

An in-depth analysis of Minor Actinide Fission Chambers Measurements in the FCA IX Experimental Programme.

G. Rimpault, V. Huy

► To cite this version:

G. Rimpault, V. Huy. An in-depth analysis of Minor Actinide Fission Chambers Measurements in the FCA IX Experimental Programme.. ND2016, Joint Research Centre, European Commission, Sep 2016, Bruges, Belgium. cea-02438371

HAL Id: cea-02438371 https://cea.hal.science/cea-02438371

Submitted on 14 Jan2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An in-depth analysis of Minor Actinide Fission Chambers Measurements in the FCA IX Experimental Programme.

Gérald Rimpault^{1,*} and *Virginie* Huy¹.

¹CEA, DEN, DER, SPRC, Cadarache, F-13108 St Paul-Lez-Durance, France

Abstract. FCA is a zero power facility located at Tokai in Japan. The FCA-IX experimental programme exhibits 7 different cores with a variety of different neutron spectra. This has been achieved through the use of different moderators and different Uranium enrichments (93% for most of them except FCA-IX-7 where it is 20%). Fission Chambers of seven different nuclides: ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am and ²⁴⁴Cm were used to measure ratios of fission reaction rate. Mass quantitative determinations of the electrodeposited nuclides were carried out through spectral analysis using a surface barrier silicon detector and a pulse height analyzer. The quantitative determination errors for electrodeposited nuclides were 3% for ²⁴⁴Cm and 1.5% for the other.

Uncertainties are calculated with COMAC V1 covariances associated for the JEFF32 library, with their own covariances for ENDF-BVII.1 and for JENDL4.0 libraries. The critical mass uncertainties are dominated by ²³⁵U capture contribution for JEFF3.1.1, JEFF3.2 and ENDF-BVII.1. However, uncertainties with JENDL4.0 are much lower due to a much reduced ²³⁵U capture contribution.

Calculated Uncertainty is mainly due to Nuclear Data Uncertainties and can be split into direct effect (Minor Actinide cross section) and indirect effect (through flux shape). The indirect effect is an important contribution to the total calculated effect (except for ²³⁸Pu): This is mainly due to ²³⁵U capture and that limits the possible feedback on the cross sections of minor actinides that have been measured through fission chambers. However, the fission rates of ²³⁷Np, of ²⁴³Am and ²⁴⁴Cm have a direct effect on significantly higher than those of the ²³⁵U and ²³⁹Pu in contrast to the ²³⁸Pu, ²⁴²Pu and the ²⁴¹Am. The use of criticality measurements of these 7 cores can help reduce the magnitude of the indirect effect of ²³⁵U and therefore allow closer access to effective fission sections of the measured actinide fission chambers. All data sets exhibit the same trends with ²⁴²Pu and ²⁴⁴Cm fissions too large by around 10% while ²⁴¹Am seems too small by 7%.

1 Introduction

FCA is a zero power facility located at Tokai in Japan. The FCA-IX experimental programme exhibits 7 different cores with a variety of different neutron spectra [1]. Fission Chambers of seven different nuclides: ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am and ²⁴⁴Cm were used to measure ratios of fission reaction rate [2]. This is a good opportunity for identify the correctness of Minor Actinides Fission cross sections.

2 FCA IX plant layout

FCA is a zero power facility located at Tokai in Japan. The FCA-IX experimental programme exhibits 7 different cores with a variety of different neutron spectra. This has been achieved through the use of different moderators and different Uranium enrichments (93% for most of them except FCA-IX-7 where it is 20%). In the following Figure 1, we can see the

Figure 1. Normalised FCA-IX spectra

Given the relative similarities between most of the spectra, only FCA IX-1, FCA IX-6 and FCA IX-7 results have been reported in the following.

Corresponding author: gerald.rimpault@cea.fr

3 Criticality

Experimental values for criticality are given by JAEA [1]. Results of the analysis using TRIPOLI4 (T4) [3] and JEFF3.2 [7] are given in the following Table 1:

Table 1: E-C values for FCA IX critical masses using
TRIPOLI4 & JEFF3.2

	FCA IX-1	FCA IX-6	FCA IX-7
Experiment	1.00340	1.00250	1.00220
🗆 exp (pcm)	240	60	70
T4 JEFF32			
Heterogeneous	1.01438	1.01081	1.01122
Heterogeneous	1.01438 7	1.01081 7	1.01122 6
Heterogeneous T4 (pcm) E-C (pcm)	1.01438 7 -1079	1.01081 7 -820	1.01122 6 -890

One can see that there is a significant bias between JEFF3.2 calculations and experiments.

E-C as well as uncertainties on Keff have been calculated for different libraries. These use COMAC V1 covariances [6] for the JEFF32 library [7] and their own covariances for ENDF-BVII.1 [8] and for JENDL4.0 [9] (Table 2).

Table 2: E-C values for FCA IX critical masses using different libraries and associated covariances

E-C (pcm)	FCA IX-1	FCA IX-6	FCA IX-7
JENDL4.0	-1079	-307	-290
ND Uncertainty	724	606	811
ENDF-BVII.1	-548	-706	-1022
ND Uncertainty	2670	1789	1822
JEFF3.2	-1079	-820	-890
ND Uncertainty	2639	2143	2334

The critical mass uncertainties are dominated by ²³⁵U capture contribution for both JEFF3.2 and ENDF-BVII.1. However, uncertainties with JENDL4.0 are, in general, much lower due to a much reduced ²³⁵U capture contribution. Since C-E values are quite low with both JEFF3.2 and ENDF-BVII.1, a ²³⁵U capture seems the major suspect in the too high calculated reactivity level. Current trends on criticalities advocate for an increase of ²³⁵U capture for JEFF3.2 and ENDF B VII.1. An assimilation technique will help identify which energy region is concerned.

4 Reaction Rates

Fission Chambers of seven different nuclides: ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am and ²⁴⁴Cm were used to measure ratios of fission reaction rate. Mass quantitative determinations of the electrodeposited nuclides were carried out through spectral analysis using a surface barrier silicon detector and a pulse height analyzer [2]. The quantitative determination errors for electrodeposited nuclides were 3% for ²⁴⁴Cm and 1.5% for the other. Figure 2 shows how these fission chambers are designed.

Figure 2: FCA-IX fission chambers

Dimensions in mm

The detailed analyses of the Minor Actinide fission chambers measurements performed during the FCA-IX programme have been done using ERANOS2.3 [4]. Associated to the C/E values are the experimental uncertainty and the calculated one. This last one is dominated by nuclear data uncertainties and has been obtained with the sandwich formula using covariance matrices associated to JEFF3.2 libraries (COMAC V1) [6], and their own ones for ENDF-BVII.1 and JENDL4.0 libraries. Sensitivities were obtained with the GPT method [5] in ERANOS [4] (Table 3).

JEFF3.2	FCA IX-1	FCA IX-6	FCA IX-7
IS_F37/F49	0.976	0.956	0.953
Exp Unc	0.022	0.019	0.024
Calc Unc	0.041	0.04	0.052
Total Unc	0.046	0.044	0.057
IS_F48/F49	1.144	0.978	0.987
Exp Unc	0.035	0.026	0.026
Calc Unc	0.018	0.02	0.023
Total Unc	0.039	0.033	0.035
IS_F42/F49	1.117	1.089	1.081
Exp Unc	0.022	0.019	0.024
Calc Unc	0.034	0.03	0.047
Total Unc	0.041	0.035	0.053
IS_F51/F49	0.954	0.927	0.909
Exp Unc	0.022	0.024	0.024
Calc Unc	0.031	0.027	0.05
Total Unc	0.038	0.036	0.055
IS_F53/F49	0.948	0.928	0.929
Exp Unc	0.022	0.024	0.024
Calc Unc	0.091	0.091	0.099
Total Unc	0.093	0.094	0.102
IS_F64/F49	1.092	1.13	1.091
Exp Unc	0.036	0.038	0.037
Calc Unc	0.052	0.053	0.067
Total Unc	0.063	0.065	0.077

Table 3: C/E values for FCA IX fission rate ratios using JEFF3.2

This way of doing helps tracking the origin of nuclear data uncertainty in the calculation of measured fission rate ratios.

The fact that these cores are all enriched Uranium introduce an indirect effect due to the capture cross section of ²³⁵U and that limits the possible feedback on the cross sections of minor actinides that have been measured through fission chambers. However, the fission rates of ²³⁷Np, of ²⁴³Am and ²⁴⁴Cm have a direct effect significantly higher than those of the ²³⁵U and ²³⁹Pu in contrast to the ²³⁸Pu, ²⁴²Pu and the ²⁴¹Am for which information is diluted.

One can illustrate this with use of different covariance sets.

The use of COMAC V1 covariances for FCA IX $^{237}Np/^{239}Pu$ reaction rate ratio using the JEFF3.2 library gives the following results (Table 4).

Table	4:	Uncertainty	breakdown	for	FCA	IX-1
$^{237}Np/^{2}$	³⁹ Pu	reaction rate r	atio using JE	FF3.2	2	

COMAC V1	CAPTURE	ELASTIC	INELASTIC	NU	FISSION	N,XN	TOTAL
Fe54	0.006	0.016	0.008	-	-	0.000	0.019
Fe56	0.040	0.071	0.128	-	-	0.000	0.152
Cr52	0.003	0.003	0.010	-	-	0.000	0.011
Ni58	0.012	0.012	0.007	-	-	0.000	0.018
Ni60	0.005	0.005	0.003	-	-	0.000	0.008
C0	0.007	0.425	0.243	-	-	-	0.489
Np237	0.000	0.000	0.000	0.000	2.911	0.000	2.911
Pu239	0.000	0.000	0.000	0.000	1.588	0.000	1.588
U235	2.256	0.192	0.374	0.007	0.276	0.002	2.312
U238	0.282	0.074	0.117	0.015	0.126	0.000	0.339
TOTAL	2.274	0.478	0.479	0.016	3.330	0.002	4.089

 237 Np and 239 Pu are direct contributions to the total uncertainty while 235 U is an indirect effect to the total uncertainty. The situation is quite different for the same reaction rate ratio 237 Np/ 239 Pu when using JENDL4.0 library (Table 5).

Table 5: Uncertainty breakdown for FCA IX-1²³⁷Np/²³⁹Pu reaction rate using JENDL4.0

JENDL4.0	CAPTURE	ELASTIC	INELASTIC	NU	FISSION	N,XN	TOTAL
Fe56	0.047	0.085	0.490	-	-	0.000	0.500
Cr52	0.001	0.012	0.029	-	-	0.000	0.031
Ni58	0.005	0.008	0.016	-	-	0.000	0.019
Ni60	0.001	0.002	0.007	-	-	0.000	0.007
Np237	0.000	0.000	0.000	0.000	1.554	0.000	1.554
Pu239	0.000	0.000	0.000	0.000	0.538	0.000	0.538
U235	0.395	0.054	0.626	0.007	0.642	0.005	0.981
U238	0.080	0.102	0.066	0.016	0.010	0.004	0.147
TOTAL	0.406	0.146	0.798	0.017	1.766	0.006	1.985

One can notice that in this case, ²³⁵U contribution to the total uncertainty is much reduced and that one can now derive clear trends on ²³⁷Np fission cross-sections.

Given this, one can derive trends on cross sections being measured.

The C/E values for FCA IX fission rate ratios using JEFF3.2 are presented in the following Figure 3.

Figure 3: C/E values on FCA-IX fission rate ratios using JEFF3.2

Similarly, the C/E values for FCA IX fission rate ratios using JENDL4.0 and ENDF-BVII.1 are presented respectively in Figures 4 and 5.

Figure 4: C/E values on FCA-IX fission rate ratios using JENDL4.0

Figure 5: C/E values on FCA-IX fission rate ratios using ENDF-BVII.1

All data sets exhibit the same trends with ²⁴²Pu and ²⁴⁴Cm fission cross sections too large by around 10% while ²⁴¹Am fission cross section seems too small by 7%. Fission cross sections of ²³⁷Np and ²⁴³Am seems correct, while statements on ²³⁸Pu fission cross section has to wait an integral data assimilation work before drawing any conclusion.

5 Conclusions

7 FCA-IX cores offer a variety of neutron spectrum thanks to different moderators and enrichments. FCA-IX-1 to FCA-IX-6 cores exhibit a 93% 235 U enrichment while FCA-IX-7 has 20% 235 U enrichment.

The fact that these cores are all Uranium enriched cores introduces an indirect effect due to ²³⁵U capture cross section which somehow limits feedbacks on Minor Actinide cross sections being measured through fission chambers at least for ²³⁸Pu, ²⁴²Pu and ²⁴¹Am. This conclusion comes from ²³⁵U covariances as they are associated to JEFF3.2 (named COMAC V1) and ENDFB VII.1 files. The situation is quite different for JENDL4.0 for which ²³⁵U covariances are smaller by a factor 3. The use of experimental keff for these 7 cores can help reducing the magnitude of the ²³⁵U indirect effect of

JEFF3.2 and ENDF-BVII.1 and hence will allow having a refine access to MA fission cross sections though measured fission chambers.

The JEFF3.2 dominant uncertainty contributions are for each individual fission ratios from the nuclide itself (direct effect), ²³⁹Pu (direct effect as used at the denominator) and ²³⁵U (indirect effect mostly capture but also inelastic and fission). For JEFF3.2, ²³⁷Np, ²⁴³Am and ²⁴⁴Cm have a direct effect significantly larger than the other 2 which means that the measurement can be used to validate their fission cross sections.

All data sets exhibit the same trends with ²⁴²Pu and ²⁴⁴Cm fissions too large by around 10% while ²⁴¹Am seems too small by 7%. Although the 7 FCA-IX cores have different neutron spectra, this conclusion stands for all cores.

Acknowledgements go to JAEA who provided the detailed description of the benchmark and corrections to the raw experiments, to NEA who did provide the secretariat of the Expert Group on Improvement of Integral Experiments for Minor Actinide Management (EGIEMAM-II) under which this work has been conducted and EDF for providing funds to support Virginie Huy PhD work. I would like to thank the CEA fast reactor R&D project for supporting these activities.

References

- Masahiro Fukushima, Yasunori Kitamura, Teruhiko Kugo & Shigeaki Okajima (2015): Benchmark models for criticalities of FCA-IX assemblies with systematically changed neutron spectra, Journal of Nuclear Science and Technology, DOI: 10.1080/00223131.2015.1054911.
- Establishment of Benchmark Problems for TRU Fission Rate Ratios of FCA-IX Assemblies, M. Fukushima, A. Oizumi, H. Iwamoto, Y. Kitamura, Ref. JAEA-Data/Code/2014-030
- 3. J. P. Both et al. A survey of TRIPOLI4. In Int. Conf. on Radiation Shielding, 1994, Arlington, USA.
- G. Rimpault and al., "The ERANOS Code and Data System for Fast Reactor Neutronic Analyses", Physor 2002, Seoul, Korea, (2002).
- 5. A. Gandini, "A generalized perturbation method for bilinear functional of the real and adjoint neutron fluxes", Journal of Nuclear Energy, 21:755–765, (1967).
- C. De Saint Jean and al., "Estimation of multi-group cross section covariance for ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Am, ⁵⁶Fe, ²³Na and ²⁷Al", PHYSOR 2012, Knoxville, Tennessee, USA, April 15-20, 2012.
- 7. JEFF-3.2 evaluated data library Neutron data; <u>https://www.oecd-</u>
- nea.org/dbforms/data/eva/evatapes/jeff_32/, 2011
- 8. ENDF-BVII.1, <u>http://www.nndc.bnl.gov/endf-b-</u> <u>7.1.jsp</u>, 2011
- 9. JENDL4.0, JAEA Data Center ; http://wwwndc.jaea.go.jp/jendl/j40/update/index.ph p?order=date_a&filter=ponly, 2012