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INTRODUCTION

MENDEL [1, 2] is the new generation depletion code
system in CEA. It offers iso-capacity with the French current
industrial fuel cycle code system DARWIN/PEPIN2 [3].

It can be used as a fuel cycle study stand alone code
system to compute reactor cycle interest outputs: isotopic
concentrations, masses, activities, decay heat, particle spectra...
MENDEL also provides its depletion solvers to both Monte
Carlo TRIPOLI-4 R© [4] and deterministic APOLLO3 R© [5]
transport code systems.

As it is the fundamental physical quantity, one needs to
compute accurately the isotopic densities, solving Bateman
equation [6]. MENDEL depletion solver was based originally
on a 4th order Runge-Kutta scheme or a Euler scheme, both
with a separate treatment for the calculation of saturated iso-
topes. Euler method, less efficient, will not be treated in this
paper. In order to compute in the same way all isotopic densi-
ties, an algorithm based on Chebyshev Rational Approxima-
tion Method [7] (CRAM) was recently added to the MENDEL
solvers.

The purpose of this paper is to present the first results
of MENDEL’s CRAM solver. They will be compared with
MENDEL Runge-Kutta solver, and the lacks and advantages
of both methods will be discussed.

BATEMAN EQUATION SOLVERS

If we consider a material submitted to a neutron flux φ(t),
the evolution in time of the nuclei densities Ni(t) is described
by Bateman [6] equation:
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with:
λi the radioactive decay constant of nuclide i,
τi,i =

∫
E σ

d
i (E)φ(E, t)dE the global disappearance reac-

tion rate by neutronic reactions,
b j,i the radioactive decay branching ratio from father nu-

clide j to daughter i,
τr

j,i =
∫

E σ
r
jφ(E, t)dE the neutronic reaction rate from

nuclide j to nuclide i with reaction r,
γk,i the independent fission product yields from fissile

nuclide k to fission product nuclide i,
τ

f
k the fission reaction rate of fissile nuclide k.

Bateman equation (1) can be written in matrix form:
dN
dt

(t) = A(t)N(t)

N(0) = N0

(2)

Runge-Kutta method

4th order Runge-Kutta [8] method is the historical way
to compute Bateman equation in both DARWIN/PEPIN2 and
MENDEL code systems. This method offers the advantage of
taking into account the non-constant form of matrix A(t).

In MENDEL, matrix A(t) can be considered constant,
linear or quadratic in time.

Time step between two flux updates is divised in several
time steps to ensure both numerical stability (using a CFL con-
dition) and accuracy. This sub-division is done automatically
by the code. If we take into consideration all 2631 nuclei of the
MENDEL standard full depletion chain for under irradiation
depletion, it leads to very small time steps, and the time con-
sumption of such a method would be too important. In order
to solve this problem, we split nuclides between saturated and
non-saturated isotopes. Non-saturated isotopes are computing
using the Runge-Kutta 4th order scheme with an adequate
sub-division of time step. Saturated isotopes are computed
using a specific algorithm.

The aim of the implementation of a CRAM solver in
MENDEL is to compute all nuclei with the same algorithm.

CRAM method

When the depletion matrix is considered constant between
two neutron flux calculations, A(t) = A and equation (2) reads:

N(t) = exp (A∗(t − t0)) N(t0) (3)

With this assumption, it is possible to use matrix expo-
nential methods. Among them, CRAM algorithm enables to
compute all nuclides without segregating the saturated ones.
As a first step in using such a method, we implemented in
MENDEL the CRAM method using the Incomplete Partial
Fractions method (IPF), as detailed in [7].

CRAM is based on a rational fraction approximation:

exp (A∆t) = α0

k/2∏
l=1

(
I + 2<

(
αl (A∆t − θlI)−1

))
(4)

Both Runge-Kutta and CRAM methods will be described
more precisely in the full paper.



COMPARISONS BETWEEN BOTH METHODS

Full paper will establish a precise comparison between
Runge-Kutta and CRAM schemes for solving the Bateman
equation .

All data provided in this abstract are computed using
a 2631 nuclei depletion chain based on JEFF-3.1.1 nuclear
data. MENDEL uses neutronic data (multigroup neutron
fluxes and multigroup self-shielded cross-sections) issued
from APOLLO3 R© [5] transport code. The communication
between codes is done through a HDF5 format file (with the
named MPO for “Multiple Parameters Outputs”).

Results on accuracy

For stability and positivity issues, we compare here
CRAM order-16 and Runge-Kutta order-4 methods. CRAM
decomposition is done once per user time step (once between
two flux updates) while Runge-Kutta automatically sub-divise
this time step.

When using the OCDE-NEA benchmark described in [9],
we obtain very close results between Runge-Kutta and CRAM
algorithms, as shown in Figure 1. The discrepancy shows
more or less the Runge-Kutta scheme error, which is around
10−4, when CRAM accuracy is roughly 10−n, where n is the
CRAM method order.

We used several options to predict the number of saturated
nuclei considered in the Runge-Kutta scheme. Value satura-
tion 100 corresponds to the standard industrial assumptions
used in MENDEL (default value). We observe that the mode
of the discrepancies distribution is around 3.10−3% (3.10−5

on the graph, as normalization is done to 1). When reducing
the number of saturated isotopes, by computing more of them
with the Runge-Kutta method, we observe a huge improve-
ment of the adequateness between CRAM and Runge-Kutta
(saturation 10000, in blue bars).

The reduction of the number of saturated nuclei leads to
an increase of calculation time for the Runge-Kutta method, as
shown in Table II. Indeed, by adding new nuclei, the infinite
norm of the non-saturated nuclei depletion matrix A will in-
crease. This norm is inversely proportional to the Runge-Kutta
scheme elementary time step. By increasing the number of
elementary steps, time consumption will increase.

Fig. 1. Relative discrepancy between concentrations computed
by CRAM and RK4 with constant reaction rates over time.
Relative discrepancy is normalized to 1.

Those results prove the global efficiency of CRAM

method to compute all nuclei concentrations, as well as the ap-
parent convergence between CRAM results and Runge-Kutta
results were number of saturated nuclei tends to zero.

Isotopic density positivity

Nevertheless, with no subdivision of the time steps, con-
centrations at the end of CRAM algorithms can become nega-
tive for some nuclei.

This problem, as been proved inherent to CRAM method,
which do not ensure the positivity of the outputs. When observ-
ing the CRAM approximation on the real exponential function
for orders 4, 8 and 16, we obtain the results shown in Figure 2.

Fig. 2. Relative discrepancy between concentrations computed
by CRAM and RK4 with constant reaction rates.

Each vertical asymptote corresponds to a sign change
in the CRAM approximation, while the exponential itself is
positive. Those sign changes correspond to small exponential
values.

It means in particular that, for any order of the CRAM
approximation, if x is negatively big enough, the approxima-
tion of its exponential value exp(x) by CRAM might become
negative.

In this example, x is equivalent to the A∆t in Bateman
equation. There are two ways to ensure that negative concen-
tration occurrences do not appear :

• reduce the time step to assure that the negative elements
of matrix A∆t are small enough,

• increase the order of CRAM approximation.

Both those ways have been successfully tested.
In Table I, we give the number of negative concentrations

occurrences in a 2631 nuclei depletion chain for one step
of time in an UOX PWR fuel cell. This example is quite
relevant for the global trend, but readers need to beware that
the 16th order CRAM method do not automatically ensure the
concentration positivity.

Most authors consider that negative concentrations are
small enough to put them equal to zero. We decided for
the moment to let the negative occurrences in MENDEL at
intermediate time steps and put them equal to zero only at the
end of calculation. Work for an automatic and robust choice for
the number of time steps and order of CRAM approximation
to ensure the positivity of all concentrations is still undergoing.



CRAM order 1 sub-step 2 sub-steps 10 sub-steps
order 4 114 40 0
order 8 10 0 0
order 16 0 0 0

TABLE I. Number of negative concentrations in one call to
Bateman solver, for a 2631 nuclei depletion chain example.

Time consumption

Using the benchmark described in [9], we obtain, for both
methods, the time consumption shown in Table II.

solver CRAM16 RK4 (sat 102) RK4 (sat 104)
total time 10.39 s 12.26 s 161.52 s

solver time 6.41 s 8.41 s 156.54 s
nb of sat. 0 1624 to 1928 950 to 1394

TABLE II. Time consumption in CPU time. The number
of saturated nuclei in Runge-Kutta scheme varies from one
depletion step to another.

CRAM solver is not to be considered completely opti-
mized in its current implementation in MENDEL.

Those computational times were considered taking only
one CRAM time step between two flux updates.

If we take into account the positivity remarks, CRAM
time consumption might greatly increase.

CONCLUSIONS

CRAM proves to be very efficient to compute all nuclei
without taking apart saturated ones. For nuclei considered as
saturated by the Runge-Kutta scheme when time consumption
is equivalent, accuracy is much better.

Nevertheless, some numerical problems are still not com-
pletely solved, as the choice of the optimal sub-step and/or
approximation order to ensure the concentration positivity in
amount of the calculation. Work on this aspect is still under-
going to obtain a good predictor way of chosing order and
sub-steps.

In conclusion, MENDEL will continue to use CRAM-like
solvers, and improve their efficiency.
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