

Nuclear corrosion: achievements et challenges

D. Feron, F. Legendre

▶ To cite this version:

D. Feron, F. Legendre. Nuclear corrosion: achievements et challenges: Main activities of the CEA corrosion unit. Conference invitée au "Department of Quantum science and energy engineering", Feb 2016, Sendai, Japan. cea-02442371

HAL Id: cea-02442371 https://cea.hal.science/cea-02442371

Submitted on 16 Jan 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MAIN ACTIVITIES OF THE "CEA CORROSION UNIT"

NUCLEAR CORROSION: ACHIEVEMENTS & CHALLENGES

Damien Féron & Fabrice Legendre

Service de la corrosion et du comportement des matériaux dans leur environnement Département de Physico-Chimie, Direction de l'Energie Nucléaire Commissariat à l'énergie atomique et aux énergies alternatives *French atomic energy and alternatives energies Commission* Saclay, France

Department of Quantum Science and Energy Engineering Tohoku University, Sendai, Japan February 17, 2016

Ceaden content

□ Introduction: CEA Corrosion Unit

□ Gen 2&3 (Pressurized Water Reactor – PWR)

- Gen 4 (Liquid metals, gas & supercritical water cooled reactors)
- Nuclear waste storage
- Decommissioning & conclusive remarks

Coupling events

- Electrochemical reactions
- Transport

• ...

· Corrosion products

Pluri-physics

Interactions materials/environments

- Several alloys
- · Liquids, gas, acids, molten salts and liquid metals
- · Solicitations: mechanics, irradiation, bacteria...

Multi-parameters

Localized phenomena

- Stress corrosion cracking
- Intergranular corrosion Pitting
- Crevice corrosion, ...
- Multi-scales

- Metal/oxides/environ.
- Morphological evolution
 - · Defects , impurities
 - ...

Homogenization

Multi-analyses (observations at the scales adapted to the phenomena)

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 3

« CEA corrosion unit »

<u>Ceaden</u>

INTRO I GEN 2 & 3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

Approach and methodology

Data acquisition & surface analysis

- Specific facilities (autoclaves, loops...)
- Specific methods (isotopic tracers,...)
- Surface analyses
- · Semi-empirical modeling

Mesoscopic modeling

- Uniform corrosion, Intergranular corrosion...
- Estimation of the Kinetics of Oxidation
- Diffusion Poisson Coupled Model

Simulations

Thermodynamics (Calphad, PhreeCea,...)
Cellular automata

Atomistic & molecular dynamics

| PAGE 6

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 6

Facilities at the "CEA corrosion department"

Copyright: Département de Physico-Chimie (CEA/DEN/DANS/DPC) Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 7

HNO₃

INTRO I GEN 2 & 3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

Ceaden

<u>ceaden</u>

Sodium

Oxidation & H₂

HAWAI Facility with 3 autoclaves and one tensile machine in hot cell (HP & HT) Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Stress Corrosion Cracking

Some specific experimental facilities

Autoclaves & loops with tensile machines

Irradiated materials (stainless steel & zircaloy)

Irradiation & electrochemistry

Electrochemical cells

HP & HT cell (e & α irradiations)

STRESS CORROSION CRACKING

Intergranular SCC

Grains Intergranular cracks

<u>ceaden</u>

Transgranular SCC

17-4 PH Stainless steel, 300°C

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 11

INTRO I GEN 2 & 3-SCC I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

STRESS CORROSION CRACKING

Crack depth Image: Section between the sectween the sectween

2: Breakdown of the passive layer

3-4: Inside and outside cracks (anodic and cathodic reactions)

INTRO I GEN 2&3-SCC I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING STRESS CORROSION CRACKING OF NI ALLOYS

Historical background SCC of Alloy 600 or the "Coriou effect"

INTRO I GEN 2&3-SCC I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

STRESS CORROSION CRACKING OF NI ALLOYS

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

<u>ceaden</u>

Damien Féron | February 17, 2016 | PAGE 14

STRESS CORROSION CRACKING OF NI ALLOYS

Use of tracers (¹⁸O) to investigate the growth of the oxide of the passive film and in the crack

Evidence and role of oxide at the crack tip (1)

¹⁸O is located at the tip of the IG penetration and in the outer part of the oxide surface layer

=> Oxygen and hydrogen can diffuse in the crack and in an IG attack

P. Laghoutaris & Al., 2009-2016

Pre-exposure in primary water conditions followed by an exposure period in H_2O_{18} under same conditions

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 15

INTRO I GEN 2&3-SCC I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING STRESS CORROSION CRACKING OF NI ALLOYS

Hydrogen origin

Two series of experiments were done, in which the specimens are exposed to:

- a classical primary medium (with H₂O), pressurized by deuterium gas (D₂).
- a PWR primary medium in which the water is replaced by deuterated water D_2O , pressurized by classical hydrogen gas (H_2).

STRESS CORROSION CRACKING OF NI ALLOYS

SIMS profiles of the isotopic tracers through the oxide scale as a function of the recalculated depth (the oxide scale is represented by the ¹⁶O): (a) ¹⁸O tracer (subplot: total oxygen signal's second derivative used to identify the domains); (b) ²H tracer.

respectively D_{sc} =(4.6±0.9) x10⁻¹⁷ cm²/s for ¹⁸O, and D_{sc} =(5.2±1.2) x10⁻¹⁷ cm²/s for ²H

 \Rightarrow diffusion of OH⁻ in the oxide layer

F. Jambon & al., Solid State Ionics, 231 (2013) 69-73

<u>ceaden</u>

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 17

INTRO I GEN 2&3-SCC I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

STRESS CORROSION CRACKING OF STAINLESS STEELS

SIMS profiles of the isotopic tracers through the oxide scale as a function of the recalculated depth: 2-stages (600h+16h) corrosion experiments , 325°C, with ¹⁸O tracer and ²H tracer during the second stage.

□ Oxygen and hydrogen transport is not coupled □ Short-circuit diffusion coefficient of ¹⁸O: D_{sc} =(9±&) x10⁻¹⁷ cm²/s

M. Dumerval & al., Corrosion science 85 (2014) 251-257

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

INTRO I GEN 2&3-Zr I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

FUEL CLADDING EVOLUTION DURING LOCA

Zircaloy oxidation at high temperature

EKINOX (Estimation of the Kinetics of Oxidation) Calculations to anticipate the evolution in the substrate during alloy oxidation

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

<u>Ceaden</u>

cea den

Damien Féron | February 17, 2016 | PAGE 19

INTRO I GEN 2&3-Zr I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

FUEL CLADDING EVOLUTION DURING LOCA

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

temperatures / Corrosive environments

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Molten Salt Reactor

Sodium & lead Fast reactor (SFR and LFR) & fusion (ITER)

Pb-17Li/Helium Dual Coolant Blanket

Liquid metals or gas (helium) High dose rates High temperatures

Damien Féron | February 17, 2016 | PAGE 23

INTRO I GEN 2&3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

uthorization

LIQUID METAL CORROSION

Corrosion in reducing liquid metals: dissolution (Li, Pb-Li, Na & Pb with low oxygen content)

<u>ceaden</u>

Ceaden

LIQUID METAL CORROSION

Corrosion in "oxidising" liquid metals: oxidation & dissolution (Na, with high oxygen content)

"Two stages" Experiments with oxygen 18 to know where the oxide growth occurs

Results included in this document are CEA's property. They cannot be disclosed without prior authorization

Ceaden

Damien Féron | February 17, 2016 | PAGE 25

INTRO I GEN 2&3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

LIQUID METAL CORROSION

Corrosion in "oxidising" liquid metals: oxidation & dissolution (Na with high oxygen content)

Final stage (18O, 960h)

LIQUID METAL CORROSION

Corrosion in "oxidising" liquid metals: oxidation & dissolution (Pb-Bi with high oxygen content)

Ceaden

Ferritic steel (9% Cr) in Pb-Bi at 500°C with oxygen : formation of two oxide layers (protective)

Use of tracors to determine the growth mechanism (¹⁶O and ¹⁸O) First with ¹⁶O and ¹⁸O dissolved in liquid Pb-Bi, followed by an exposure only with ¹⁶O.

>> Growth of magnetite layer at the interface with Pb-Bi>> Growth of the spinel layer at the metal/spinel interface

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 27

INTRO I GEN 2&3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

ceaden

High temperature corrosion in helium systems (major role of the impurities / example with CO)

Evolution of CO concentration with time and temperature during the exposure of a nickel base alloy in an helium flux (other impurities constant)

- Carburation between 650 and 900°C
- Decarburation at 980°C

From C. Cabet & al.

PASSIVE ALLOYS IN SUPERCRITICAL WATER

316L stainless steel exposed 335h at 600°C, 25 MPa in ultra pure water with H₂

Good behavior of 690 nickel base alloy (higher chromium content)

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Ceaden

Ce2 den

Damien Féron | February 17, 2016 | PAGE 29

INTRO I GEN 2&3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

SUPERCRITICAL WATER

Mechanism of the formation of the double layer observed in SCW on stainless steels: use of tracers, ¹⁸O

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 30

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Corrosion modeling of an iron based alloy in passive conditions

- Corrosion modeling based on Fick and Poisson equations with moving interfaces (Diffusion Poisson Coupling Model - DPCM)
- Electrochemical experiments for data acquisition and verification
- Coupling with geochemical models
- Clay and concrete

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 33

INTRO I GEN 283 I GEN 4 I NUCLEAR WASTE STORAGE DECOMMISSIONING LONG TERM CORROSION - MODELING

C. Bataillon & al. , Elect. Acta 55 (2010) 4451-4467

C. Bataillon & al. , J. Comput. Physics 231 (2012) 6213-6231

This model is under implantation in the nuclear waste simulations codes

USE OF ARCHEOLOGICAL ARTEFACTS

A. Michelin & al., JAAS (2012) Michelin et al., J. Analytical Atomic Spectrometry, 2013 Leon et al., Corrosion Science (2014)

D/H ratio map obtained at the metal/corrosion product interface

- Corrosion products on a 450 year-old archaeological iron nail in anoxic environment were investigated at the nanometer level using STXM
- Interfacial layer of 100nm to few µm at the interface metal/oxide interface (magnetite + maghemite, low porosity)
- Support the hypothesis of a nanolayer controlling the corrosion process (DPCM, Point Defect Model and associated models)

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Ceaden

Damien Féron | February 17, 2016 | PAGE 35

INTRO I GEN 2&3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

STOCHASTIC MODELING & CORROSION

Réaction 2: dissolution of the oxide

Use of cellular automata to model corrosion phenomena

Archeological analogue with the presence of metallic inclusions inside the oxide layer

Continuous evolution of the interface morphology from uniform corrosion to more localized corrosion and creation of metal inclusions as observed on archeological analogues $\lambda = 0.70$ and $\varepsilon = 0.30$

D. di Caprio & al., Corrosion Science 53 (2011) 418–425

Damien Féron | February 17, 2016 | PAGE 37

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Ceaden content

□ Gen 2&3 (Pressurized Water Reactor – PWR)

Gen 4

Nuclear waste storage

Decommissioning

□ Conclusion: modelling

Generic activities

- Atmospheric corrosion (from mechanisms to corrosion code)
- Chloride pitting on passive alloys

Specific programs

- Graphite
- Corrosion in supercritical fluids (**SCWO** and SCCO₂)
- Mg alloys corrosion in concrete or geo-polymer matrix

Expertise & consulting

- Transport
- Interim storage

<u>ceaden</u>

9 EDF reactors are under decommissioning

 1/skiteru a kesu presantreler (REP) Dioca A (200 Mir): 1997-1991
 197-1991
 1 1/skiteru a kendref (REL) Bernnis (70 Mir): 1987-1988 (EDF/CEA) 8 crédicteurs de la fillire of transmin naturel (200 Hirls): 1989-1997 Dinnon A (200 Mir): 1989-1997 Dinnon A (200 Mir): 1989-1990 Sant Laurenk (400 Mir): 1999-1990 Sant Laurenk (400 Mir): 1997-1992 Sant Laurenk (2155 Mir): 1977-1922

> tur à neutrons rapides (RI Asiville (1240MW) : 1986-19

Specificity: 6 UNGG reactors (graphite moderator, carbon dioxide, natural uranium)

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Damien Féron | February 17, 2016 | PAGE 39

INTRO I GEN 2&3 I GEN 4 I NUCLEAR WASTE STORAGE I DECOMMISSIONING

ATMOSPHERIC CORROSION / BASICS

The Evans droplet model (static conditions)

Capillary flow towards the three-phase contact line

« Coffee-ring » effect

R. D. Deegan. *Nature*, **1997**, 389, 827-829 H. Hu. *J. Phys. Chem.*, **2002**, 106, 1334-1344

solubilty and promotes the initiation of corrosion

V. Soulié, thése Université de Montpellier, 2014

□ « Calculations » based on ISO standards (9223 & 9224)

□ Mechanistic modelling

Ceaden

INTRO I GEN 2&3 I GEN 4 I NUCLEAR WAS<<<TE STORAGE I DECOMMISSIONING

ATMOSPHERIC CORROSION / MODELLING

Corrosion mechanism during a wet dry cycle (Based on Strattman works)

E. BURGER, & AL. CORROSION SCIENCE, V. 53(6), 2011, 2122-2130

ATMOSPHERIC CORROSION / MODELLING

Verification of the atmospheric mechanistic modelling

calculation of n wet dry cycles

<u>cead</u>en

E. BURGER & AL. CORROSION SCIENCE, V. 53(6), 2011, 2122-2130

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

 ε =3%, S_a=10 m².g⁻¹ L_o=150 µm

Experimental data: Ageing in climatic chamber

no

Damien Féron | February 17, 2016 | PAGE 45

Ceaden

SUPERCRITICAL WATER OXIDATION

ATALANTE / DELOS

DESTRUCTION OF CONTAMINATED ORGANIC LIQUID WASTES

- · Treatment of spent fuel contaminated organic liquids
- C.H.O.N., TBP/alcane, amines, aromatics...

Joussot-Dubien C., Turc H.A., Didier, G., Brevet FR 2814967, 2000 S. Sararde, 11th International Symposium on Supercritical Fluids, October 11-15, 2015, Seoul, Korea Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

Results included in this document are CEA's property. They cannot be disclosed without prior authorization.

CONCLUSIVE COMMENTS

Thank you for your attention

Alternative Energies and Atomic Energy Commission Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 64 50 10 00| F. +33 (0)1 64 50 11 86

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction Départemen Service