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Granular compaction and stretched exponentials

Experiments and a numerical stochastic model
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Abstract. We investigate the physical meaning of the characteristic time τ and the exponent β of the KWW
expression widely used to fit the tapped granular compaction.

1 Introduction

The compaction of a non-cohesive granular material (glass
beads, sand, rice for example) under vibrations or verti-
cal tapping is often well represented by a stretched expo-
nential function [1], inspired by the Kohlrausch-Williams-
Watts (KWW) relaxation model:

C(t) =
φ∞ − φ(t)
φ∞ − φ0

= e−(t/τ)β (1)

In this expression, τ is a characteristic time, and β an ex-
ponent. While other empirical expressions are proposed in
the literature [2–4], we will only focus on the expression
(1) throughout this paper with aim of providing a physi-
cal meaning to τ and β using a stochastic model and some
experiments.

Through simple analytical calculations, it can be first
shown that τ is the time where the curve φ(ln t) exhibits an
inflexion point in a log-lin space. At this particular time
t = τ, the packing fraction is φ∗ = φ∞ − (φ∞ − φ0)/e, and
the exponent β is proportional to the slope of the φ(ln t)
curve:

β =
e

φ∞ − φ0

(
dφ

d ln t

)
t=τ

(2)

Hence β can be interpreted as a logarithmic rate of com-
paction, i.e. the rate of increase of φ with the logarithm
of t. A graphical meaning of β can also be found when
plotting Y as a function of ln t,

Y = ln
(
ln

1
C

)
= β ln t − β ln τ. (3)

In these axis, the expression (1) is then a straight line of
slope β.

We suggest in this paper a simple one-dimensional
stochastic model of compaction to understand the physi-
cal origins of τ and β. Moreover, the « universality » of
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the KWW relaxation expression may be questioned when
the granular material exhibits a cohesive property. Widely
used in the industry, cohesive powders are often difficult to
handle and transport. A cohesive powder usually presents
a high angle of repose and a low bulk volume fraction.
The cohesiveness of a powder may be measured through
its ability to flow under gravity, and this ill-defined "flowa-
bility" is often described by the Hausner ratio IH , the ratio
of the the tapped bulk density of the powder over the freely
settled bulk density [5]. A Hausner ratio greater than 1.25
is considered to be an indication of weak flowability.

It is thus interesting to trial the role of cohesion on
the compaction curve, with an extension of the stochas-
tic model, and also with some experiments on a cohesive
powder under vibrations.

2 Stochastic model

2.1 Non cohesive model

We first describe here a simple stochastic model to simu-
late the compaction of a non-cohesive granular material.
the model is a set of N unit grains shared out on a dis-
cretized one-dimensional space of size H0 bounded with a
static grain at the bottom z = 0 (see Fig. 1a). The initial
linear fraction is φ0g = N/H0 and we write φ∞g = 1 the
maximum packing fraction. The free spaces between two
consecutive grains model the pore space between physical
grains and are of the same order of magnitude as the grain
volume [6].

At each time step, all the grains are tested in a random
order. For each grain a random number r determines its
ability to move: if r 6 pg, it may move down of a space
unit only if the space below is free. The grain motion prob-
ability pg is governed by the packing fraction as

pg(φg) =
φ∞g − φg

φ∞g − φ0g
, (4)

which is the ratio of the free volume [7] at time t by the
free volume at time t = 0. Many other expressions of this
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Figure 1. (a) Sketch of the non-cohesive model with individual
grains only. From t = 0 to t1, the green-labeled grain is allowed
to move downwards whereas the red-labeled grain can not move.
(b) Sketch of the cohesive model with 6 clusters containing 9
grains each. The blue-labeled cluster may move down of a dis-
tance of its size (from t = 0 to t1) or of the available space (from
t1 to t2).

probability (also named mobility) are available in the liter-
ature [7, 8] are derived from statistical physics principles,
but we prefer an expression which expresses a decrease
of this probability from the initial state (φ0g) to the final
state (φg∞) in the simplest way. We checked that the or-
der of tests of the N grains has no influence on the global
dynamics. At the end of the loop on the N grains, the
global packing fraction φ(t) = N/H(t) is simply computed
with the height H(t) of the highest grain of the set at time
step t. The computation stops after a predefined number
of time steps. The system obviously does not evolve any-
more when the packing fraction has reached its maximum
limit φ∞g = 1. To avoid random fluctuations on the results,
several runs were averaged before presenting the results.

A first example of result of this model is shown on
Fig. 2 where the height of the packing is plotted in a log-lin
space (blue curve). During the process, a compaction front
is uprising. This front is located at Hc(t), and the grains
below Hc are at the maximum packing fraction φ∞g. If we
assume that the packing fraction above Hc is a constant
value φm = φ0, the front location must be

Hc(t) =
N
φ(t)

φ(t) − φ0

φ∞ − φ0
(5)

Looking at the dashed curve in Fig. 2, this assumption
seems to be checked at any time.

Simulated compaction curves averaged on 20 000 runs
are shown in Fig. 3 for different initial packing fractions
φ0 and for various representations. From these data, we
can compute the characteristic time T and the logarithmic
compaction rate b defined by(

d2φ

d(ln t)2

)
t=T

= 0, b =
e

φ∞ − φ0

(
dφ

d ln t

)
t=T

(6)

These compaction curves are compared with the KWW
expression, and we can notice that the numerical result
(ln t,Y) is not a straight line at all time, the stretched ex-
ponential expression does not completely fit the numerical
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Figure 2. Height of the modeled packing H(t) (red curve) nor-
malized by the initial height H0, height of the compacted grains
Hc(t) (blue curve), compared with expression 5 (black dashed
line). The model parameters are N = 250, φ0 = 0.9 from an
average of 20 000 runs.
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Figure 3. Simulation results (colored continuous lines) for
N = 250 grains, averaged on 20 000 runs. Each curve is fitted
by Eq. 1 (dashed black line) (a) Compaction curves for three dif-
ferent initial conditions. The star symbols indicate the inflexion
points at time t = T , (b) Same data in the (ln t,Y) space.

data, especially at short time. However, around t = T
(indicated by the stars), the numerical data are fairly well
approximated by the KWW expression, showing that τ is
indeed a good approximate of T and β ≈ b. Varying both
φ0 and N, this model shows that the characteristic time is
expressed by

T = N
(
φ∞g − φ0g

φ0g
+ A

)
, φ0g < φ∞g (7)

with a fitting parameter A = 0.6, and the logarithmic com-
paction velocity

b = 0.34
φ0g

φ∞g
+ A, φ0g < φ∞g. (8)

The characteristic compaction time is thus governed by the
number of grains N. The ratio φ0g/φ∞g is also a governing
parameter for T and β.



2.2 Cohesive model

The previous model can be extended for a cohesive gran-
ular material. the cohesive granular system is modeled
as a set of N unit grains shared out between Nc clusters,
each cluster containing n grains. As previously, the grains
and clusters are located on a discretized one-dimensional
space of size H0 bounded with a static grain at the bot-
tom z = 0. The initial state is prepared first by placing
randomly the clusters of even size n/φ0g without overlap,
with a linear fraction of clusters φ0c. Then the grains are
randomly placed inside each cluster with a linear fraction
φ0g. The initial global packing fraction is then φ0 = φ0cφ0g.
At each time step, the particles and the clusters may move
according to the motion probability laws

pc(φc) =
φ∞c − φc

φ∞c − φ0c
, pg(φg) =

φ∞g − φg

φ∞g − φ0g
(9)

where subscript c is for clusters, g for individual grains,
φc(t) is the cluster linear fraction, and φg(t) is the linear
fraction of grains inside the clusters.

A representative result of the simulation is given in
Fig. 4. The compaction curve shows an obvious two-
stages evolution. The first stage corresponds to the fast
compaction of the clusters while the second stage corre-
sponds to the compaction of the individual grains. This ap-
proach clearly shows that two separate characteristic times
Tc and Tg are present, where the subscripts c and g stand
for clusters and grains. As for the non-cohesive model,
the characteristic times are defined through the inflexion
points of the φ(log t) curve, and scale on the number of
clusters or individual grains,

Tc = Nc

(
φ∞c − φ0c

φ0c
+ A

)
(10)

and

Tg = N
[

A
2

exp
(
φ∞g − φ0g

A/2

)]
. (11)

Whatever the model parameters (φ0c, φ0g, N, n), the
numerical results can be well fitted by an extension of the
stretched exponential function expression with two expo-
nentials:

φ = φ∞ − (φp − φ0)e−(t/τc)βc
− (φ∞ − φp)e−(t/τg)βg (12)

with two time-scales τc and τg, two exponents βc and βg
and a plateau packing fraction φp (See Fig. 4a) . The fit-
ted characteristic times τc and τg are again very close to
the computed times Tc and Tg, and the exponents βc and
βg may be interpreted as logarithmic compaction rates for
clusters and grains respectively.

3 Experiments

The results from the stochastic model are compared with
compaction experiments with an experimental setup based
on a horizontal vibration of a vertical tank of square sec-
tion 15×15 mm2. A first set of experiments was made with
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Figure 4. Simulation result for a modeled cohesive granular ma-
terial. The parameters are N = 1250, n = 50, φ0c = φ0g = 0.5.
(a) volume fraction as a function of time in a log-lin space (blue
curve) and the fitted expression (12) (black dashed line). The
stars indicate the Tc and Tg characteristic times. (b) Same data
plotted as Y = ln(ln(1/C)) as a function of ln t.
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Figure 5. Experimental results of the compaction of a glass bead
assembly for different initial height. The red lines are the KWW
expression (1). Insert: the fitted characteristic time τ as a func-
tion of the initial volume fraction.

glass beads of 130 µm, a non-cohesive granular material
(IH = 1.08). For these experiments, φ0/φ∞g ≈ 0.95. While
it is difficult to compare the 3 dimensional experimental
results with 1 dimensional numerical results, we were able
to test one of the main result from the stochastic model.
By varying the mass of grains in the shaken tank,

A second set of experiments was conducted with a co-
hesive UO2 powder. This powder is made of grains of
d = 30 µm diameter with rough surfaces and a Hausner
ratio IH = 1.53. The figure 6 presents three sets of data
for three different filling heights of the tank. Starting at a
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Figure 6. Experimental results of the compaction of a cohe-
sive powder under vibrations (100 Hz, 7g). The red lines are
the KWW2 expression (12).

Figure 7. Image of the UO2 powder during the vibration process.
The arrows indicate macro-cavities near the front plate. Only the
top of the tank is shown here.

low initial volume fraction (the UO2 grains have an intrin-
sic porosity), a first increase occurs at t ≈ 103 cycles of
vibrations. A direct observation of the system during the
beginning of the vibration process shows the existence of
macro-cavities rising upwards at least near the front plate
of the tank, and these large void structures may exist also
in the bulk (Fig. 7). For a larger time, a second stage of
compaction occurs at t ≈ 104 cycles.

Despite a long experimental time (106 cycles), we did
not observe a saturation of the volume fraction, the limit
φ∞ seems to be ill-defined in our experiment. However,
the double exponential (12) fits well the experimental data,
and we were able to extract the characteristic times τc and
τg as a function of the number of particles in the system.
The insert of Fig. 6 seems to show a linear trend between
the characteristic times and the height of the initial pack-
ing.

4 Conclusions
With a simple stochastic model we demonstrate that the
characteristic time of compaction is proportional to the

number of moveable objects. This result seems to be con-
firmed by experiments on two examples of granular mate-
rial: a non-cohesive glass beads assembly, and a cohesive
powder. Through this work we do not agree with the pre-
vious work of Hao [9, 10] where the time of compaction
is related to the inverse of the mass of granular material.

A two-stages compaction evolution has already been
proposed by Barker and Mehta [11] but here we associate
the first stage of compaction with a collective motion of
grains, and the second stage of compaction with the indi-
vidual motion of the grains.
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