

Development of a new process for the selective rare earth recovery from used permanent magnets

D. Hartmann, M. Miguirditchian, V. Haquin, E. Andreiadis, J. Serp, R.

Laucournet, R. Blank

► To cite this version:

D. Hartmann, M. Miguirditchian, V. Haquin, E. Andreiadis, J. Serp, et al.. Development of a new process for the selective rare earth recovery from used permanent magnets. Permanent Magnets and their applications (REPM 2016), Aug 2016, Darmstadt, Germany. cea-02438704

HAL Id: cea-02438704 https://cea.hal.science/cea-02438704v1

Submitted on 27 Feb 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

Development of a new process for the selective rare earth recovery from used permanent magnets

> D. Hartmann, M. Miguirditchian, V. Haquin, E. Andreiadis, J. Serp (1) R. Laucournet (2) R. Blank (3)

(1): CEA, Atomic Energy and Alternative Energies Commission, DEN, DRCP, RadioChemistry and Processes Department, Marcoule, France

(2): CEA, DRT, LITEN, Laboratory for Innovation in New Energy Technologies and Nanomaterials, Grenoble, France

(3): Vacuumschmelze, Permanent Magnets, Research & Development, Hanau, Germany

www.cea.fr

- 1. Introduction: REE supply risk and need to recycle
- 2. RE Separation Process Development
- 3. Technical-economic assessment
- 4. Conclusions and Outlook

1. REE production, supply risk and applications

- > Rare earth elements (REE) = **Critical raw materials** for European economy
- > RE demand growing, especially for magnets (Nd, Dy most critical)
- Production chain concentrated in China (mining, separation, downstream manufacturing, R&D capacity): 85% world REO supply
- > All heavy REE production controlled by China
- > Currently **no European mine** in operation:
 - Norra Kärr lease suspended until additional data are provided by TASMAN
 - Torrenueva project in Spain by QUANTUM faces opposition

- Most NET applications require pure elements, but REE extracted as a group
- > Most abundant elements have **few applications**

Permanent magnets: 35% of REE consumption in 2015

Need to diversify supply sources especially for most critical elements (Nd +Dy)

1. REE recycling: closing the materials loop

Advantages of recycling

- > Target the most critical rare earths and address the balance problem
- > No issues with radioactive elements (235U, 238U, 232Th)
- Lower environmental footprint

Challenges

Very low recycling rates for REE

- Insufficient collection of waste sources (such as WEEE)
- > Difficult recovery of REE-containing fractions (design, coatings, adhesives)
- Difficult separation of individual REE
- Economic incentive

Opportunities

- Competences and expertise of the European recycling industry
- > Enhancing the use of the urban mine resource
- Economic and environmental impact

Recycling NdFeB permanent magnets

- Most important market, driving REE demand (NET)
- High REE concentration (25% Nd, 5% Pr, 2-8% Dy)
- Immediate availability

2. RE SEPARATION PROCESS DEVELOPMENT

DE LA RECHERCHE À L'INDUSTR

2. Scheme for REE recovery and purification

Nuclear Energy Division - Marcoule RadioChemistry & Processes Department

- Direct and selective extraction and purification of REE from the magnet solution
- No preliminary separations of Fe and transition elements by precipitation
- A flexible process:
 - co-extraction of REE and further partitioning
 - > OR extraction of Dy in a 1st cycle, then Nd+Pr in a 2nd cycle
- A full hydro/pyrometallurgical process adapted to oxidized scraps as well as EoL magnets, for which a simple decrepitation process is not efficient

experts estimate around 20 % the proportion of magnets from WEEE amenable for a short way recycling (decrepitation)

2. A well-tried approach to separation process development at CEA

2. Selection and evaluation of the extracting system

- Screening of several extracting molecules available at the laboratory
- Selection of diglycolamide (DGA) extractants for selective Dy extraction versus Fe, B, Ni, Co and light REE
- Selection of TODGA as extractant
- Solvent composition: 0.2 M TODGA + 5% octanol / kerosene
- Tests on synthetic and genuine magnet solutions in nitric acid
- Quantitative extraction of REE
- Efficient separation of RE / transition metals (Fe, Co, Ni...) and heavy RE / light RE in a large range of acidity (0.4 to 5 M)
- Quantitative stripping of Dy at low acidity (pH 3) and "high" temperature (45-50°C)

Confirmation of the potential of TODGA for selective RE recovery and grouped separation from permanent magnet solutions

Sasaki, Y.; Tachimori, S., Solvent extraction and Ion exchange **2002**, *20(1)*

2. Development of the separation process flowsheet

- CEA PAREX simulation code ->calculation of flowsheets to recover Dy and Nd+Pr with theoretical purities > 99.5% in a limited number of stages
- Effective and compact process
- Patent application FR 1459023 (March 2014): « Processes of selective recovery of rare earths from acidic aqueous phases stemming from the processing of end-of-life permanent magnets or scraps » (PCT/EP2015/071679)

Pilot tests

- ✓ 20 h duration (steady state)
- ✓ 100 mL/h (lab-scale mixer settlers)

DE LA RECHERCHE À L'INDUSTRI

cea

2. Pilot demonstration test on VAC scraps

QSE Qualité Sécurité Environnement Nuclear Energy Division - Marcoule RadioChemistry & Processes Department

REPM 2016 - August 29th 2016

2. Pyrometallurgical process for metal elaboration

Objective: pyrometallurgical conversion of the separated REE into high purity RE metals

Use of transient electroanalytical techniques (voltammetry reversal chronopotentiometry, chronoamperometry...) to optimize experimental conditions:

- Salt composition
- Temperature
- Dy concentration
- Current and current density

Metal deposition tests to evaluate the process efficiency:

- Metal adherence
- Faradic yield
- Product purity
- Cell materials compatibility

Glovebox setup

Metal deposition tests on gram scale

1g and 5g Dy deposits

Patent pending

3. TECHNICAL-ECONOMIC ASSESSMENT

3. Methodology of economic assessment

- Technically based approach on detailed knowledge of the process
- Choice of a given capacity (in relation with market analysis or customer requirements)
- Step by step capital and operating costs calculations, with assessment of uncertainties at often as necessary
- Application of security factors, according to the state of the art

Reference: A. Chauvel, G. Fournier, C. Raimbault « Manuel d'évaluation économique des procédés » (Handbook of process economic evaluation), ed. TECHNIP 2001

Price of agitated reactors

Solution composition:	Element	Nd	Pr	Dy
	Leach solution (g/L)	4.30	1.10	0.44
□ Market prices: Nd_2O_3 /Pr ₂ O ₃ = 51 US \$/kg - Dy ₂ O ₃ = 310 US \$/kg (2015)				

NdFeB magnet Flowrate (t/yr)	REO Production (t/yr)	CAPEX (M€)	OPEX (M€/yr)	Turnover (M€yr)
15,000 t/yr (easily recoverable EoL magnets in EU) * 27 % = 4,000 t/yr	Nd = 344 Dy = 35	21 (SX)	15 (raw materials)	35
100 t/yr (scraps)	Nd = 8.6 Dy = 0.88	4 (SX)	2 (staff costs)	0.7

For 4,000 t/yr, ROI of 3 yrs, the benefit would be positive
For 100 t/yr, the process is unprofitable

Liquid waste treatment cost has to be further assessed, depending on local regulations (discharge of NO_3^- is strictly supervised)

4. Conclusions and outlook

- 1. Conclusions
- Development of a full RE separation process from used permanent magnets
 - Fruitful collaboration between different CEA research teams
 - Process patented for Dy and Nd recovery from permanent magnets
- Demonstration of the scientific feasibility of Dy and Nd/Pr recovery by SX without preliminary separation of Fe, B and coating elements by precipitation
- Pilot scale production of highly pure Dy from real used magnets and scraps
 - Experiments in progress on Dy and Nd-Pr conversion to oxides and to metals (electrolysis in molten salts)
- Scale-up and technical-economic study of the process allowed the evaluation of the process cost at an industrial scale
- 2. Outlook
- **Life Cycle Assessment** (LCA) is in progress for different options of the process
- Generic process \rightarrow can be adapted for other WEEE or valuable materials
- We are open to collaboration for scaling-up of recycling processes based on technical-economic assessment (TEA) and LCA

THANK YOU FOR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | BP17171 | 30207 Bagnols-sur-Cèze Cedex didier.hartmann @ cea.fr

Direction de l'énergie nucléaire Département de radiochimie des procédés Service de modélisation et de chimie des procédés de séparation

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

The 4 pillars of a successful development

COMPOSITION OF VAC's SCRAPS

Nd₂Fe₁₄B alloy composition

For applications in temperature, Nd is partially substituted by Dy (or Tb)

	%
Fe	72.3
Nd	26.7
В	1.0

Analysis of the 2nd VAC sample « partially oxidized NdFeB material produced from sludge » (500 g received in Nov 2014, analyzed for new experiments in May-July 2015)

Quantitative determination for major elements by ICP-AES after digestion

Elements	%	
Fe	54.3	
Nd	22.4	
Dy	2.23	
Со	1.61	
В	0.73	
Cu	0.11	
Pr	0.07	

Semi-quantitative for minor elements by ICP-MS

Å	
> 0.3 mg/g	AI-Er-Tb
0.05 < < 0.3 mg/g	Mg-Ti-Cr-Mn-Ni-Zn-As- <mark>Gd</mark> -Hf-W
< 0.05 mg/g (50 ppm)	Li-Be-V-Ge-Se-Y-Nb-Mo-Pd-Sn- Sb-Te-La-Ce- <mark>Sm</mark> -Ho-Tm-Yb-Lu- Ta-Re-Pt-Hg-Th-Ru

Nuclear Energy Division - Marcoule RadioChemistry & Processes Department