

A robust and parsimonious model for caesium sorption on pure clay minerals and natural clay materials

M.A. Cherif, A. Martin-Garin, Frédéric Gérard, Olivier Bildstein

▶ To cite this version:

M.A. Cherif, A. Martin-Garin, Frédéric Gérard, Olivier Bildstein. A robust and parsimonious model for caesium sorption on pure clay minerals and natural clay materials. Goldschmidt Conference 2016, Jun 2016, Yokohama, Japan. pp.473. cea-02442325

HAL Id: cea-02442325 https://cea.hal.science/cea-02442325v1

Submitted on 16 Jan 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

A robust and parsimonious model for caesium sorption on pure clay minerals and natural clay materials GOLDSCHMIDT

M.A. CHERIF¹,

A. MARTIN-GARIN¹, F.GÉRARD² AND O. BILDSTEIN³

¹ IRSN, PRP-ENV/SERIS/L2BT Bât. 183 - BP3, 13115 Saint-Paul-Lez-Durance, France
² INRA, UMR Eco & Sols, 2Place Pierre Viala, 34060 Montpellier, France
³ CEA, DEN/LMTE, Bât. 727, 13108 Saint Paul lez Durance cedex, France

Context & objective

Pure clay minerals

Development a robust and parsimonious model for Cs sorption Comparison to available Cs sorption models

Testing & Application of developed model using component additivity (CA) approach

Conclusion & Perspectives

esting & Application

Multi-site Cation Exchange models

Clay mineral	Clay mineral Reference	
	Brouwer et al. (1983)	3-sites CE
Illite	Bradbury and Baeyens (2000) (GCS model)	3-sites CE
	Benedicto et al. (2014)	3-sites CE
	Savoye et al. (2012)	5-sites CE
	Missana et al. (2014b)	3-sites CE
Kaolinite	Missana et al. (2014b)	2-sites CE
	Reinoso-Maset and Ly (2014)	2-sites CE

Ion exchange theory :

 $2\{(X^-)\mathcal{C}\} \ + \ M^{2+} \ \leftrightarrow (X^-)_2M + \ 2\mathcal{C}^+$

$${}^{M}_{C} K_{C} = \frac{[(X^{-})_{2}M][C^{+}]^{2}}{[(X^{-})C]^{2}[M^{2+}]}$$

uncertainty of log $^{Cs}_{C}$ K_c $\approx \pm 0.2$

- \checkmark No compilation or comparison study of these models has ever been proposed.
- ✓ The validity of the models is usually limited to restricted field and specific physicochemical conditions.

They appear to be **unsatisfactory** to predict Cs sorption a wide range of conditions in natural systems

Is needed to develop of mechanistic and generic model, able to reproduce and predict the Cs sorption in simple and complex systems, and without recourse to change of model parameters for each condition,

Testing & Application

Mechanistic approach and model choice

Mineralogy parameters	Illite	Montmorillonite	Kaolinite
Site capacity of non specific sites (meq kg ⁻¹) (CEC)	190 - 225	870	20
Site density of specific sites (sites nm ⁻²)	2.7·10 ⁻³	3.6.10-5	1.5.10-4
Surface Specific Area (SSA) (m ² g ⁻¹)	62 - 97	800	10

Parsimonious and minimalist approach

Cation avalance reactions on -V sites			LogK _c					
Cation	exchange	reacti	ions on	=л-	· sites	Ι	Μ	K
XNa	$+ Cs^+$	\leftrightarrow	XCs	+	Na ⁺	2.45	1.39	2.1
XK	$+ Cs^+$	\leftrightarrow	XCs	+	K^+	0.95	0.8	2.1
XNH_4	$+ Cs^+$	\leftrightarrow	XCs	+	NH_4^+	1.38	0.8	2.1
X ₂ Ca	$+ \ 2Cs^+$	\leftrightarrow	2XCs	+	Ca^{2+}	5.2	1.7	4.49
X_2Sr	$+ 2Cs^+$	\leftrightarrow	2XCs	+	Sr^{2+}	5.2	2.37	4.49
X_2Mg	$+ 2Cs^+$	\leftrightarrow	2XCs	+	Mg^{2+}	5.2	2.45	4.49

Surface complexation reactions on ≡SOH sites	LogK _{SOM}			
	Ι	Μ	K	
$SO^{-0.5} + H^+ \leftrightarrow SOH^{0.5}$	3.46	3.4	5	
$SOH^{0.5} \ + \ Cs^+ \leftrightarrow \ SOCs^{0.5} \ + \ H^+$	5.2	4.3	3	
$SOH^{0.5} \ + \ Na^+ \leftrightarrow \ SONa^{0.5} \ + \ H^+$	-1.8	-1.3	-3.6	
$SOH^{0.5} \ + \ K^+ \qquad \longleftrightarrow \ SOK^{0.5} \ + \ H^+$	0.6	0.1	-1.75	
$SOH^{0.5} \ + \ NH_4^{\ +} \ \leftrightarrow \ SONH_4^{\ 0.5} \ + \ H^+$	1.1	0.1	-1.75	
$SOH^{0.5} \ + \ Ca^{2+} \ \leftrightarrow \ SOCa^{1.5} \ + \ H^+$	-5	-1.4	-5.9	

Revised values from the literature

Values determined by fitting experimental data (this study)

Hurel et al. (2003) / Gutierrez and Fuentes (1996) for Cs Br Benedicto et al. (2014) for Ga Reich et al. (2010) for Pb

Bradbury and Baeyens (1997, 2005) / Tournassat et al. (2013) for Ni, Zn and Mn

Gu and Evans (2007, 2008) for Cd, Cu, Ni,, Pb and Zn....

Testing & Application

Existing experimental data for pure clay minerals and models comparison

	×		/			
Clay minerals	Reference	Major cations	I (M)	рН	$[Cs^+]_{tot}(M)$	Model
	Benedicto et al. (2014)	Na+ / Ca ²⁺ / K ⁺	0.01	7	10 ⁻⁹ - 10 ⁻⁴	3-sites CE
	Savoye et al. (2012)	Na ⁺	0.1	6.8	8·10 ⁻⁹ - 10 ⁻⁴	5-sites CE
TII: 40	Bradbury and Baeyens (2000)	Na+/ K+	0.01-1	2-10	10-9	(GCS model)
Inite	Missana et al. (2014b)	Na+ / Ca ²⁺ / K+/ NH ₄ +	0.1	7	10 ⁻⁹ - 2·10 ⁻⁴	3-sites CE
	Brouwer et al. (1983)	K ⁺	0.002/0.02	7	2·10 ⁻⁹ - 4·10 ⁻⁴	3-sites CE
Montmorillonite	Staunton and Roubaud (1997)	Na+ / Ca ²⁺ / K ⁺	0.01	7	10 ⁻⁹ - 5·10 ⁻⁴	
	Gorgeon (1994)	Cs^+	0.02	1-12	0.02	
Kaolinite	Missana et al. (2014b)	Na+ / Ca ²⁺ / K+/ NH ₄ +	0.1/0.2	7	6·10 ⁻¹⁰ - 10 ⁻³	2-sites CE
	Gorgeon (1994)	Na ⁺ / Cs ⁺	1 / 0.01	1-12	10-8 / 0.01	

(n = 321 observations)

sting & Application

Conclusion & Perspectives

Calibration, simulation results and confrontations

Illite

n = 201 observations

RMSD : Rout Mean Square Deviation ; R^2 : Determination coefficient

Goldschmidt Conference - YOKOHAMA 2016 - 26 JUNE - 1JULY

IRSN

Calibration, simulation results and confrontations

GOIRECDENICH PRESENTATION OKAHAMA 20 PRESENJANON 1 JULY

Testing & Application

Existing experimental data for natural clay materials

(n = 560 observations)

1. One clay mineral : Testing

Clay materials	Reference	Present clay minerals	Major cations	I (M)	рН	$[Cs^+]_{tot}(M)$
Hanford sediment	Zachara et al. (2002)	2.7% I	Simple conditions $(Na^+ / Ca^{2+} / K^+)$	0.005 - 5	7	10 ⁻⁹ - 9·10 ⁻²
Boda Clay	Fernandes et al. (2015) (GCS model)	50% I	Natural porewater	0.033	8	10 ⁻⁷ - 10 ⁻²
MX-80 bentonite	Bradbury and Baeyens (2011)			0.7	7.64	6·10 ⁻⁸ - 3·10 ⁻³
	Montavon et al. (2006)	75-84 % M	Natural porewater	0.037	7.8	4·10 ⁻⁹ - 8·10 ⁻²

2. Mixed-clay minerals : Application

FEBEX bentonite	Missana et al. (2014a)	93% I/M with 15-10 % I	Simple conditions	0.001-0.3	7	10 ⁻⁹ - 10 ⁻²
Chen et al. (2014)				0.1	7.2	5·10 ⁻⁹ - 10 ⁻⁴
Callovo–Oxfordian	Savoye et al. (2012)	1 + M + (1/M) variable	Natural porewater (Na ⁺ ,Ca ²⁺ , K ⁺ , Mg ²⁺)	0.1	7.3	2·10 ⁻⁵ - 6·10 ⁻²
San Juan clay	Missana et al. (2014b)	30-50% I + 5-20% M + 10-15% K		0.054 / 0.46	9.4	2·10 ⁻⁹ - 10 ⁻²
Opalinus Clay	Fernandes et al. (2015) (GCS model)	17% I + 30% I/M + 21% K		0.23	7.8	10 ⁻⁸ - 10 ⁻²
Boom clay	Maes et al. (2008) (GCS model)	10-45% I + 10-30% I/M + 5-20% K		0.016	8.5	10 ⁻⁹ - 10 ⁻²

I : Illite ; M : Montmorillonite ; I/M : Illite - Montmorillonite mixed layers ; K : Kaolinite

Testing of 1-pK DLM / EI for naturals clay materials : one clay mineral

Application of 1-pK DLM / EI for naturals clay materials using CA approach

Application on FEBEX Bentonite 93% clay minerals: M with 10-15% illite layers (interstratified)

Development of robust and parsimonious model using minimalist and generic approach.

The result shows that our model successfully reproduces most of available experimentaldata both qualitatively and quantitatively.

The model account for varying levels of Cs interactions with pure and natural clay substrates, without making any prior adjustment of parameters.

GOLDSCHMIDT YOKOHAMA 2016 26 JUNE - 1 JULY

