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Émission Acoustique et Traitement du Bruit: Cas de signaux Expérimentaux en Contexte Nucléaire

En contrôle par Émission Acoustique (EA), il n'est pas rare d'observer une pollution du signal reçu par des bruits d'origines diverses, ce qui oblige souvent les expérimentateurs à augmenter le seuil d'acquisition des signaux, avec comme conséquence une perte de sensibilité. Cette perte de sensibilité peut parfois conduire à une non détection de certains phénomènes (notamment les moins énergétiques) et/ou à un manque de précision en terme de localisation. Il est alors préférable de préserver la sensibilité à travers le maintien du seuil d'acquisition et ensuite d'avoir recours à des méthodes de traitement du bruit. Dans ce travail, nous expérimentons des méthodes de soustraction spectrale (SS) dans le cadre du traitement de signaux expérimentaux d'EA obtenus suite à des essais de sûreté nucléaire de type RIA (Reactivity Initiated Accident). Les résultats obtenus permettent de conclure à une très bonne adéquation des méthodes de type SS en termes d'amélioration du rapport signal sur bruit (SNR) et de préservation de la forme d'onde pour les segments du signal reçu correspondant à des phénomènes physiques d'intérêt.

Introduction

L'accident d'injection de réactivité «Reactivity Initiated Accident» (RIA) est un accident dit de type grave, caractérisé par une insertion de réactivité dans le coeur d'un réacteur nucléaire. Il induit une excursion de puissance quasi-instantanée, avec un dépôt significatif d'énergie dans les crayons de combustibles, soumettant ainsi ceux-ci à une situation de stress extrême. Le Commissariat français à L' Énergie Atomique (CEA) exploite un réacteur de recherche de type piscine destiné à reproduire sur un crayon de combustible irradié, prélevé dans une centrale en activité, une situation de stress équivalente à celle d'un accident de type RIA. Le dispositif d'essai contenant ce crayon est équipé de plusieurs capteurs, dont deux capteurs piézoélectriques (microphones) permettant de recueillir des signaux traduisant le comportement du combustible pendant l'essai (cf. figure 1). L'environnement de ces capteurs se caractérisant par une extrême complexité, les signaux enregistrés sont alors pollués par des bruits d'origines diverses qu'il convient de traiter avant toute interprétation. En effet, la SS dont la paternité est attribuée à Boll [START_REF] Boll | Suppression of acoustic noise in speech using spectral subtraction[END_REF] est une méthode de traitement du bruit réputée très efficace dans le cas de bruit stationnaire ou faiblement évolutif. Depuis la fin des années 70, la SS a suscité un grand intérêt et fait l'objet de nombreuses applications en traitement du signal numérique, notamment pour la restauration de la parole (cf. Berouti et al. [START_REF] Berouti | Enhancement of speech corrupted by acoustic noise[END_REF] et Chokkarapu et al. [START_REF] Chokkarapu | Implementation of spectral subtraction noise suppressor using DSP processor[END_REF]). De manière intuitive, la SS peut être considérée comme une méthode qui, à travers un ou des estimateurs du bruit permet de restaurer un signal source en s'appuyant sur une comparaison de densités spectrales en module ou en énergie. Ici, nous proposons dans un premier temps d'utiliser la méthode originelle de Boll mise en oeuvre avec succès dans un contexte d'EA par Matsuo et al. [START_REF] Matsuo | Development of AE monitoring system with noise reduction function by spectral subtraction[END_REF]. Ensuite, une nouvelle approche inspirée des travaux de Sovka et al. [START_REF] Sovka | Extended spectral subtraction[END_REF] sera expérimentée. Une première section est consacrée à la présentation des deux méthodes, nous expliquerons notamment en quoi la seconde approche expérimentée diffère de celle initiée par Sovka. Dans la deuxième section, nous abordons de manière succincte la problématique de leur implémentation, la troisième et dernière section étant consacrée à l'optimisation des performances et à des comparaisons de résultats.

Méthodes de soustraction spectrale 1.La Soustraction Spectrale

En SS, le modèle de base est celui d'un signal source s pollué par un bruit n supposé additif, indépendant de s, stationnaire ou faiblement évolutif. On a :

x(t) = s(t) + n(t) t ∈ R + (1) 
où x est le signal reçu. Si on suppose que x est de longueur finie, donc d'énergie finie, l'équation (1) est alors équivalente à :

X(f ) = S(f ) + N (f ) f ∈ R + (2)
où X, S et N sont respectivement les transformées de Fourier de x, s et n. Soit N un estimateur du spectre du bruit, pour une fréquence donnée, la méthode de SS consiste alors à estimer la transformée de Fourier du signal source par :

Ŝ(f ) = |X(f )| -α| N (f )| e iθx(f ) (3) 
où θ x (f ) est la phase du signal reçu pour la fréquence f . La principale difficulté liée à l'application des méthodes de type SS est la gestion des distorsions de forme d'onde induites par les erreurs d'estimation dues aux variations aléatoires du bruit. La source de distorsion la plus gênante est celle liée aux estimations négatives ou trop petites de l'amplitude du signal source pour certaines gammes de fréquences (cf. Vasheghi [START_REF] Vaseghi | Advanced digital signal processing and noise reduction[END_REF]). Pour faire face à ce problème, plusieurs approches sont proposées par Boll. Celle que nous avons choisie de mettre en oeuvre est la méthode dite de «Half-Wave Rectification» que nous traduirons par méthode de troncature. L'idée de cette technique est de remplacer Ŝ(f ) par 0 à chaque fois que α| N (f )| > |X(f )|, où le paramètre α appelé paramètre d'«over-subtraction» permet d'amplifier l'énergie associée au bruit. L'équation (3) s'écrit alors :

Ŝ(f ) = E(f )e iθx(f ) (4) 
avec :

E(f ) = |X(f )| -α| N (f )| si |X(f )| > α| N (f )| 0 sinon
(5) La méthode de troncature permet d'atténuer les distorsions de forme d'onde liées aux estimations négatives de l'amplitude du signal. Elle entraîne cependant la perte de toute information relative au signal source pour les fréquences où E(f ) = 0. Afin d'améliorer cette première approche de SS que nous qualifierons de classique, nous nous sommes appuyés sur les travaux de Sovka et al. [START_REF] Sovka | Extended spectral subtraction[END_REF] pour expérimenter une seconde approche visant à tenir compte d'éventuelles variations aléatoires du bruit avant application de la méthode de troncature, ce qui devrait permettre d'avoir un estimateur plus efficace.

La Soustraction Spectrale Adaptative

L'«Extended Spectral Subtraction» (ESS) initiée par Sovka et al. [START_REF] Sovka | Extended spectral subtraction[END_REF] consiste à améliorer la SS classique en utilisant un filtre adaptatif de Wiener pour estimer le bruit, ce qui constitue une innovation subtile puisque le filtre de Wiener est en général utilisé plutôt comme outil d'estimation du signal source. Ainsi, on met en place un algorithme qui, tout au long de la durée d'enregistrement du signal permet d'estimer à intervalle régulier le bruit courant en multipliant le signal reçu par la fonction de transfert de Wiener associée H k :

H k (f ) = | Nk-1 (f )| | Nk-1 (f )| + | Ŝk-1 (f )| (6) |N k (f )| = H k (f )|X k (f )| (7) 
Contrairement à Sovka, l'approche que nous proposons consiste à utiliser dans un premier temps une fonction de transfert de Wiener où seule la valeur de l'estimateur de la densité d'énergie spectrale du signal source Ŝk-1 est mise à jour :

H k (f ) = | N (f )| | N (f )| + | Ŝk-1 (f )| (8)
la fonction de transfert H k ainsi calculée est ensuite utilisée pour estimer la densité d'énergie spectrale d'innovation :

ν k (f ) = |X k (f )| -H k (f )|X k (f )| (9)
Puis, le bruit courant est estimé par correction de N en utilisant la fonction de transfert de Wiener et l'innovation :

| Nk (f )| = | N (f )| + H k (f )ν k (f ) (10)
En supposant que le travail de débruitage est effectué offline (signaux enregistrés), l'implémentation d'une méthode de type SS peut se résumer comme suit [START_REF] Matsuo | Development of AE monitoring system with noise reduction function by spectral subtraction[END_REF] :

1. Dans un premier temps, on découpe le signal reçu

x en K segments de même taille M . Afin d'éviter les effets de bords, il convient d'utiliser des fenêtres recouvrantes lors de cette étape (cf. figure 2). 3. Le spectre du signal source est ensuite estimé par troncature en utilisant l'équation (5).

4. Ensuite, pour chaque segment, il faut ajuster la phase du signal source estimé Ŝk à celle du signal reçu X k en utilisant l'équation (4).

5. Puis, pour chaque segment, l'estimateur du signal source ŝk est obtenu par transformée de Fourier inverse de Ŝk (cf. figure 4). 6. Enfin, il faut reconstituer le signal source en additionnant les segments ŝk tout en respectant l'ordre de découpe initial (cf. figure 5). Pour les segments où il y aurait un éventuel recouvrement, le signal source sera estimé par la moyenne des valeurs des segments se chevauchant comme suit :

x k = 1 n n i=1
x ki (11)

où n est le nombre de segments se chevauchant. 3 Optimisation des paramètres de soustraction spectrale

En plus de l'estimation du bruit n, l'approche de SS nécessite de choisir la taille M de la fenêtre d'analyse et du paramètre d'amplification de l'énergie du bruit α. Ces deux paramètres pouvant avoir un impact important sur la forme d'onde et le contenu spectral, il convient de mettre en place des méthodes permettant leur optimisation.

Dans le cas du paramètre α, cette optimisation consiste à trouver un compromis entre des objectifs antagonistes. D'une part, il s'agit de réduire le bruit, mais sans provoquer une distorsion trop importante de la forme d'onde du signal. En effet, pour une taille de fenêtre fixée, une augmentation de α permet une amélioration du SNR, mais a comme conséquence une distorsion plus importante de la forme d'onde du signal, puisque la corrélation de celui-ci avec le signal reçu diminue (cf. figure 6). D'autre part, il faut également s'assurer de ne pas trop corrompre le contenu spectral du signal, notamment pour les parties correspondant à des phénomènes d'intérêt. Nous devons donc trouver une approche qui permet d'améliorer le SNR, mais également de préserver la forme d'onde (résolution en temps) et le contenu spectral associé aux phénomènes d'intérêt. Pour ce faire, en plus de l'approche utilisée par Matsuo et Cho [START_REF] Matsuo | Development of AE monitoring system with noise reduction function by spectral subtraction[END_REF], consistant à comparer les courbes d'évolution du SNR et du coefficient de corrélation (comparaison des formes d'ondes avant et après traitement), nous proposons d'utiliser également un indicateur inspiré de la semi-métrique de Kullback-Leiber (équation 12), permettant de comparer les spectres des signaux avant et après traitement.

d(X 1 , X 2 ) = fe/2 f =0 X 1 (f ) log X 1 (f ) X 2 (f ) (12) 
où X est le spectre de x et f e la fréquence d'échantillonnage. 

d = - 1 2 (d(X 1 , X 2 ) + d(X 2 , X 1 )) (13) 

Performances des méthodes de soustraction spectrale

La figure (7) permet de conclure à une très bonne adéquation des méthodes de SS expérimentées en ce qui concerne l'amélioration du SNR. En effet, on constate pour tous les essais choisis une amélioration très significative du SNR. Par ailleurs, on conclut que pour les signaux choisis dans le cadre de cette étude, il n'est pas possible d'établir une hiérarchie claire entre les deux méthodes expérimentées. En ce qui concerne l'analyse des distorsions de forme d'onde, on constate que de manière globale les coefficients de corrélation sont en général supérieurs à 0.5 (cf. figure 8), ce qui est très appréciable dans la mesure où la composante bruit que nous souhaitons supprimer représente une bonne partie du signal pour chaque essai (cf. figure 5). En effet (cf. figure 9), si on s'intéresse à un segment de signal correspondant uniquement à du bruit, le coefficient de corrélation n'est que de 0.1 alors que la même démarche démarche pour un segment de signal d'intérêt conduit à un coefficient de corrélation supérieur à 0.9. 
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 1 Figure 1 -Schéma simplifié du dispositif d'essai et positions des capteurs
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 2 Figure 2 -Illustration de la découpe d'un signal par utilisation de fenêtres de hanning recouvrantes à 50%.
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 3 Figure 3 -Illustration de la comparaison des spectres du signal reçu (bleu) et du spectre de l'estimateur du bruit (rouge).
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 4 Figure 4 -Illustration (par segment de découpe) de la comparaison du signal reçu (rouge) et du signal source estimé (bleu).
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 5 Figure 5 -Comparaison de formes d'onde avant et après traitement : signal reçu (haut), estimation du signal source obtenu par SS (milieu), estimation du signal source obtenu par ESS (bas)
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 6 Figure 6 -Évolution du SNR et de la corrélation en fonction de α pour M = 512 (haut) ; du SNR et de l'indicateur de Kulback-Leiber α pour M = 512 (bas).
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 7 Figure 7 -Comparaison des SNR avant et après traitement pour quelques essais choisis : SS (courbe verte), ESS (courbe bleue).
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 8 Figure 8 -Comparaison des coefficients de corrélation des signaux avant et après traitement pour quelques essais choisis : SS (courbe verte), ESS (courbe bleue).
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 9 Figure 9 -Comparaison du coefficient de corrélation des signaux avant et après traitement pour un signal bruit (haut) et pour un signal d'intérêt (bas) : méthode SS.

  

Conclusion Dans ce travail, nous avons expérimenté deux approches de soustraction spectrale pour le débruitage de signaux expérimentaux d'EA. Après présentation de l'approche classique initiée par Boll, nous avons proposé une seconde approche inspirée des travaux de Sovka et al. consistant à utiliser un filtre de Wiener pour améliorer l'estimation du bruit. Nous avons également insisté sur la phase très importante d'optimisation des paramètres de soustraction spectrale. Pour ce faire, en plus d'indicateurs classiques comme le SNR et le coefficient de corrélation entre les signaux avant et après traitement, nous préconisons d'utiliser un indicateur inspiré de la semi-métrique de Kullback-Leiber pour comparer les spectres avant et après traitement. Par ailleurs, on conclut que pour les signaux d'EA étudiés, les méthodes de type SS expérimentées donnent des résultats très satisfaisants, le SNR est amélioré de manière très significative alors que les formes d'ondes sont préservées pour les segments d'intérêt du signal.