (e.g., the radial Go
and angular Gg functions). Afterwards, Barték et al. (14; 15) developed atomic descriptors
based on spectral analysis of local atomic environments. More recently, Shapeev et al. (16; 17)
introduced a new class of descriptors that are well suited for the moment tensor potentials
(MTP). These potentials are based on moment tensors similar to the inertia tensors of local
atomic environments. Besides the functions listed above, there are also the so-called similarity
distance descriptors, which describe the distances between the atomic environments: Smooth
Overlap of Atomic Positions (SOAP) (15), Atomic Configuration Distance (ACD) (18), and
Graph Approximated Energy (GRAPE) (19).

The vast majority of existing ML models for atomistic calculations are based on neural net-
works (NN) (20; 21) or kernel methods (22; 23; 24; 25; 26; 27) (with the Gaussian function being
the most common kernel). Both approaches provide a good numerical accuracy, however, appli-
cation of NN potentials for molecular dynamics (MD) simulations is often challenging because
of numerical instabilities that occur during simultaneous fit of the function and its gradient (i.e.,
of energies and forces). In contrast to NN, kernel methods are widely used for MD simulations.
Some of the kernel models are formalized in the ever-growing field of the statistical on-the-
fly learning methods (25; 27), while the others are built in the form of potentials such as the
Adaptative Generalizable Neighborhood Informed (AGNI) (24) and Gaussian Approximation
Potentials (GAP) (14; 28). The latter is the most robust and commonly used version.

Besides the NN and kernel methods, there is a so-called spectral neighbour analysis potential
(SNAP) (29), which assumes the linear relationship between atomic energies and components
of the spectral descriptor, namely of the bispectrum coefficients described in refs. (14; 15).
The coefficients of such a potential are determined using weighted linear regression against the

training database in the descriptor space. This method is referred hereafter as linear machine



learning (LML).

Computational cost and accuracy of ML potentials depend on several factors that are contin-
gent on the underlying ML model and type of atomic descriptor. Similarly to any conventional
potential, the numerical efficiency of ML potentials scales with the number of atoms N. The
numerical cost of kernel potentials additionally scales with the number of local atomic environ-
ments in the training database. Moreover, the accuracy of the prediction strongly depends on
the size and content of the database. In contrast to the kernel methods, the size of the database
does not impact the numerical cost of the LML and NN potentials. However, for NN methods,
the CPU cost also depends on the architecture of the network (e.g., on the number of hidden
layers and number of neurons). Beyond the factors mentioned above, the numerical efficiency
of all ML potentials is impacted by the time needed to compute a descriptor. The majority
of existing kernel and LML potentials for metals (e.g., refs. (14; 22; 28; 29; 30; 31; 32)) are
designed based on the robust and time consuming descriptors, like bispectrum (14; 15) or SOAP
(15). Being combined with these descriptors, kernel (GAP) and LML (SNAP) potentials are,
respectively, four and two orders of magnitude slower than EAM potentials (33). With such
a numerical cost of kernel ML potentials, it is computationally expensive to have an access to
free energy methods where the number of force evaluations exceeds 10° per atom. Thus, taking
into account high computational cost of the kernel methods and limited application of NN for
MD simulations, the LML potentials with a good tradeoff between accuracy and computational
efficiency are the the good candidates for the free energy calculations. The main advantages of
this method (compared, for instance, to kernel methods) is that the size of the training database
does not affect the numerical cost of the potential. The LML potential is only defined by the
set of K + 1 parameters, with K being the dimension of the descriptor function. Moreover, the
LML method is relatively simple to implement and it allows for simultaneous fit of energies,
forces and stress tensor, crucial for modeling large defects and irradiated systems.

In this work we aim to investigate the performance and limits of the LML formalism combined
with different descriptors. The utility of accurate and slow descriptors, such as bispectrum or
SOAP, are justified for the kernel based ML algorithms and NN. However, for the relatively
simple LML algorithm, the inherent training / test error is inevitably higher than that in more
complex and computationally expensive methods. Here, we examine the efficiency of different
atomic descriptors coupled with LML regression in order to define the confidence region and
limits of the potential (while targeting to reproduce lattice parameters and elastic constants of
bee metals). We suggest using less accurate descriptors that have the advantage to boost the

numerical evaluation while preserving the training / test error at the level of complex descriptors



coupled with LML. We propose a method to build the so-called hybrid descriptors by mixing
precise and computationally expensive descriptors, like bispectrum SO(4), of low dimensionality
with numerically fast and less accurate ones, like Behler-Parinello radial function Gg. Further,
we demonstrate how the balance between the numerical cost and accuracy of such descriptors

can be controlled while varying the proportions between heavy and fast descriptors.

2. Methods

2.1. Databases

In this work we fit the LML potentials using DFT databases for Fe and W (Table 1). The
datasets include atomic structures of bee bulk from molecular statics and molecular dynamics
calculations, liquid configurations and the structures of point, planar and linear defects. For
one configuration (simulation cell) with N atoms, the maximum number of the data points to
fit is (ng + np + ng) = 3N + 7, which results from the simultaneous fit of energy (np = 1),
forces (np = 3N) and six independent components of virial stress (ng = 6). The W database is
significantly bigger than that of Fe. Overall, the W database contains 262203 (ng + nr + ng)
datapoints, whilst the Fe dataset contains 20577 points available for the test and train. The
detailed content of the databases and the number of data points and configurations used for the

train and test are reported in Table 1.

Table 1: Composition of Fe and W databases employed for fitting LML potentials. In the column with properties
to fit, E corresponds to energies, F stands for forces and S for stress. The number of data points to fit is defined
by (ng + nr + ns) with ng, np and ng being the number of points with energies, forces and stress, respectively.

The train / test describes the number of training and testing configurations, respectively.

Fe W (30)

DB class Atoms  Properties ngp+np+ng Configurations | Atoms Properties ng+np+ng Configurations

per cell to fit train / test train / test | per cell to fit train / test train / test
Bcee unit cell 2 ES 840/483 120/69 1 ES 7336,/6664 1048/952
Elasticity 2 ES 231/462 33/66 - - - -
Bee - MD 128 F 11520/3840 30/10 128 EF 11550/11550 30/30
Liquid 100 F 2100/900 7/3 - - - -
Free surfaces 14-48 E 4/4 4/4 12 E 90/90 90/90
~-surfaces 12 E 120/49 120/49 12 E 3000/3183 3000/3183
Vacancies 126-127 E 3/3 3/3 47-127 EF 89070/89070 585/585
Self-interstitials | 129-132 E 9/9 9/9 - - - -
Dislocations - - - - 135 EF 4060/36540 10/90
Total 14827 /5750 326/213 115106/147097 4763/4930




The Fe database is calculated with VASP (34) using PAW pseudopotential with GGA-PBE
functional that accounts for 14 valence electrons 3p®3d”4s'. The plane-wave cutoff energy is set
to 400 eV. The Brillouin zone is sampled with the Monkhorst-Pack scheme such as the smallets
spacing between the k-points is 0.0175 A~

For W, we employ the open access database from libAtoms.org (Cambridge University),
which was previously used for fitting a GAP potential (30). This database was calculated with
CASTEP (35) using ultrasoft pseudopotential and GGA-PBE functional with 5s25p%5d46s?

electrons. More details about the W database calculations can be found in (30).

2.2. Descriptor functions

2.2.1. Behler-Parinello descriptor functions

The Behler-Parinello (BP) symmetry functions were originally introduced in 2007 (13) and
since then they are widely used as descriptors coupled with NN potentials (36) for various
materials, such as aluminum (24; 37) and its alloys (38), carbon allotropes (graphite-diamond)
(39), sodium (40; 41), germanium telluride (42), water (43; 44), etc.

The most simple and fast BP descriptor is the two-body symmetry function G§ that takes
into account only radial atomic environment. Its form is, in fact, somewhat similar to the radial
distribution function. Using the G¢ function, the environment of the a'® atom can be written

as:

Gi(n R) = Y e M Ry f (ryp) | (1)
bev(a)

where v(a) denotes the set of all the neighbors of the a® atom within a cutoff function f, (r4)
(detailed below); parameters Ry and 7 control the position and width of the Gaussian with
respect to the central atom; wy is a weight factor, commonly taken as atomic mass, which
allows to discriminate between various types of atoms. Using the grids of n =, ..., 1,4, and
Ry = R1,...,Rsg,, the local environment of the at" atom is projected into descriptor function
space of dimension j = dim(G%) = g1 X g2. Most commonly, these values are taken as g = 1
and R, = 0 whilst the grid 7 has 5 — 200 values between 10~2 and 1.0.

In order to go beyond the radial function G§ (Eq. 1), it is necessary to consider angular many-
body interactions. It implies considering triplets of atoms, which allows to take into account the
angular correlations between the atoms. Using the angle 6,5 = repTac/Taprac between the three

atoms a, b and ¢ (centered on the atom a), one can define the G§ descriptor as follows (13):

Gg(na )‘a C) = 217( Z (1 + Acos eabc)c' e—U(Tib'i‘TZc‘H“gC), f(/: (Taba Tac, 'rbc) ) (2)
b,c#a



where the parameter  controls the angular components of atomic environments; A = 41 defines
the extreme positions of cosine function; and the function f. (rap, Tac, Tbe) = fe (Tap) * fe (Pac) * fe (Tbe)-
The n and ¢ grids together with A give the dimension of the descriptor function space j =
dim(G$).

The cutoff function on interatomic distances f. (rq5) describes the relevant local atomic

environment within the distance r < R, according to the following expression:

folr) = % [cos (71' R:ut) + 1} . (3)

The cutoff distance R.,; should be sufficiently large to include several nearest neighbors. In the
literature, the Rey values are commonly taken between 4 and 12 A, dependently on investigated
material and desirable convergence criterion (e.g., refs. (13; 39; 42; 45)). In this work, we employ

the threshold values of 5 and 8 A both for Fe and W, which is large enough for these materials.

2.2.2. Spectral descriptor functions

An alternative approach that accounts both for the radial and angular information infor-
mation was proposed by Barték et al. (14; 15). The spectral approach implies a quantitative
evaluation of the density of neighbors centered on one atom. The neighbor density p,(r) for
each atom a can be considered as a sum of § functions at all positions of neighboring atoms up
to a cutoff distance, weighted depending on the species involved:

pa(t) = wad(r) + > felrap)wpd(r —Tap) . (4)
bev(a)

The power spectrum of the local atomic density is computed by projection on some basis func-
tions, such as, angular spherical or hyperspherical functions. The concept of power spectrum
can be extended to the bispectrum (15; 46; 47). The latter is the direct product of the power
spectrum and can be computed by coupling two different angular channels. The descriptors that
are based exclusively on angular spherical functions Y}, contain only radial information and,
consequently, they are incomplete. However, the descriptor based on hysperspherical functions,
like bispectrum SO(4) (14; 15), was shown to be complete (14; 15; 46; 47), i.e., able to determine
the local atomic environments uniquely, including the local symmetry operations like transla-
tion, rotation, inversion and permutation of particles. Instead of Cartesian coordinates r, this
approach relies on the bispectrum components of the 4D hyperspherical harmonics projected
onto the R*-sphere (6, ¢, fy). The relation between polar and Cartesian coordinates is bijective
(48).

It is interesting to note that these functions are the transformations matrices for standard

spherical harmonics under rotations by angle ¢ = 26y around the axis defined by angles 6 and



¢. Consequently, the functions can be easily related to the Wigner D-matrix, which gives the
irreducible representations of the SO(3) group (48). The neighbor density function p,(r) of the

h atom can be described in 4D hyperspherical harmonics as follows:

pa(r) = Z Z Z 'Cj mm/ U] mm'(907 0,0= I') (5)

j=0,1/2,... m=—jm/=—

The expansion coefficients c¢? also called power spectrum coefficients) for the ath atom are

j;mm/ (

given by the inner product between the density and hyperspherical functions:

C?,mm =w U] mm’(o 0, 0 Z fc Tab waj mm/ (9 9(11)7 ¢ab = rab) , (6)
bev(a)

1 .3
2 1, 2 etc. For
the maximal value of the angular moment jq., the total number of components Uj.ppms is

where, the j values can only be positive integer or half-integer, i.e., j = 0,

]"““” 0o (25 + 1)2. The polar angles Ogb, 69 ¢ are the representation on the rq, vector on the
R* —sphere. The direct evaluation of these functions is commonly performed using recurrence
relations (see Appendix A for details).

The bispectrum SO(4) coefficients Bj; ;. (15) of each atom a can be then written as:

l 1 lo
a _ ax* ll1lo ll1l2 a
Bllllz - Z Z Z Cim/ mCm "mhm, Cmmlmzcll;m’lmlclg;m’QmQ ) (7)

m/ s m=—lm! mi=—Il1 mi,mo=—Ila

where Cf,ﬁl,l,L?ImQ are the Clebsch - Gordan coefficients. The number of these coefficients can be
reduced while applying the selection rules (14; 29; 48). In this work we rely on the selection
rules suggested in (48), as implemented in the MiLaDy package (49).

Brute application of the Clebsch-Gordan selection rules yields the bispectrum components
with [; # 5. In the frame of low-dimensional bispectrum analysis of signal problems, this choice
was shown to be overcomplete (46). Therefore, some research papers dealing with the bispectrum
descriptor for atomic systems eventually rely on the diagonal components only, for which i1 =I5
(15; 28). Here, we use the same selection approach that accounts for diagonal components and
provides, for instance, 26 independent components for jye. = 7/2 (vs 40 components without

diagonal constraint, as was used in refs. (29; 32; 50)), instead of the full set of (2x7/2+1)3 = 512

bispectrum coefficients.

2.2.83. Hybrid descriptor functions
The choice of atomic descriptor functions has an impact on the accuracy of the potential
as well as on its numerical cost. Here, we propose a hybrid form of atomic descriptors that

combines slow and numerically accurate descriptors with fast and less accurate ones. In this



case, the choice of mixing proportions between the the two descriptors is defined by user and
should be driven by the the desirable precision of the fit as well as by the target physical problem
to address.

In many total energy models, including few angular components is sufficient to ensure the
accuracy of the underlying atomic interactions. As such, low values of the angular monent j,q.
of bispectrum b-SO(4) are sufficient for the angular description. However, this low values of
Imaz Will degrade the radial description provided by the spectral descriptor. In order to ensure
a robust radial description of the structure, one can additionally introduce a radial descriptor
(e.g., Ga) contributing to the hybrid function.

In this work we design a hybrid descriptor D, called hereafter G2B4, which is built on the
radial descriptor Go (Eq. 1) and complemented with the bispectrum SO(4) coefficients B (Eq. 7)
of relatively low dimensionality (jme, = 1.5—3.5). Adding low dimensionality bispectrum allows
enriching the radial descriptor with some angular information, and, consequently, increasing
the descriptor accuracy, without drastically rising the associated computational cost (for more
details, see the section 3.3). The new descriptor G2B4 is built as a direct sum D = Gy @ B and
its dimension K = dim(D) is equal to the sum K = dim(Gs) + dim(B). This mixing option is
not unique and other possibilities can be explored. Our choice is mainly driven by the aim to
examine the performance of hybrid descriptors that are built by the functions with the extreme

limits of low / high accuracy and low / high computational cost.

2.8. Linear regression in the descriptors space

Designing a ML potential via linear fit in the descriptor space, i.e., LML, was originally
introduced by Thompson and co-workers (29) in the framework of SNAP method, which links
the bispectrum SO(4) coefficients Bjj ;, (Eq. 7) to the total energy of the system. A similar
regression algorithm was also employed in refs. (16; 17) where MTP potential uses invariant
polynomials as descriptors. In this study we test how the linear formalism combines with other
descriptors, e.g., with the BP functions (Egs.1, 2) and the hybrid descriptor G2B4 (section
2.2.3).

Assuming a linear relation between the atomic energy and descriptor coefficients (29), the
LML potential energy E{,,; of each atom a can be computed as a sum over the K descriptor

components D% = (D{, ..., D% ) multiplied by the corresponding parameters (81, ..., 3k )T along



each direction:

Bo
K 51
By (DY) = o + Zﬁsz =1DY)-1 |, (8)
k=1 :
Br

where [y is the constant energy contribution. The energy descriptor of the local environment
of the atom a is the R E+D vector (1,D?%). Then, assuming that the energy of the atomic
system with N atoms can be represented as a sum of the local contributions from each atom

(29), the total energy Epasr can be written as:

fo
K N N 3
By =NBo+Y By Di= N7ZDG)' e (9)
k=1 a=1 a=1 .
Bk

The total energy descriptor becomes D = (N, ), D®) vector in the R>*(K+1) gpace. The
energy of the corresponding system is obtained by a linear regression using the K + 1 parameters
mentioned above. The forces acting on each atom and the stress tensor of the system can be
obtained from the derivatives of the energy (Eq. 9) with respect to the atomic positions r. Thus,

the force F¢;,; acting on the atom b in the direction « is:

Bo
K N N
oD¢ oD% B
Fba = -V E — — k = — . . 1
LML Vi Erymr kgﬂﬁk aE:1 3$ba> 0, ;:1 3$ba> f (10)
Br

The descriptor for the force on the b atom in direction o becomes D% = (0, — 25:1 0D /0xp,,) €
R™(K+1) " As in the case of energy (Eq. 9), the atomic forces are in linear relation with the

force descriptors and they are characterized by the same K + 1 regression parameters. The force

bth

descriptors account for the neighbours of the atom. In practical numerical implementation,

the descriptor functions have a finite cutoff radius and, due to the periodic boundary conditions,
several replicas of the system can be included into the cutoff region. Thus, the sum over N atoms

bth

should be replaced by the sum of the neighbours of the atom:

- Y. (11)

acv(b)

N

a=

Based on the similar protocols for the definition of virial stress, the stress descriptors Dg

can be further deduced.

10



Thus, the evaluations of the descriptors and their derivatives fully determine the energy,
force and stress descriptors. The derivatives of the BP descriptors Go and Gz (Egs. 1, 2)
are extensively discussed in the literature (20; 36; 39; 51). The derivatives of the bispectrum

coefficients Bjj ; (Eq. 7) are provided in the Appendix A.

2.4. LML potential fitting procedure

In practice, fitting a LML potential for energy, forces and stress, implies finding an optimal
set of K + 1 linear coefficients B8 = (8o, 81, ..., 0x)", where K = dim(D) is the descriptor
dimension. While dealing with a linear formalism, one can formulate this task as solving a
system of linear equations A-(3 = y for the coefficients B (29). In this system, the vector y
contains the information on the target energy, forces and stress tensor from the DFT database
(Table 1). Its dimensions are (ng + np + ng) X 1, where ng, np and ng are the number of
energies, forces and stress components of all the atomic configurations in the training dataset,
respectively. The matrix A holds the corresponding descriptors Dg g for energy, force and
stress and adopts the dimensions ((ng +np 4+ ng) X (K 4+ 1)). The explicit structure of this set
of linear equations can be found elsewhere (29; 32).

Such a system of equations is overdetermined and, therefore, has no unique solution. The
optimal solution B3 is imposed by minimizing an objective function L2, e.g., J(8) = ||y — A,@||2.
The objective function is differentiable and the solution satisfies the equation V J(8) = 0,
giving (52):

1

B=(ATA)  ATy. (12)

In order to fit some observables with higher accuracy compared to the other properties, a
weights diagonal matrix W with dimensions (ng+np+ng)x (ng+np+ng) should be introduced.
Each element W; ; in this matrix contains the weight that corresponds each individual observable
to fit. Its value controls the accuracy of the fit for that particular property. Accounting for the
weights, the objective function can be written as J(3) = ||W1/2(y - Aﬁ)”2 and the solution

for the potential parameters becomes:
B=(ATWA) ' ATWy. (13)

Overall, previous LML studies (29; 32; 50; 53) favor the weighted solutions (Eq. 13) to
the non-weigthed fit (Eq. 12) . In the section 3.3 we will discuss the effect of weighted fit on

accuracy of target observables and on the quality of the fit for other observables.

11



3. Results and discussion

3.1. Computational cost of the LML method combined with different descriptors

In this section we estimate the CPU cost of the LML method coupled with different atomic
descriptors. Once a descriptor and its derivatives are computed, numerical evaluation of observ-
ables, such as energies (Eqgs. 8-9), forces (Eq. 10) and stress is fast (comparable with that of
a standard empirical potential). Being independent of the database size, numerical cost of the
LML potentials is controlled by the expense of the descriptor functions, which is strongly depen-
dent on the descriptor type and its dimensionality. Here, we compare the cost of some widely
used atomic descriptors with that of our hybrid descriptor G2B4: D = Go @ B with different
proportions between the radial and bispectrum components. The calculations are performed
using a single Intel Broadwell core and the recorded computational time is normalized by that
of bispectrum b-SO(4) with je=3.5 and Ry =5 A, commonly used for the SNAP potentials
of bee metals (29; 32; 50; 53). From Figure 1 one can see that the hybrid descriptor can be
8-10 times faster than the reference bispectrum b-SO(4) (see, e.g., the difference between G2B4
curves with jiee = 1.5 and b-SO(4) curves with jiee = 1.5; or G2B4 curves with jpee = 2.5
and b-SO(4) curves with jyqe = 4.0). The computational cost of hybrid descriptors is rather
controlled by the expense of bispectrum. This feature can be seen from the two gray G2B4
curves with the bispectrum angular moment j,.,=1.5 (Fig. 1). Although, the dimensionality
of the radial functions that contribute to the G2B4 descriptors differs almost by a factor of
three, the numerical cost the two hybrid descriptors is very similar (10-15 % difference).

The ability these descriptors in combination with the LML method to compute the ground
state properties (e.g., unit cell parameters and elastic properties) of Fe and W are further

examined in the section 3.3.

3.2. Simple LML regression without weights

In the literature one consistently finds the weighted solutions for the linear SNAP potentials
(29; 32; 50; 53), while the efficiency and limitations of simple LML fit are never discussed. Here
we test the performance of the SNAP potential (LML + bispectrum b-SO(4) with je: = 3.5
and Rey=5 A) without applying any regression weights. The exact ratios between the train/test
configurations for different database classes (e.g., primitive cell, free surfaces, point defects, etc.)
are provided in Table 1. Atomic configurations from all classes are present in the train / test
data sets. The results of the fit are reported in Figure 2. For the performed fit, we consistently
find the test errors similar to those from training (Fig. 2). Regardless of the database size (small

Fe or big W), the mean square errors (MSE) are always within 20 meV /atom, 100 meV/A and
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Figure 1: Computational cost of the atomic descriptors (on a single Intel Broadwell core) normalized by that of
bispectrum b-SO(4) with jimez=3.5 and Rey:=5. The timings do not comprise evaluation of the nearest neighbor
environment, i.e., they are independent of the neighbor list algorithm. The G2 3 curves are the BP descriptors;
b-SO(4) and p-SO(4) curves correspond, respectively, to the bispectrum and powerspectrum functions; G2B4 is
the hybrid descriptor. The indexes j refer to dimensionality of the BP descriptors, jmas is the angular moment

of the spectral descriptors.
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Figure 2: Linear SNAP potential for Fe and W fitted without weights: comparison of the energies, forces and
stress with the corresponding DFT values from the database. Atomic systems that carry information on different
materials properties (e.g., containing different structural defects) are depicted with different colors. The RMSE

and MSE errors of fit are provided on each subplot.

40 meV/ A3 for energies, forces and stress, respectively. The present linear fit with the train /test
strategy yields the same results as the K-cross validation procedure.

The ground state properties of Fe and W from these potentials are illustrated in Figure 3
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Figure 3: Evolution of the lattice constant ao, bulk modulus B, elastic constants C;; and of the RMSE error
fit for the force components (solid lines- training configurations, dashed lines - test configurations) in bcc-Fe
and bce-W as a function of weight W applied for fitting elastic properties. The target values of the computed
properties (from the DFT database) are indicated with the dashed gray lines. In the legend, the indexes j refer

to dimensionality of the BP G2 3 descriptors, jmae is the angular moment of the spectral descriptors.

(see the red b-SO(4) curves with ji,q=3.5 at weights W = 1). Without applying regression
weights, both potentials provide the unit cell parameter and elastic constants with the 5% —20%
difference with respect to the target DF'T values from the database (indicated with gray dashed
line in Fig. 3). Thus, even combined with a robust descriptor and extensive database, LML
method alone is not sufficient to provide a good quality fit for ground state properties. Further,
we examine how the quality of fit and the ML potential performance (including computational

cost) can be improved.

3.8. Utility of different descriptors and effect of weights

In this section we test the utility of various atomic descriptor functions combined with the
LML method. Relying on the chosen databases, we aim to reproduce the essential ground
state properties of Fe and W, such as bce unit cell parameter ag (first order derivative of the
energy) and elastic properties (second order derivative of the energy) while using different atomic
descriptors. In order to reach this objective, we gradually increase the weights on the elastically
deformed bce configurations exclusively. These configurations represent ca. 10% and 15% of
the training bce dataset for W and Fe, respectively. From Figures 3 one can see that in order
to reach a reasonable convergence of the objective properties, the weights should be increased

at least up to 10%. For the bigger W database, the convergence of elastic constants can be
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reached with the weights in the order of 10%, while for the small Fe dataset, the weights in
range of 10* — 10° are rather required. As any radial potential (11; 12), LML coupled with the
G4 always provides C1o = Cyy. Among the tested descriptors, only bispectrum b-SO(4) with
Jmaz=3.5 (this descriptor is conventionally coupled with the SNAP formalism) and the hybrid
descriptor G2B4 maintain a relatively low fit error with the weight of 10* and 10° that ensure
the convergence of elastic constants for Fe and W, respectively.

However, when the weights reach the values of 10* — 10°, transferability of the potentials
wanes. Increasing weights on the selected properties results in increase of the train / test
fit error for the other configurations where no large weights were set. Figure 3 depicts the
evolution of RMSE errors of the force components for training (solid lines) and testing (dashed
lines) configurations. While reaching the convergence of elastic properties with W = 10%1, we
decrease the quality of fit for the other properties and imply an overfit.

For the present LML regression, the values of weights define the confidence limit of the
ML potential. This confidence limit is rather similar for the majority of the tested descriptors
(except for the powerspectrum p-SO(4) where the confidence zone declines faster). The limit of
the confidence zone directly impacts transferability of LML potentials, therefore, it represents
one intrinsic potential characteristics.

Within the confidence zone, the convergence of observables can be used as a criterion for the
optimum descriptor choice. Considering two atomic descriptors that yield comparable confidence
limit when coupled with the LML method, one can choose the one, which is numerically faster.
Being much faster (Fig. 1), the hybrid G2B4 can be a promising candidate to substitute of
the bispectrum in LML potentials. Moreover, the accuracy of this descriptor can be gradually
increased by incorporating more Ga or B components. From the trial calculations with a hybrid
descriptor that has jp,4,=1.5 of bispectrum B and j = 30 of radial G function, we find the LML
fit accuracy similar to that of the regular bispectrum SO(4) with j,q,=3.5. While increasing
the number of components in Go from 7 to 30, the computational cost of G2B4 increases only by
20%; whilst the calculations with pure b-SO(4) with j,.,=3.5 are amost 10 times slower. The
flexible character of hybrid descriptors allows for a control over numerical cost and accuracy of
the potential.

The user-defined control over the cost/accuracy balance in LML potentials combined with
hybrid descriptors enables a hierarchical approach for the materials properties calculations.
Here, we provide an example of such hierarchcal calculations for the phonons spectrum of bee
W (Fig. 4). The accuracy of the phonons gradually improves with increasing the fidelity of LML

potentials, i.e, with increasing accuracy of the associated descriptor. With this approach, it is
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possible to obtain a set of LML potentials that provide a similar level of accuracy for certain
materials properties (e.g., for ag and elastic constants), whilst the phonons, and, consequently,
some finite temperature properties will continuously improve with increasing numerical cost
of the potential. Figure 4 illustrates how the increasing the completeness of the descriptor
gradually increases the ability of LML potentials to predict the phonons dispersion along the
high symmetry direction in first Brillouin zone. The pure b-SO(4) descriptor with jp,q.=4.0
(Fig. 4d) gives the accuracy limit for the calculations (the small differences between the LML
curves and experimental points are mainly due to the systematic error of the DFT calculations
that contribute to the W database). From the tested set of LML potentails (Fig. 4), the
reasonably accurate phonons can be obtained with the hybrid descripors with the bispectrum
angular moment jgq. = 2.5. The hybrid descriptors G2B4 from Fig. 4b and Fig. 4c are,
respectively, 8 and 3 times faster than the pure bispectrum from Fig. 4d.

The main difference of the proposed approach from the conventional potentials is in unam-
biguous control over the accuracy of target properties, which does not trigger a degradation
of other already adjusted properties. The proposed hierarchical approach via hybrid descrip-
tors opens many avenues in the field of molecular dynamics calculations that, for instance, use
thermodynamical adaptive sampling methods, such as adapting biasing force (54; 55; 56; 57)
or potential dynamics (58; 59; 60). The less accurate but fast hybrid descriptors can be used
for an exhaustive exploration of the region of interest over the phase space. With a focus on
a particular region, one can gradually increase the accuracy of sampling using more accurate
but slower ML potentials. As such, the quality of thermodynamical sampling can drastically

increase while keeping the numerical effort within reasonable limits.

4. Conclusions and perspectives

In this work we have examined the performance of the LML method combined with different
atomic descriptors. In the framework of LML, we have proposed a new type of descriptors, the
hybrid descriptors G2B4, built as a direct sum D = Go & B. The efficiency of the LML method
and the newly proposed hybrid descriptors was tested for the bee metals of primary importance
for fusion and fission applications, Fe and W. Below we summarize the main conclusions and

perspectives.

e Linear ML methods have a general tendency to overfitting. This generic characteristic is
rather independent of descriptors or database. We have shown that even simple weighted
fit of elastic constants and lattice parameters can eventually bring the solutions in the

overfitting zone. This behavior imposes a limit between the optimal and overfitted set of
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Figure 4: Hierarchical approach for the phonons calculations enabled by the hybrid descriptors G2B4. (a-d)
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Phonon dispersion curves in W, plotted along high symmetry directions of the first Brillouin zone, computed
using four different hybrid descriptors G2B4. Experimental data (61; 62) is depicted with black points; the
LML calculations are shown with solid green lines. The inserts with gray background schematically illustrate the

structure of the hybrid descriptors (bottom left corner) and their hierarchical performance (top right corner).

potential parameters. However, the accuracy of descriptors strongly impacts the confidence
limit of the fit. The overfitting margin is flexible and can be pushed by increasing the

dimensions of the descriptor space and/or by changing the type of descriptor.

e In case it is not possible to obtain the target properties without falling into the overfit
region, the potential development should propose more complex methods beyond LML
regression, for instance, such as a recently proposed quadratic SNAP (50), which represents

an intermediate step between the linear and more complex kernel methods.

e Within the confidence margins of the LML fit, hybrid descriptors can effectively boost
numerical cost of the potential. The newly proposed G2B4 descriptor, D = Gy ® B, can
be three to ten times faster than the most commonly used bispectrum descriptor. The
mixing proportions between the hybrid descriptor components control the balance between
numerical cost and accuracy of the potential. The choice of the hybrid descriptor should
be driven by the objective physical problem and by the desirable precision of the fit. We
emphasize that our hybrid descriptor is not unique and other combinations can be tested
in the future: e.g., the radial Go can be replaced by other descriptors like powerspectrum

SO(3) or even EAM-like functions.

e Hybrid descriptors enable a hierarchical approach for the the molecular dynamics explo-
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ration of complex energetic landscapes. A set of ML potentials based on hybrid descrip-
tors with gradual increasing precision can be used for the free energy calculation methods,
such as thermodynamical integration, perturbation or adaptive biasing potential or force
dynamics. For example, in the case of thermodynamical integration, a ML potential com-
bined with fast hybrid descriptors can be used as a more robust reference state instead of

the commonly used harmonic approximation or even Einstein crystal.
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Appendix A. Derivative of bispectrum

The derivative of bispectrum coefficients (Eq. 7) with respect to the Cartesian coordinates

of the atom b along the direction o becomes:

ax
B”ll2 _ acj§m/m C”ll2 Cll1l2 a
8xb m/m/yml, ~ mmyms Cll;m’lml Clz;m’QmQ
m/ ;m=—I ml,ml_fll m2,m2—712 a
oct ., oct
U1z U112 limimy g i lasmyma
+c ] m’ mCm 'mjml Cmm1m2 8xba Clz;m’ng + Ull;m’lml axba . (Al)

The derivatives of the coefficients ¢;p,,,» can be deduced from Eq. 6. If the distance between
the atoms a and b is beyond the cutoff distance, i.e., the atom b is not in the neighborhood of

the central atom a, the derivative of cjy,p, is zero. If b = a, the derivative becomes:

8Cq ’
sm'm o _
4(9‘77@& E taa(rac) ) (AQ)
cev(a)
OTae aU‘,mm’ Tgc
tab(rac) = fé(rac)chj,mm’(rac) OZpn + fc(rac) ]81'1, ( ) . (A3)

If the atom b is in the neighborhood of the atom a, and b # a, the derivative of ¢, can
be written as:
oct.

8;77::71 = *tab(rab) . (A'4)

In the Eqgs. A.3-A.4, the derivatives of ¢j;y, coefficients are determined if the functions
Ujmmy (r) and their derivatives OUj ypy (r)/02q are known. Both types of functions can be
determined using recurrence relations, which, for the functions Uj nms(r) with m’ # j, are

((14; 48):

j—m 1/2 j+m 1/2
Uj;mm/(r) = </> Z+U47%;m+%m/+%(r) —1 < - m,> .’L'_Ujil_milmur%(r), (A5)
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While for the Uj () with m’ # —j, the following relation can be used:

it+m 1/2 i—m 1/2
Ujsmmy (T) = <j+m’> Z*Uj—%;m—%m’—%(r) - <j+m’> 37+Uj—%;m+%m’—%(r)> (A.6)

with the first terms of the recurrence that define the upper terms:

Uooo(r) = 0,
_ lzFiz
U%;i%i%(r) T2 0y
T 1y
where
z4 = cos(6y) £ esin(fy) cos(f) = Zolijgn :
T4 = Sin(eo) Sin(9>€il¢ = % )

with zg = r/tanfy and ly = r/sinfy. Consequently, the derivative of Uj yy (Eqs.A.5 and A.6)

becomes:
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The derivatives of x4+ and z4 functions can be computed as:
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