

Role of grain boundaries in the diffusion of deuterium in nickel base alloy 600 studied by thermal desorption mass spectroscopy

C. Hurley, F. Martin, L. Marchetti, C. Blanc, E. Andrieu, J. Chêne

► To cite this version:

C. Hurley, F. Martin, L. Marchetti, C. Blanc, E. Andrieu, et al.. Role of grain boundaries in the diffusion of deuterium in nickel base alloy 600 studied by thermal desorption mass spectroscopy. 2016 International Hydrogen Conference, Sep 2016, Moran, United States. cea-02442328

HAL Id: cea-02442328 https://cea.hal.science/cea-02442328

Submitted on 16 Jan 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

Direction de l'Energie Nucléaire Direction déléguée aux Activités Nucléaires de Saclay Département de Physico-Chimie

Role of grain boundaries in the diffusion of deuterium in nickel bas alloy 600 studied by thermal desorption mass spectroscopy

Caitlin Hurley^{1,2,†}, Frantz Martin¹, Loïc Marchetti^{1,3}, Christine Blanc², Eric Andrieu², Jacques Chêne⁴

1 DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

2 Université de Toulouse, CIRIMAT, UPS/INPT/CNRS, ENSIACET, 4 allée Emile Monso, 31030, Toulouse Cedex 4

3 DEN, MAR, DTCD, SECM, LCLT, CEA Marcoule, 30207 Bagnols sur Cèze

4 CNRS/CEA UMR 8587, CEA Saclay, 91191 Gif-sur-Yvette, France

[†] VTT Technical Research Centre of Finland Ltd. Nuclear Reactor Materials, P.O. Box 1000, 02044 VTT, Finland

Context and objectives

The role grain boundaries (GBs) play in the diffusion of hydrogen in polycrystalline alloys has long been debated, with some researchers reporting a "short-circuit" [1-7], slowing [8,9] or even mixed effect depending on grain size and orientation [6,10,11] of GBs on the transport of hydrogen across a metal membrane. This study aims to:

- 1. address the role of GBs in the diffusion of deuterium (^{2}H) in a model **alloy 600** with a grain size of tens of micrometers and
- 2. *derive the diffusion coefficient* of ²H in this alloy

Choice of model and initial hypotheses

The system could be defined one of three ways: (i.) system where GBs are ²H diffusion short circuits, (ii.) system where GBs act as potential trap sites or (iii.) Fick's second law. Systems (i.) and (ii.) require the determination of many temperature dependent parameters that may not readily be available in literature – therefore for simplicity (iii.) was initial used.

To use Fick's second law to describe the system, the following assumptions were made:

- a) the diffusion coefficient (D) follows an Arrhenius relationship,
- b) ²H diffusion along GBs can be neglected compared to the ²H flux from interstitial diffusion in the grain volume, $\partial^2 C$ ∂C
- c) the sample is free of ²H before cathodic charging d) constant imposed surface concentration during cathodic charging

through coupled experimental analysis and simulation.

Materials and method

$$\frac{\partial t}{\partial t} = D \frac{\partial x^2}{\partial x^2}$$

"Model material" fabrication (i) A600-sc single crystal polycrystalline elimination of (ii) A600-pc industrial A600 residual trap sites polycrystalline (banded grain structure: 55±7 μm & 120±5 μm) Table 1. Chemical composition of the polycrystalline A600 and A600-like single crystal used in this study Mn С Si Fe Ti Cu Co Al 0.196 0.164 9.6 A600-pc 0.06 0.82 0.31 < 0.0010.008 15.8 0.01 0.01 base < 0.01 A600-sc 0.01 16.99 0.02 0.01 5.57 0.01 0.08 0.01 base

<u>Thermal desorption mass spectroscopy (TDS)</u>

- (1) **Cathodic charging** of sample with deuterium (²H) at one face (opposite face and sides are protected with a resistant varnish)
 - **Transfer** from electorchemical cell to TDS system
- (3) ²H desorption flux (J_{2H}) monitoring in function of t or T
 - "traditional" analysis linear b) "**hybrid**" analysis – extended (RT or HT) isothermal a) period followed by linear temperature ramp temperature ramp

Table 2. Experimental conditions for "traditional" and "hybrid" TDS analysis.

Analysis type	Charging	Transfer	Aging	T ramp (φ)
Traditional	30 min / 298 K / 0.1 M NaO ² H	15 ± 3 min / 294 ± 2 K		10 K.min ⁻¹
Hybrid – RT			$360 \min / 294 \pm 2 \mathrm{K}$	
Hybrid – HT			$360 \min / 409 \pm 1 \mathrm{K}$	

RT aging aims to enhance short circuit grain boundary diffusion [5] while at HT grain boundary dominated diffusion should be minimized [7]

Acquisition of experimental TDS spectra for A600-pc and A600-sc traditional a)

- hybrid RT b) hybrid – HT similar intensities, peak temperatures and spectral forms
- **Derive** ²H diffusion coefficient in polycrystalline A600 (d) $D\left(\operatorname{cm}^{2}\cdot\operatorname{s}^{-1}\right) = D_{0}\cdot\exp\left[\frac{-E_{D}}{RT}\right]$ $D_0 = (1.0 \pm 0.5) \cdot 10^{-2} \text{ cm}^2 \text{s}^{-1}$ $E_D = (45 \pm 4) \text{ kJ. mol}^{-1}$
- Validate derived diffusion coefficient by simulating aged spectra (e)

superior reproduction of normalized aged spectrum using derived diffusion coefficient as compared to literature diffusion coefficients [12,13]

- **Simulate** A600-sc TDS spectra using 4. the ²H diffusion coefficient derived from A600-pc
 - traditional hybrid – RT g)

very good reproduction of normalized A600-sc spectra using A600-pc ²H coefficient

Conclusions

- clear similarities in <u>peak temperature</u>, <u>peak intensity</u> and <u>peak form</u> between normalized experimental polycrystalline and single crystal spectra were observed,
- diffusion coefficient for ²H in polycrystalline A600 was derived and validated by fitting an experimental spectra [14, 15] and
- single crystal A600 TDS spectra were successfully simulated and well reproduced using the derived *D* from A600-pc.

Therefore it can be concluded that...

grain boundaries do not play a significant role in the transport of ²H in alloy 600 for the grain size and experimental conditions studied.

The authors would like to thank EDF for their financial support and M.C. Lafont (CIRIMAT, ENSIACET) her help with material observations.

Perspectives

- continue this work using other industrial alloys (i.e. stainless steels) and grain sizes
- evaluate using other charging (*T* and *t*), aging (*T* and *t*) and TDS (ϕ) conditions
- improving numerical model and fitting routine

As in this alloy grain boundary interactions can be neglected more focus can be placed on studying the interactions between hydrogen and trap sites such as chromium carbides \rightarrow this work will be presented in the oral presentation on Tuesday at 10:00 pm.

[1] Louthan MR, Donovan J, Caskey GJ., Acta Metall 1975. [2] Harris T., Ph.D. thesis. Massachusetts Institute of Technology; 1979. [3] Harris T, Latanision R., Metall Trans A 1991. [4] Chanfreau A., Ph.D. thesis. University de Paris-Sud Centre d'Orsay; 1992.

[5] Brass A-M, Chanfreau, A. Acta Mater 1996. [6] Oudriss A. et al., Acta Mater. 2012. [7] Dieudonne T. et al., Defect Diffusion Forum 2012 [8] Yao J and Cahoon J., Acta Metall 1991

[9] Ono K and Meshii M., Acta Metall 1992. [10] Oudriss A et al., Scr Mater 2012. [11] Di Stefano et al., Acta Mater 2015. [12] Rota, E., et al., J Nucl Mater 1982.

[13] Sakamoto, K. et al., Fusion Sci Technol 2002. [14] Hurley, C. et al., Int J Hydrogen Energy, 2015. [15] Hurley, C. et al., Int J Hydrogen Energy, 2015.