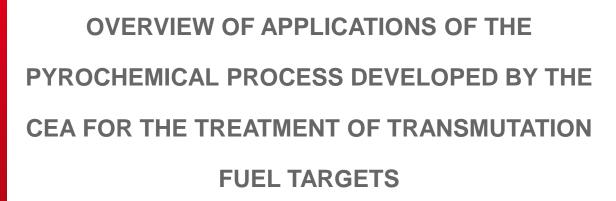


Overview of applications of the pyrochemical process developed by the CEA for the treatment of transmutation fuel targets

E. Mendes, T. Ducasse, Q. Chambon, J. Serp, M. Bertrand

► To cite this version:

E. Mendes, T. Ducasse, Q. Chambon, J. Serp, M. Bertrand. Overview of applications of the pyrochemical process developed by the CEA for the treatment of transmutation fuel targets. 2016 International Pyroprocessing Research Conference, Sep 2016, Jeju, South Korea. cea-02438359


HAL Id: cea-02438359 https://cea.hal.science/cea-02438359

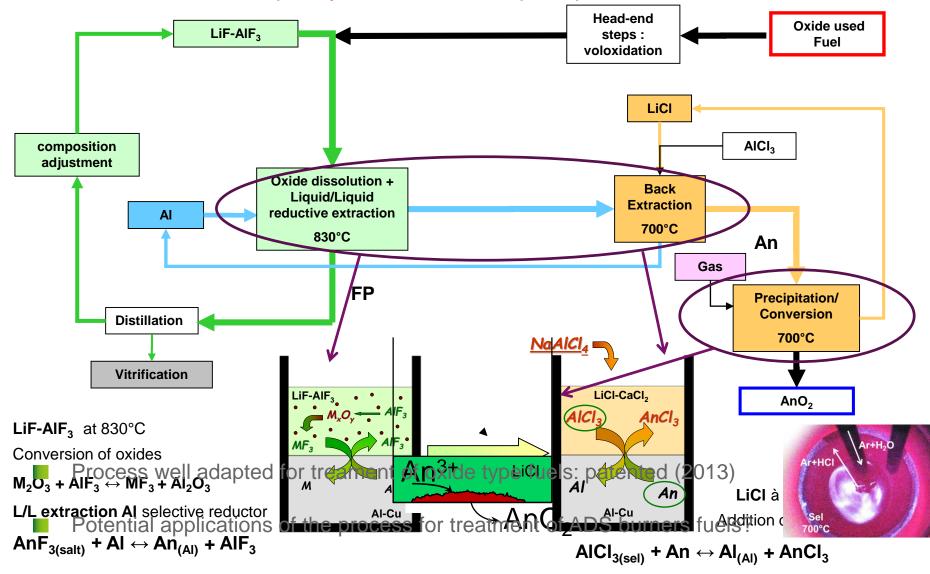
Submitted on 14 Jan2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

rom research to industry

CEA Marcoule / Nuclear Energy Division, RadioChemistry & Processes Department Modelling and Separation Chemistry Service Development of Separation Processes Laboratory

E. Mendes, T. Ducasse, Q. Chambon, J. Serp, M. Bertrand


IPRC 2016 2016 International Pyroprocessing Research Conference 21-23/09/2016 - Jeju (South Korea) I Eric Mendes

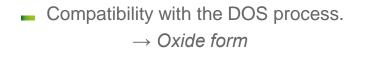
SEPTEMBER 21ST – 23RD 2016

Ceaden outlines

FROM RESEARCH TO INDUSTR

Process developed by CEA: Reductive liquid/liquid extraction in fluoride media

MATERIAL TO BE REPROCESSED


Two types of fuels considered : CERCER and CERMET

CERCER

22 den

- Ceramic matrices, e.g. oxide MgO, ZrO₂...
 - MgO suitable for ADS burners.
 - Reference Composition:

Ref.	Composition	Vol. frac. Mg
FUTURIX	(Pu _{0.5} Am _{0.5})O _{2-∂} -MgO	70%

CERMET

- Metallic matrice.
 - Mo suitable for ADS burners.
 - Composition:

Ref.	Composition	Vol. frac. Mo	Mo/MA Ratio
ITU-5	(Pu _{0.797} Am _{0.198} Np _{0.005}) O _{2-x}	86%	29,3
ITU-6	(Zr _{0.532} Pu _{0.228} Am _{0.124} Np _{0.006}) O _{2-x}	60%	6,1

■ Compatibility with the DOS process: Needs prior conversion of Mo into oxide \rightarrow MoO₂ and/or MoO₃

Assessment requirements:

- Behaviour of matrix material in the process, e.g. dissociation of oxide into the salt and behaviour regarding the reductive extraction by AI.
- **Feasibility** of the reprocessing of surrogate or genuine material
- Influence of matrix material on the extraction efficiency of MA

TREATMENT OF CERCER MATRICES

Ceade∩ Behaviour of MgO IN THE DOS PROCESS

Sintered 4h 1600°C

Open porosity <1%

Dissolution of MgO in LiF-AIF₃ at 830°C

Starting material:

MgO powder \rightarrow solubility limit Pellets \rightarrow dissolution kinetic Sintering: similar to condition as for preparation of CERCER pellets.

Open porosity <1%

Dissociation in the salt:

Mechanism:

Solubility seems to reach a limit: ~3 wt%

 $3MgO + 2AIF_3 \leftrightarrow 3MgF_2 + AI_2O_3$ 3,5 3,0 Kinetics: $V = \frac{dC}{dt} = kA(Cs - C)$ Concentration (% massique) 2,5 2,0 $v = 2,53.10^{-4}$ to 3,13.10⁻⁴ cm³.s⁻¹ 1.0 0,5 MgO powder LiF-AIF₃ MgO Sintered MgO pellet 0,0 Commercial MgO rod (Goodfellow) 100 200 300 400 500 0 DEN/DRCP/SCM 2016 | PAGE 5 Temps (min)

Behaviour of Mg regarding extraction

Theoretical study: Redox standard potential calculations (HSC chemistry)

AI + $3/2F_{2(g)} = AIF_3$ $\Delta_G = -1223,17 \text{ kJ.mol}^{-1} \longrightarrow \Delta E^0 = -4,23 \text{ V vs } F_2$ Mg + $F_{2(g)} = MgF_2$ $\Delta_G = -932,86 \text{ kJ.mol}^{-1} \longrightarrow \Delta E^0 = -4,83 \text{ V vs } F_2$

From thermodynamic approach : No Mg should be reduced by the metallic phase

Experiments

Good agreement with Thermodynamic approach: Al not reductive enough to reduce Mg²⁺

Ceade∩ Impact of MgO ON THE DOS PROCESS

Reprocessing of a non irradiated CERCER pellet

Unirradiated pellet prepared in ATALANTE facility within the FP6 Eurotrans framework program

Experimental conditions:

1/2

Pellet containing 200mg of Pu, 200mg of Am and 325 mg MgO Addition125mg of Nd₂O₃ (simulating FPs)

Prefusion step needed to dissolve the pellet in the salt: due to very high activity

L/L contact 4h at 830°C, sampling after contact. Pu and Am quantified by α and γ spectrometry, Nd and Mg quantification by ICP-MS

Results:

97% of Am and 99% of Pu in the metallic phase after contact (Nd < 5%, Mg < DL). Successful demonstration for reprocessing of CERCER material

Ceaden Impact of MgO ON THE DOS PROCESS

Impact of MgO accumulation in the salt: reuse of salt

- Uranium \rightarrow simulating An behaviour
- Experiments performed :

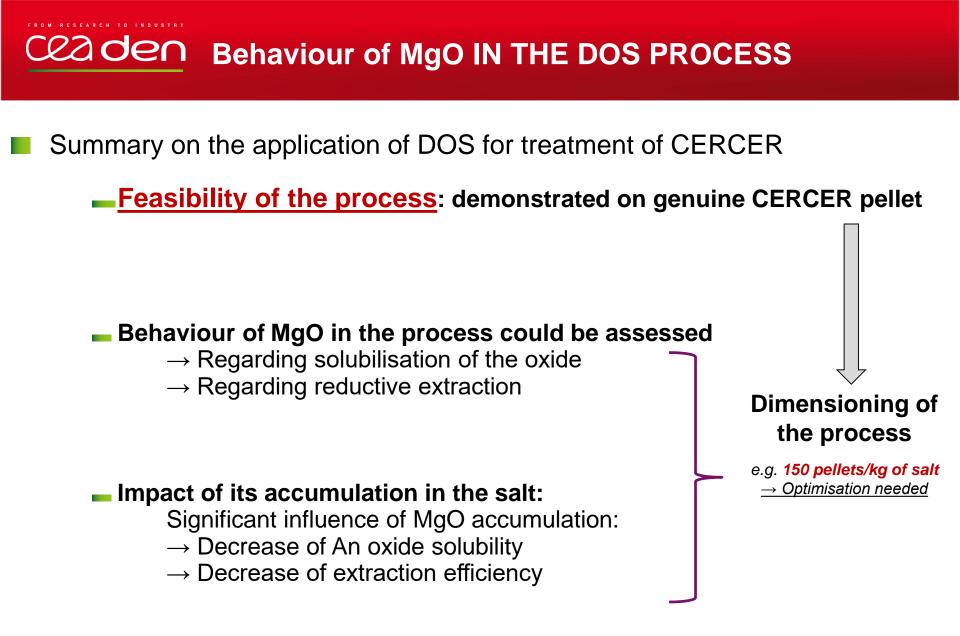
Same amount of U_3O_8 in each experiment (~500mg U)

Progressive addition of MgO in the salt from run 1 to 4: 0 - 13.5 wt%.

MgO: 3wt%. Based on used CERCER pellets, corresponds of reprocessing of 150 pellets/Kg of salt

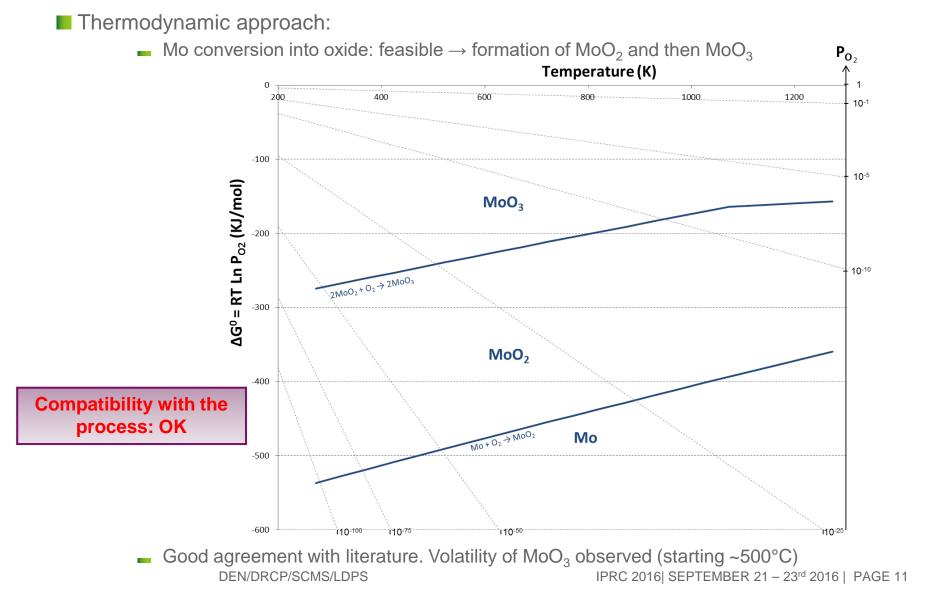
After L/L contact samples of the two phases. U quantified by fluorescence X spectroscopy

			Uranium		
	Run	MgO wt%	Metal phase (%)	Salt phase (%)	Undissolved (%)
j	_1	0	93,6 (± 4,5)	3,3 (±1,8)	3,1 (±6,3)
	2	3	85,9 (±6,5)	1,2 (±0,5)	12,9 (±7)
	3	6	66 (±5,9)	5,8 (±3,7)	28,2 (±9,6)
	4	13,5	45,7 (±1,3)	_	_


U in metal decreases when MgO increase: mainly due to U_3O_8 dissolution decrease.

 \rightarrow Solubilisation affected by excess of oxides in the salt.

Accumulation of MgO: possible change of physical properties of the salt


High contents of non dissolved MgO: strong decrease of extraction efficiency. \rightarrow Accumulation of oxides at the salt/met. Interface + changes of physical properties of the salt (viscosity).

TREATMENT OF CERMET MATRICES

Ceaden Mo conversion into oxide form

Ceaden solubility of mo oxide in the salt

Experiments performed on MoO_2 powder (1 - 4g) in LiF-AlF₃ (65 - 35 mol%) at 830°C first tests on MoO₃ solubility \rightarrow not possible due to high volatility of Mo(VI) 0.12 MoO₂ salt 0.1 %wt of molybdenum in the Two steps variation: 0.08 \rightarrow Increase of concentration \rightarrow Decrease of concentration 0.06 LiF-AIF 0.04 0.02 0 100 200 300 400 $\mathbf{0}$ Time (min) $\frac{3}{4}MoO_2 + AlF_3 = \frac{3}{4}MoF_4 + \frac{1}{2}Al_2O_3$ ΔG_{830°C}= -261,541 kJ/mol

Possible oxidation of Mo^{IV} into Mo^{VI} \rightarrow Volatilisation

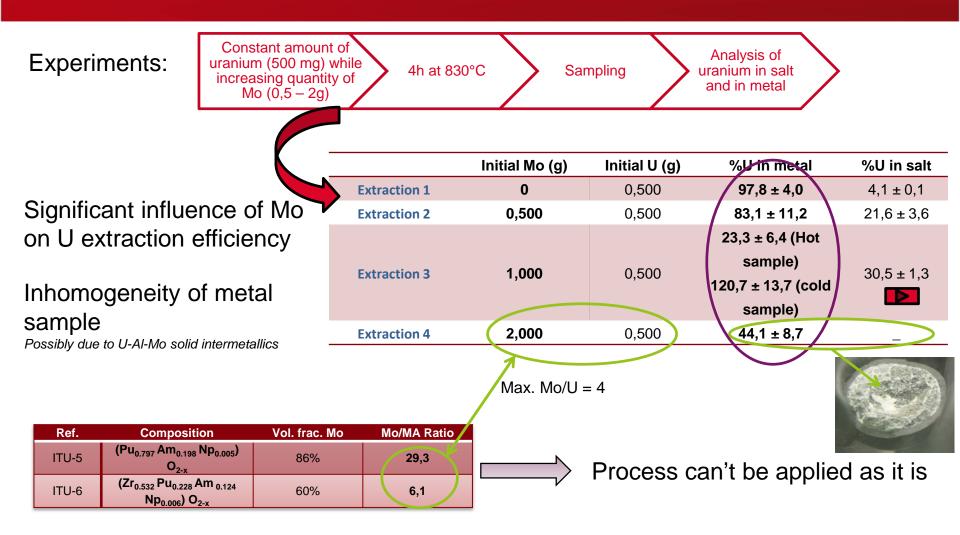
Metallic phase added: L/L contact 4h at 830°C

 $\rightarrow\,$ Sampling of each phase: quantification of Mo

LiF-All	410
•	$M_x O_y \longrightarrow AlF_3$
MF ₃	
м	AI
	Al-Cu

% Mo in metal	% Mo in the salt	%Mo remaining
38,9 ± 2,8	$1,6 \pm 0,4$	59,5 ± 3,2

~40% of Mo in the metallic phase => possible reduction of Mo by Al


	Mo extraction by aluminium: possible mechanism	
Mechanism	Reaction	ΔG (kJ/mol) at 830°C
Direct	$\frac{3}{4} MoO_2 + Al = \frac{3}{4} Mo + \frac{1}{2} Al_2O_3$	-372,338
Indirect	$\frac{3}{4}MoF_4 + Al = \frac{3}{4}Mo + AlF_3$	-604,275
	$\frac{1}{2} MoF_6(g) + Al = \frac{1}{2} Mo + AlF_3$	-599,056

Coextraction of molybdenum together with actinides suspected

60% Mo not measured : Volatility + possible **solid Al-Mo intermetallic** compounds formed

MO INFLUENCE ON U EXTRACTION EFFICIENCY

Molybdenum must be removed prior the DOS process step

Ceaden

DEN/DRCP/SCMS/LDPS

IPRC 2016 | SEPTEMBER 21 - 23rd 2016 | PAGE 14

Ceaden mo oxide volatilisation

From thermodynamic approach, metallic **Mo easily converted into MoO₂ and MoO₃** at high temperature MoO_3 : high volatility \rightarrow **Possibility to remove Mo prior the DOS process** with appropriate thermal treatment At 830°C At 1000°C **TGA** measurements MoO_3 volatilisation: MoO_3 volatilisation: $79.6 \pm 0.8\%$ 99.2% MoO₃ 100 - 200 mg 830 - 1000°C (Ar) 4h theoretical Mo/MA theoretical Mo/MA ratio after treatment **Reference pellet** Mo/AM initial ratio ratio after treatment at 830°C at 1000°C ITU 5 29.3 6.0 0,3 ITU 6 6.1 1,3 0.06 Results obtained with uranium %U in salt Mo/AM %U in metal 4.1 ± 0.1 0 97.8 ± 4.0 83,1 ± 11,2 $21,6 \pm 3,6$ Thermal treatment not sufficient ⇒ Thermal treatment sufficient \Rightarrow DOS process can be applied to CERMET reprocessing DEN/DRCP/SCMS/LDPS IPRC 2016 | SEPTEMBER 21 - 23rd 2016 | PAGE 15

CONCLUSIONS

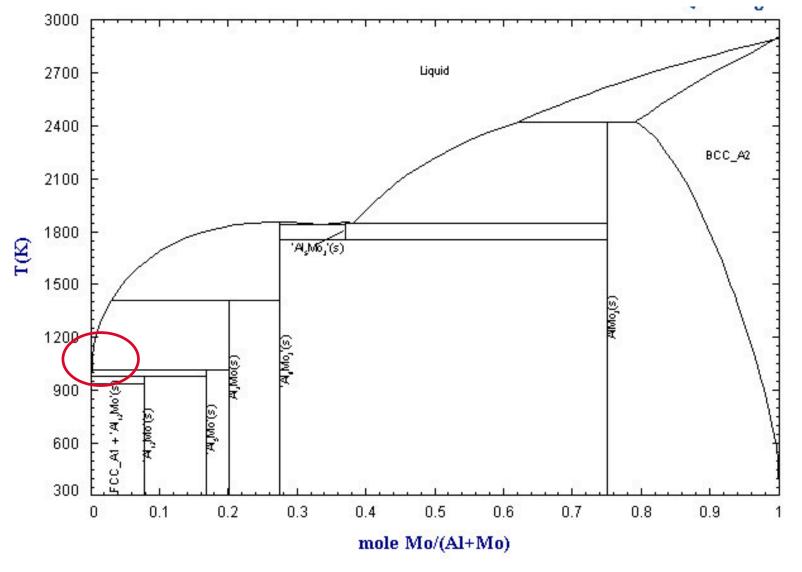
22 den conclusion

CERCER reprocessing

- Process successfully demonstrated on genuine unirradiated pellet
 - Mg remains in the salt \rightarrow No influence on Pu and Am extraction efficiency
- Accumulation of Mg in the process:
 - Significant influence on extraction efficiency of An
 - \rightarrow MgO : 0 3 wt%: no major influence
 - \rightarrow MgO : > 3wt% strong influence

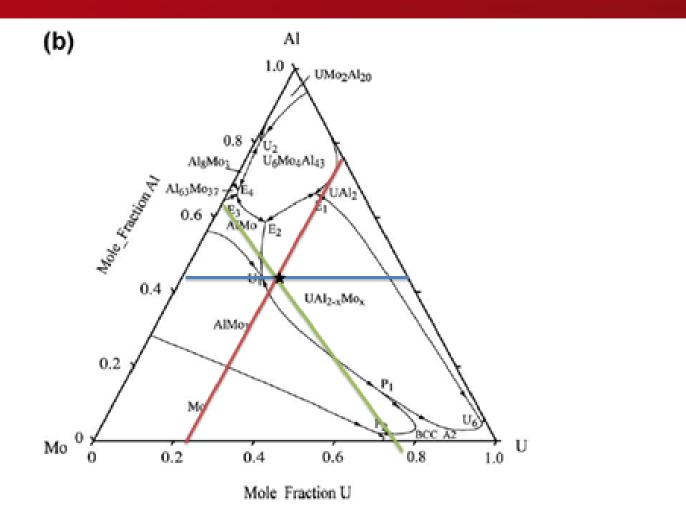
- Dimensioning of the process: Possible treatment of 150 CERCER pellets/Kg of salt
- Further accumulation of MgO: Salt treatment needed
- Process needs to be optimised (use of $Na_3AIF_6 \rightarrow higher \ solubility \ expected$)
- CERMET reprocessing
 - Significant influence of Mo on An extraction efficiency
 - Coextraction of Mo
 - Solid intermetallic U-Al-Mo possibly formed
 - Mo oxides volatility:
 - \rightarrow Thermal treatment at 1000°C volatilises 99.2% of Mo

DOS process can be applied with and additional thermal treatment prior extraction step Mo/volatile FP separation? \rightarrow Refabrication of fresh matrix

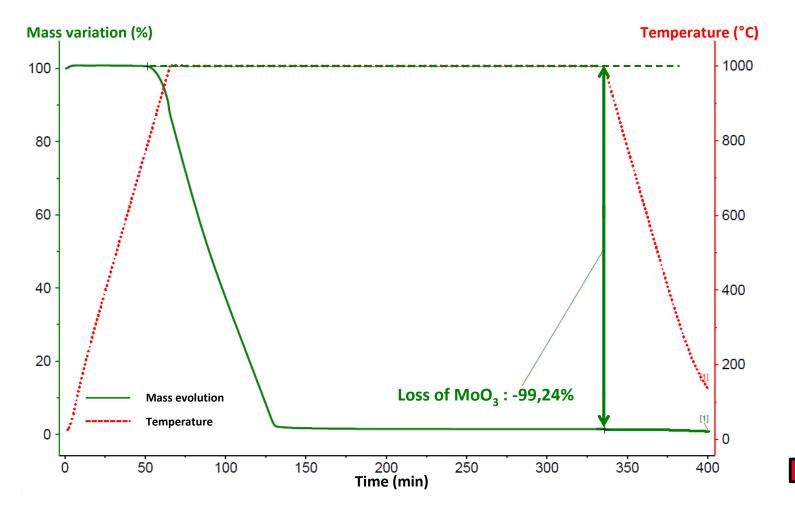

Prior removal of Mo needed

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives	DEN
Centre de Marcoule 30207 Bagnols sur Cèze	DRCP
T. +33 (0)4 66 79 63 11 F. +33 (0)4 66 79 65 67	SCMS
	LDPS


Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

A


Ceaden

X. Zhang, Y.F. Cui, G.L. Xu, W.J. Zhu, H.S. Liu, B.Y. Yin, Z.P. Jin, Thermodynamic assessment of the U-Mo-AI system, Journal of Nuclear Materials 402 p 15-24, **2010**

TGA experiments on MoO₃ volatility

