

Neutron diffraction experiment and data analysis of $UO_2 + x$ sample

Y. Ma, P. Garcia, L. Desgranges, G. Baldinozzi, H. Fischer, D. Simeone, J.

Léchelle

► To cite this version:

Y. Ma, P. Garcia, L. Desgranges, G. Baldinozzi, H. Fischer, et al.. Neutron diffraction experiment and data analysis of UO_2 + x sample. ADD2016 - School and Conference on Analysis of Diffraction Data in Real Space, Mar 2016, Grenoble, France. cea-02442302

HAL Id: cea-02442302 https://cea.hal.science/cea-02442302

Submitted on 16 Jan 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

cea den

NEUTRON DIFFRACTION EXPERIMENT AND DATA ANALYSIS OF UO2+X SAMPLE

<u>Y. MA</u>, P. Garcia, L. Desgranges, G. Baldinozzi, H. Fischer, D. Simeone, J. Lechelle

BACKGROUND AND MOTIVATIONS

Contents

- Background & motivations
- Oxygen defect (clusters)
- Objectives
- Experiments
 & data
 refinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

Background and motivations

- Uranium dioxide the major fuel materials \rightarrow Improve the capacity to understand <u>fuel properties</u>
- The periodic structure of UO₂ crystal is always disturbed by different types of defects (associates and clusters), which determine essential engineering properties: <u>ion diffusivity Do, electrical conductivity σ and creep.</u>

• Point defects: e.g. PD model for σ and non-stoichiometry x study [2]

→ Understanding the nature and behavior of point defects!

Ceaden OXYGEN DEFECTS (CLUSTER)

Contents

- Background & motivations
- Oxygen defect (clusters)
- Objectives
- Experiments
 & data
 refinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- $UO_{2+x}(0 < x < 0.25)$: experience a transformation from two-phase ($UO_{2+x} + U_4O_9$) to a <u>homogeneous</u> single phase as T increases;
- Oxygen defects (cluster) in this study from previous experiments and DFT calculations

emperature

[1]Willis, et al., 1978, Acta Cryst A34; [2]Andersson, et al., 2012, J. Chem. Phys. 136; [3]Desgranges, et al., 2011, Inorg. Chem, 50(13)

cea den

EXPERIMENT OBJECTIVES

0.654

1600

1400 -

0.661

(U-O), +

0.667

UO_{2•x(S)}

0.672

Contents

- Background & motivations
- Oxygen * defect (clusters)
- **Objectives**
- ** Experiments & data refinement
- ** Oxidation effect on diffraction pattern
- ** PDF models
- Comparison ** to Rietveld analysis
- Conclusion & ** Prospect

- **Objectives**
- Neutron diffraction: UO₂ [1]and U₄O₉ [2] ٠ •The neutron diffusion length for O is half that for $U \rightarrow$ more accurate determination of anion sublattice (comp. to X-ray Diff.)

•Large penetration depth

Followed properties measurement experiment, we aim to identify the type of defect (cluster) in UO_{2+x} with small x.

Mole fraction of oxygen (X_{0})

0.688

0.697

0.692

0.701

UO_{2+x(S)}

0.706

1700

1500

1300

1100

900

700

500

300

S

emperature

EXPERIMENTS AND DATA REFINEMENT

Contents

Background
 & motivations

Ceaden

- Oxygen defect (clusters)
- Objectives
- Experiments
 & data
 refinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- Experiments at ILL D4c diffractometer
 - Samples: sintered UO₂ and UO_{2.04} pellets
 - Temperature range: 12°C (285 K) 1000 °C (1273 K)
 - S(Q) and Fourier transform \rightarrow G(r)
 - Wavelength: $\lambda = 0,4980 \text{\AA} \rightarrow \text{small } \lambda$ for larger Q range and a higher resolution of the real space diffraction data (d = $2\pi \sin\theta/\lambda$).

Diffraction pattern analysis: Rietveld and Pair Distribution Function methods

		Rietveld Analysis (by JANA)	Pair Distribution Function Analysis (by PDFGui)
	Principle	Non-linear mean square algorithm (<u>reciprocal -</u> space data) -> average structure	Pair distribution function (<u>real</u> -space) -> local ordering
	Parameters for refinement on the peaks of the diffraction patterns	U, V, W : Peak shape calculation H/L, S/L : Peak symmetry Shift: Peak position Atom thermal mode and site occupancies	Delta 1, 2: Peak width calculation Qdamp and Qbroad: Peak damping and broadening (fixed) Model size/Space group
	Outcomes	Lattice parameters, atom displacement factors, atom positions, model reliabilities	

ADD2016 |10 March 2016 | PAGE 5

Ceaden OXIDATION EFFECTS ON DIFFRACTION PATTERNS

**

*

**

PDF models

Comparison

Conclusion &

to Rietveld

analysis

Prospect

- The major difference in S(Q) of UO₂ and UO_{2+x} at low temperature (before phase transition) lies in the third peak relative to the <u>U4O₉ structure</u> in two-phase stage. Such peak disappears when sample is heated and transformed to the single-phase.
 - \rightarrow To identify the defects leading to the small change in average structure

Ceaden OXIDATION EFFECTS ON DIFFRACTION PATTERNS

 Conclusion & Prospect

ADD2016 |10 March 2016 | PAGE 7

OXIDATION EFFECTS ON DIFFRACTION PATTERNS

Contents

 Background & motivations

ceaden

- Oxygen defect (clusters)
- Objectives
- Experiments
 & data
 refinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

Pair distribution function G(r) in real space – UO₂ and UO_{2+x}

- Temperature effects on UO2 PDF data can also be observed on UO2+x (black circles)
- <u>Decreasing amplitude of</u> <u>peaks -> oxidation effect</u> (red circles)
- The temperature effect overwrites the oxidation contribution to the PDF data.
- → To study the evolution of defects (cluster?) upon temperature

ADD2016 |10 March 2016 | PAGE 8

Ceaden PDF ANALYSIS OF UO2+X

Contents

- Background & motivations
- Oxygen defect (clusters)
- Objectives
- Experiments
 & data
 refinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

Local structure analysis with PDFgui – @ 900°C single phase

•Defect model: 1)Willis'2:2:2 defects I₂^w
•Model of U4O8 lattice cell (Fm3m)
•Site occupancies control → stoichiometry of sample: 2,04
I₂^w: Rwp = 11.9%; v=1,21(5)Å, w=1,17(1)Å

Atom	Coordinates	Composition	
Uranium	0,0,0	1.00	
Lattice Oxygen O	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	1.96	
Interstitial O' <110>	$\frac{1}{2}, \frac{1}{2} + v, \frac{1}{2} + v$	0.04	
Interstitial O" <111>	$\frac{1}{2} + w, \frac{1}{2} + w, \frac{1}{2} + w$	0.04	

- PDFgui simulation has reproduced much features related to temperature effect.
- <u>The oxidation effect it does not reproduce belongs to peaks of U-O and O-O pairs at that distance</u> <u>at high temperature.</u>
 ADD2016 |10 Mar 2016 | PAGE 9

Ceaden PDF ANALYSIS OF UO2+X

analysis

Prospect

**

Conclusion &

• Three defect models all have reproduced much features related to both the oxidation and temperature effect, and failed to interpret the same U-O and O-O bonds.

Ceaden PDF ANALYSIS OF UO2+X

analysis

Prospect

**

Conclusion &

- Supercell model actually can better interpret some U-O and O-O pairs at a longer range than smallsize model of same oxygen defects.
- Current task: applying defect model with lower symmetry: P222 or P1 ADD2016 |10 March 2016 | PAGE 11

Ceaden RIETVELD ANALYSIS OF UO2+X

Contents

- Background & motivations
- Oxygen defect (clusters)
- Objectives
- Experiments
 & data
 refinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

Rietveld analysis– @ 900°C single phase, average structure

•Defects models: isolated interstitials I_1 Willis'2:2:2 defects I_2^w •Refinement results:

Stoichiometry of sample: 2,03 - 2,04.

- *a.* I_1 : Rwp = 2,61%
- *b.* I₂^w: Rwp = 2,59%; v=0,6(1)Å, w=1,3(1)Å
- Willis defect: comparison to our PDF and literature

Temperature	1173K	1173K	973K,	1200K, UO _{2.06}
(K)	Rietveld	PDF	UO _{2.11} [1]	[2]
0/0'/0''	1.96/0.04/0.04	1.96/0.04/0.04	1.88/0.14/0.1 2	1.95/0.05/0.06
v <110> (Å)	0.6 (0.1)	1.21 (0.1)	1.1 (0.1)	0.7 (0.2)
w <111> (Å)	1.3 (0.1)	1.17 (0.1)	1.3 (0.1)	0.9 (0.2)

[1]Murray & Willis, 1990, J. Sol. Sta. Chem., 84, 52-57; [2] Wang, 2014, Scientific Reports, 4, 4216

ADD2016 | 10 March 2016 | PAGE 12

CONCLUSION AND PROSPECTS

Contents

 Background & motivations

Ceaden

- Oxygen defect (clusters)
- Objectives
- Experiments
 & data
 refinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- Oxidation effect on real-space diffraction patterns:
 - For UO_{2+x} with small deviation-from-stoichiometry: oxidation contribution is not as significant as the temperature.
- > PDF refinement on UO_{2.03} diffraction data at high temperature single phase:
 - Willis 2:2:2 defect structure model is more applicable for our UO_{2+x} with smaller deviation-from-stoichiometry in small-size model.
 - Increasing the PDF defect model size may improve the refinement.
 - The PDFgui refinement results are consistent with the Rietveld average structure analysis and are agreed with the literature as well.
- Prospects:
 - Test other defect models with PDFgui (*e.g.* cuboctahedron cluster and split quadinterstitials)
 - G(r) based on DFT calculations
 - Next neutron diffraction experiments:
 - UO_{2+x} with higher x (x~0.1)
 - dopants

Thank you for listening!

Commissariat à l'énergie atomique et aux énergies alternatives DEC/SFER/LCU Centre de Cadarache 13108 Saint Paul lez Durance, France

