

Neutron diffraction experiment and data analysis of $UO_2 + x$ sample

Y. Ma, P. Garcia, L. Desgranges, G. Baldinozzi, H. Fischer, D. Simeone, J. Léchelle

▶ To cite this version:

Y. Ma, P. Garcia, L. Desgranges, G. Baldinozzi, H. Fischer, et al.. Neutron diffraction experiment and data analysis of $UO_2 + x$ sample. ADD2016 - School and Conference on Analysis of Diffraction Data in Real Space, Mar 2016, Grenoble, France. cea-02442302

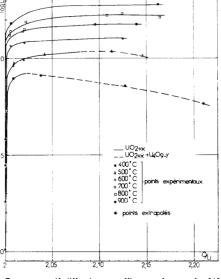
HAL Id: cea-02442302 https://cea.hal.science/cea-02442302v1

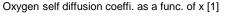
Submitted on 16 Jan 2020

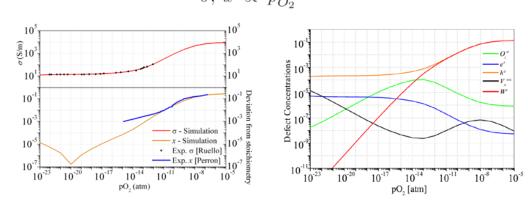
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NEUTRON DIFFRACTION EXPERIMENT AND DATA ANALYSIS OF UO_{2+X} SAMPLE

Y. MA, P. Garcia, L. Desgranges, G. Baldinozzi, H. Fischer, D. Simeone, J. Lechelle


BACKGROUND AND MOTIVATIONS

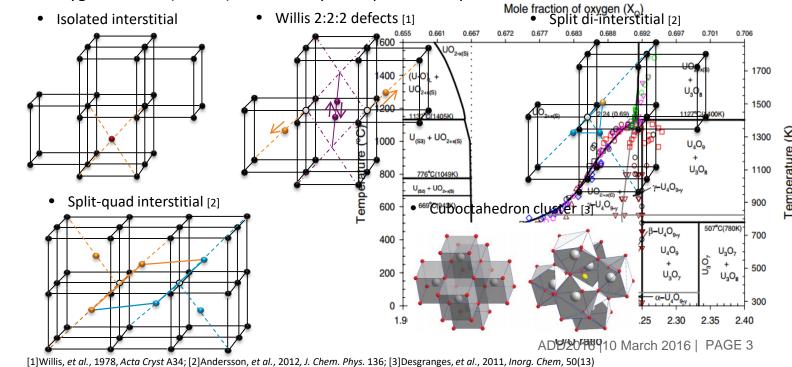

Contents


- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

Background and motivations

- Uranium dioxide the major fuel materials → Improve the capacity to understand <u>fuel properties</u>
- The periodic structure of UO₂ crystal is always disturbed by different types of defects (associates and clusters), which determine essential engineering properties: <u>ion diffusivity Do, electrical conductivity σ and creep.</u>
 - Point defects: e.g. PD model for σ and non-stoichiometry x study [2] $\sigma,~x~\propto~p_{O_2}^{\frac{1}{2}\frac{n}{m+1}}$

 Understanding the nature and behavior of point defects!

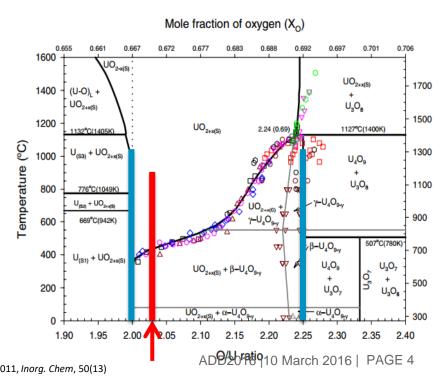


OXYGEN DEFECTS (CLUSTER)

Contents

- Background& motivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- $UO_{2+x}(0< x<0.25)$: experience a transformation from two-phase ($UO_{2+x} + U_4O_9$) to a <u>homogeneous</u> single phase as T increases;
- Oxygen defects (cluster) in this study from previous experiments and DFT calculations


EXPERIMENT OBJECTIVES

Contents

- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- Objectives
- Neutron diffraction: UO₂ [1]and U4O₉ [2]
 The neutron diffusion length for O is half that for U → more accurate determination of anion sublattice (comp. to X-ray Diff.)
 Large penetration depth

 Followed properties measurement experiment, we aim to identify the type of defect (cluster) in UO_{2+x} with small x.

[1]Ruello, P., et al., 2005, J. Phys. Chem. 66; [2]Desgranges, L., et al., 2011, Inorg. Chem, 50(13)

EXPERIMENTS AND DATA REFINEMENT

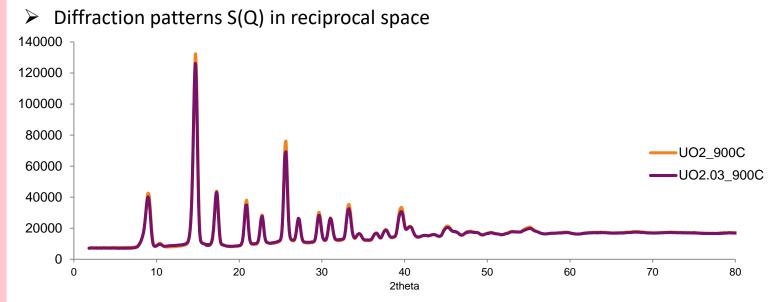
Contents

- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- Experiments at ILL D4c diffractometer
 - Samples: sintered UO₂ and UO_{2.04} pellets
 - Temperature range: 12°C (285 K) 1000 °C (1273 K)
 - S(Q) and Fourier transform $\rightarrow G(r)$
 - Wavelength: λ =0,4980Å \rightarrow small λ for larger Q range and a higher resolution of the real space diffraction data (d = $2\pi\sin\theta/\lambda$).

> Diffraction pattern analysis: Rietveld and Pair Distribution Function methods

	Rietveld Analysis (by JANA)	Pair Distribution Function Analysis (by PDFGui)
Principle	Non-linear mean square algorithm (<u>reciprocal -</u> space data) -> average structure	Pair distribution function (<u>real</u> -space) -> local ordering
Parameters for refinement on the peaks of the diffraction patterns	U, V, W: Peak shape calculation H/L, S/L: Peak symmetry Shift: Peak position Atom thermal mode and site occupancies	Delta 1, 2: Peak width calculation Qdamp and Qbroad: Peak damping and broadening (fixed) Model size/Space group
Outcomes	Lattice parameters, atom displacement fact	tors, atom positions, model reliabilities

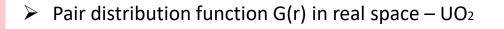

OXIDATION EFFECTS ON DIFFRACTION PATTERNS

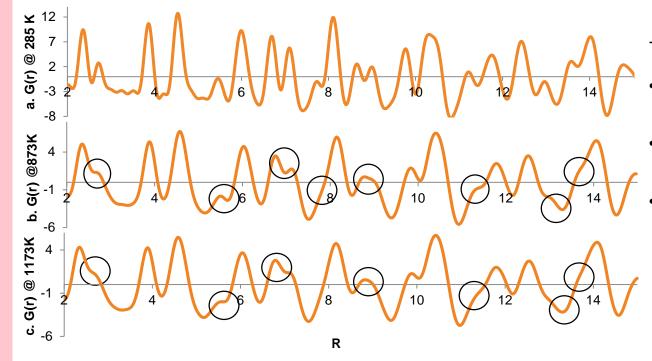
- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement

Oxidation

- effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- The major difference in S(Q) of UO₂ and UO_{2+x} at low temperature (before phase transition) lies in the third peak relative to the <u>U4O₉ structure</u> in two-phase stage. Such peak disappears when sample is heated and transformed to the single-phase.
- → To identify the defects leading to the small change in average structure

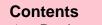

OXIDATION EFFECTS ON DIFFRACTION PATTERNS



- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement

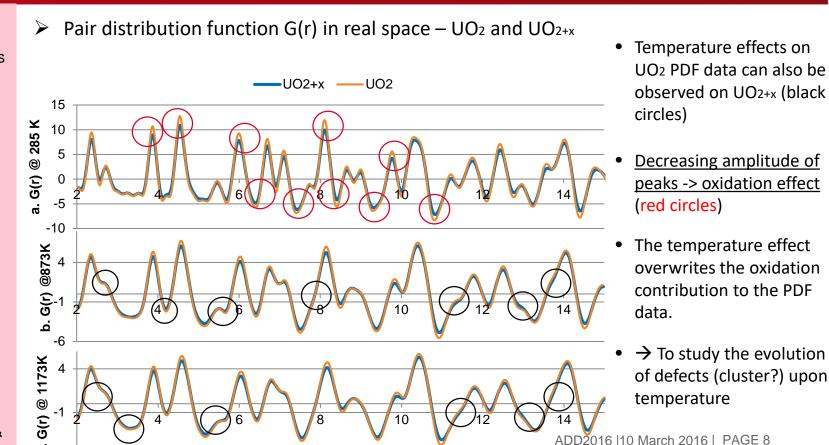
Oxidation

- effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect



Temperature effect

- Peak (width) broadening
- Peaks merging together-> becomes shoulders
- Peak amplitude drops > the integral of the peak equals to No. of atoms (i.e. const.)


ceaden

OXIDATION EFFECTS ON DIFFRACTION PATTERNS

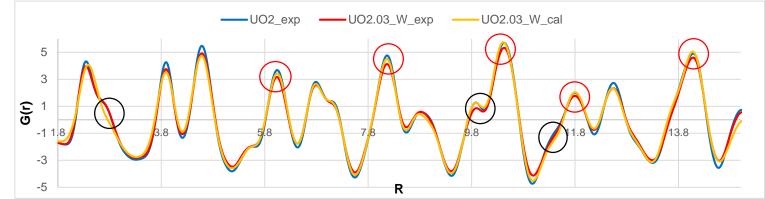
- Backgroundmotivations
 - Oxygen
- defect (clusters)
 - Objectives
 - Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF modelsComparison to Rietveld
- analysisConclusion &

Prospect

PDF ANALYSIS OF UO2+X

Contents

- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect


➤ Local structure analysis with PDFgui — @ 900°C single phase

- •Defect model: 1)Willis'2:2:2 defects I_2^w
 - •Model of U4O8 lattice cell $(Fm\overline{3}m)$
 - Site occupancies control → stoichiometry of sample: 2,04

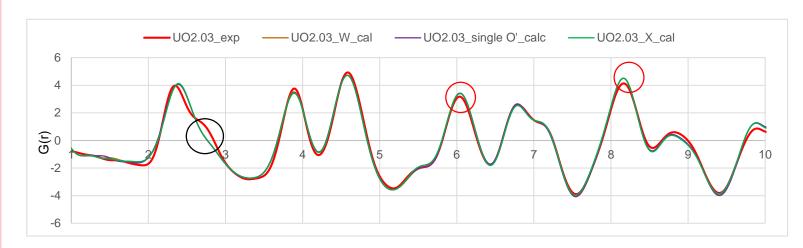
 I_2^{W} : Rwp = 11.9%;

v=1,21(5)Å, w=1,17(1)Å

Atom	Coordinates	Composition
Uranium	0,0,0	1.00
Lattice Oxygen O	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$	1.96
Interstitial O' <110>	$\frac{1}{2}, \frac{1}{2} + v, \frac{1}{2} + v$	0.04
Interstitial O" <111>	$\frac{1}{2} + w$, $\frac{1}{2} + w$, $\frac{1}{2} + w$	0.04

- PDFgui simulation has reproduced much features related to temperature effect.
- The oxidation effect it does not reproduce belongs to peaks of U-O and O-O pairs at that distance at high temperature.

 ADD2016 | 10 Mar 2016 | PAGE 9


PDF ANALYSIS OF UO2+X

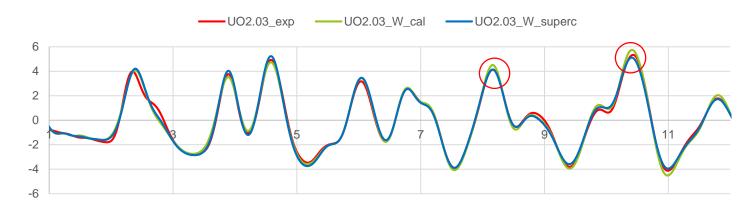
Contents

- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- ➤ Local structure analysis with PDFgui @ 900°C, with U4O8 models
 - •Defects models:

Isolated interstitials I_1 Willis'2:2:2 defects I_2^w Split di-interstitial I_2^X Rwp= 12,16% Composition: 1.96/0.08 11,98% 1,96/0,04/0,04 12,22% 1.94/0.33/0.33/0.33

• Three defect models all have reproduced much features related to both the oxidation and temperature effect, and failed to interpret the same U-O and O-O bonds.


PDF ANALYSIS OF UO2+X

Contents

- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- ➤ Local tructure analysis with PDFgui @ 900°C, with U32O64, U72O144 and U108O216 models
 - •Modelling the non-correlated defects, stoichiometry retained at 2.03 to 2.04.
 - •Defect models ($Fm\overline{3}m$ remains):

 $\begin{array}{lll} \mbox{ Isolated interstitials } I_1 & \mbox{ Rwp= 13.6\%} \\ \mbox{ Willis'2:2:2 defects } I_2^w & \mbox{ 14.5\%} \\ \end{array}$

- Supercell model actually can better interpret some U-O and O-O pairs at a longer range than small-size model of same oxygen defects.
- Current task: applying defect model with lower symmetry: P222 or P1 ADD2016 | 10 March 2016 | PAGE 11

RIETVELD ANALYSIS OF UO2+X

Contents

- Background & motivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
 - PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- > Rietveld analysis—@ 900°C single phase, average structure
 - •Defects models: isolated interstitials I_1 Willis'2:2:2 defects I_2^W
 - Refinement results:

Stoichiometry of sample: 2,03 - 2,04.

- a. I_1 : Rwp = 2,61%
- b. I₂^w: Rwp = 2,59%; v=0,6(1)Å, w=1,3(1)Å
- Willis defect: comparison to our PDF and literature

Temperature	1173K	1173K	973K,	1200K, UO _{2.06}
(K)	Rietveld	PDF	UO _{2.11} [1]	[2]
0/0'/0''	1.96/0.04/0.04	1.96/0.04/0.04	1.88/0.14/0.1 2	1.95/0.05/0.06
v <110> (Å)	0.6 (0.1)	1.21 (0.1)	1.1 (0.1)	0.7 (0.2)
w <111> (Å)	1.3 (0.1)	1.17 (0.1)	1.3 (0.1)	0.9 (0.2)

CONCLUSION AND PROSPECTS

Contents

- Backgroundmotivations
- Oxygen defect (clusters)
- Objectives
- Experiments& datarefinement
- Oxidation effect on diffraction pattern
- PDF models
- Comparison to Rietveld analysis
- Conclusion & Prospect

- Oxidation effect on real-space diffraction patterns:
 - For UO_{2+x} with small deviation-from-stoichiometry: oxidation contribution is not as significant as the temperature.
- ➤ PDF refinement on UO_{2.03} diffraction data at high temperature single phase:
 - Willis 2:2:2 defect structure model is more applicable for our UO_{2+x} with smaller deviation-from-stoichiometry in small-size model.
 - Increasing the PDF defect model size may improve the refinement.
 - The PDFgui refinement results are consistent with the Rietveld average structure analysis and are agreed with the literature as well.
- Prospects:
 - Test other defect models with PDFgui (e.g. cuboctahedron cluster and split quadinterstitials)
 - G(r) based on DFT calculations
 - Next neutron diffraction experiments:
 - UO_{2+x} with higher x (x~0.1)
 - dopants

Thank you for listening!

Commissariat à l'énergie atomique et aux énergies alternatives DEC/SFER/LCU

Centre de Cadarache 13108 Saint Paul lez Durance, France

