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INTRODUCTION

Nuclear reactor cores can be deformed by thermal expan-
sion, irradiation effects or during particular accidental tran-
sients. These deformations are likely to impact neutron trans-
port in all reactor types. Fast neutron reactors are nevertheless
particularly sensible to these effects, because of their thermal
features (large temperature gradients, potentially strong tem-
perature variations in case of accident) and the way neutrons
evolve within the core (important role played by leakages in
the neutron balance, weak fraction of delayed neutrons). As a
consequence, in the context of the development of the fourth
generation, methodologies to take into account core distortions
in deterministic neutron transport codes have been developed.

These tools can aim at providing linear feedback coeffi-
cients [1, 2], or to compute the neutron flux. In this last case,
the mesh used can itself be deformed [3, 4] or not [5, 6] (a
geometry projection method is then needed).

In the same time, an important effort is done on multi-
physics coupling techniques, mainly between neutron trans-
port, thermohydraulics and fuel physics. The coupling be-
tween neutron transport and structural mechanics is rarely
considered, simply because less needed. Nevertheless, generic
lessons can be derived from this case.

In this paper, we wish to present what we believe to be
a first step toward a unified finite element solver for neutron
transport and thermomechanics. Using the Newton algorithm,
a complete jacobian matrix, including coupling terms between
finite element discretisations, is written. A very simple appli-
cation is given, on a simplified view of the Godiva experiment
(which was already used in [7, 8] to study the neutron transport
- thermomechanics coupling). Indeed, this kind of coupling
techniques is rarely considered in nuclear reactor physics, but
could lead to substantial improving of calculation time and
robustness.

THE COUPLED EQUATIONS

Common notations

We consider a time-dependent problem, solved with an
implicit time-scheme (Each physic impacts others at current
time-step). Finite elements are used for the three coupled
physics, that is to say neutron transport (diffusion), heat trans-
fer and mechanics.

Heat transfer and neutron transport share the same ele-
mentary functions, noted ξi . Mechanics elementary functions
are noted ξi and are vector quantities with the same dimension

than space. In general, the number of underlinings indicates
the dimension of tensors (one for vectors, two for matrix).

There is no need to give more information about the finite
elements used. The methodology developed here is indepen-
dent of them.

The non-deformed space domain is noted Ω0 , the current
one (deformed by mechanics) is noted Ω and the last computed
one (from the last Newton iteration) Ωp .

Neutron transport

We consider the time-dependent, multigroup neutron dif-
fusion equations, coupled with delayed neutrons. A semi-
analytical solving of the delayed neutron precursor equation
leads to a linear system for the next time-step neutron flux Φ:

AneΦ(t) = Bne. (1)

This linear system is generally solved with Gauss-Seidel
iterations over energetic groups. For the sake of simplicity, we
admit here that Ane and Bne are built with only three kind of
matrix, K, R et M :

(K)g
i j =

∫
Ω

Dg∇ξi.∇ξ jdΩ, (2a)

(R)i j =

∫
Ω

σξiξ jdΩ, (2b)

(M)i j =

∫
Ω

ξiξ jdΩ. (2c)

These matrix are impacted by mechanics through Ω,
which may change, and through σ and Dg, which depend
on isotopic concentrations and are therefore impacted by any
expansion.

On the other hand, no Doppler effect is considered here,
since it is negligible in the Godiva experiment. There is there-
fore no direct impact of temperature change on neutron trans-
port.

Heat transfer

We consider the time-dependent heat transfer equation,
which can be written as a linear system for the next time-step
temperature T :

AthT (t) = Bth, (3)

with:

(Ath)i j =
1
∆t

∫
Ω0

ρCpξiξ jdΩ0 +

∫
Ω0

λ∇ξi∇ξ jdΩ0, (4a)



(Bth)i =
1
∆t

∫
Ω0

ρCpT (t − ∆t)ξidΩ0 +

∫
Ω0

PξidΩ0. (4b)

Note that Ath and Bth are defined with Ω0 instead of Ω.
This very common simplification is known to have a very lim-
ited impact on results if distortion is small. As a consequence,
heat transfer is not impacted by mechanics. However, neutron
transport impacts heat transfer through the power P which is
linear into the neutron flux:

P =
∑
g, j

Kgξ jφ
g
j . (5)

Mechanics

For the sake of simplicity, static linear elasticity is consid-
ered here. A time-dependent equation could be used without
major difficulty, but it would make the equations uselessly
complicated. The considered model can be written as a linear
system for the next time-step displacement U:

AmeU(t) = Bme, (6)

with:

(Ame)i j =

∫
Ω0

(
λmeTr(bi)Tr(b j) + 2µTr(bi · b j)

)
dΩ0, (7a)

(Bme)i =

∫
Ω0

3κα(T (t) − T (t = 0))Tr(bi)dΩ0. (7b)

Here again, the non-deformed space domain Ω0 is used
instead of Ω. As for heat transfer, this simplification is very
common, and should not alter noticeably the results. Heat
transfer impacts mechanics through the temperature T (t) in
Bme. On the other hand, neutron transport has no direct feed-
back on mechanics.

Summary of the coupling

The coupling is summarized in Figure 1.

Fig. 1. Interactions between physics.

COMMON SOLVING

The Newton algorithm

Let’s X be the concatenation of Φ, T and U. We define
the global problem this way:

F(X) = A(X)X(t) − B(X) = 0, (8)

with:

A(X) =

 Ane 0 0
0 Ath 0
0 0 Ame

 and B(X) =

 Bne

Bth

Bme

 . (9)

The equation (8) is not linear, as A and B depend on X. In
order to solve it, we use the Newton algorithm.

The first step consists in defining the jacobian matrix JX:

(JX)i j =
∂Fi

∂X j
=

∑
k

∂Aik

∂X j
Xk + Ai j −

∂Bi

∂X j
. (10)

From a first guess X(0) of the solution, iterations are made:

• Computation of JX(n−1) and of F(X(n−1)),

• Solving of the linear system JX(n−1)δX = −F(X(n−1)),

• Computation of the new approximation of X: X(n) =
X(n−1) + δX.

Algorithm ends when ‖F(X(n))‖ is small enough.

The jacobian matrix

We give the expression of the jacobian matrix without
demonstration (it will be in the final paper):

JX =

 Ane 0 CMN

CNT Ath 0
0 CT M Ame

 , (11)

with

(CNT )g
i j = −

∫
Ω0

Kgξ jξidΩ0, (12a)

(CT M)i j = −

∫
Ω0

3καξ jTr(bi)dΩ0, (12b)

(CMN)g′→g
i j =

δg,g′
∑

k

 1
Vg∆t

∫
Ωp

ξiξkTr(b j)dΩp

(
φ

g
k(t) − φg

k(t − ∆t)
)

+

∫
Ωp

2Dg
p(Tr(b j)Id − b j)∇ξi.∇ξkdΩp

 .
(12c)

Note that CNT and CT M are constant. The impact of
neutron transport on heat transfer, given by equations (4b) and
(5), is exactly linear. This is therefore normal to find a constant
bloc (CNT ) for this part of the jacobian. The same stands for
the impact of heat transfer on mechanics (CT M), given by (7b).

On the other hand, CMN needs to be computed at each
iteration, because of the integration over Ωp and the presence
of φg

k(t).



Approximations

We used two approximations in the jacobian for the fol-
lowing application. They are needed to simplify the compu-
tation of CMN . The final result is not modified (the solved
equation (8) is not modified), only the algorithm convergence
speed is.

1. The first term in (12c) is simplified using:

∫
Ωp

ξ̄iξ̄kTr(b j)dΩp ≈ δi,k

∫
Ωp

ξ̄iTr(b j)dΩp. (13)

2. Ωp is remplaced with Ω0 in (12c).

APPLICATION

CAST3M [9], a finite element code dedicated to structural
mechanics, is used for this application.

We consider a simple numerical experiment with no phys-
ical meaning: an homogeneous rectangular in 2D space. Its
properties (for the three physics) are choosen arbitrary in order
to reinforce the coupling.

It is divided in four rectangular meshes (we also made a
one hundred meshes computation, with similar results). Ele-
mentary functions are first order polynomials. Null neutron
flux and temperature bundary condition is used, and global
translations and rotations are eliminated.

At t = 0 the system is prompt-critical, and only one time-
step is computed.

Fig. 2. Global power from different coupling techniques.

Figure 2 gives global power as function of iteration num-
ber for different coupling techniques:

• Newton: The algorithm presented in this paper;

• Gauss-Seidel: At each iteration, neutron transport is
solved first, then heat transfer and finally mechanics;

• Jacobi: The three physics are solved at the same time
(but independently), at each iteration.

One can see on Figure 2 that the Newton algorithm is
faster than the others. Power computed by the Jacobi algo-
rithm is modified only every three iterations because of the
circularity of the coupling.

Discrepancy between current global power and converged
one (after 50 Newton iterations) is plotted in Figure 3. It
confirms that the Newton algorithm is the fastest one by far.
The ratio of minimal discrepancy to initial global power value
is about 10−14, the numerical noise level.

Note that the convergence of our "Newton" algorithm is
linear (whereas actual Newton algorithm convergence should
be quadratic). This is due to the two approximations we made
in the jacobian computation.

Fig. 3. Discrepancy with converge global power for different
coupling techniques.

CONCLUSION

We give in this paper the exact form of the jacobian matrix
for a coupling between finite element modeling of multigroup
neutron diffusion, heat transfer and linear mechanics. This
approach is not dependent on the application case considered
or the finite element type used.

A simple application case shows that it does converge
faster (in terms of iteration number) than common multisolver
coupling techniques. A better robustness is also expected. It
would be premature to conclude now on calculation time, work
still needs to be done on the linear system solving.

The process was simplified here by the use of the same dis-
cretisation for every physics: use of the finite element method,
with the same elementary functions, on the same mesh and
with the same time-step. This is not required by the method.
If discretisations differ, an additional step is needed, similar to
a projection or a variable change. It can be taken into account
in the jacobian matrix.

Future work should be undertaken to remove the two
approximations we made in the jacobian computation, in order
to numericaly prove the exactness of our jacobian matrix.

We wish this work to inspire development of new innova-
tive coupling solvers.

NOMENCLATURE

α thermal expansion coefficient



∆t Time-step length

λ Heat conductivity

λme, µ, κ Lamé parameters, κ = λme + (2/3)µ

T Discretized form of the temperature

Ω Current space domain

Ω0 Non-deformed space domain

Ωp Previous Newton iteration space domain

Φ Discretized form of the neutron flux

φ
g
j Scalar component of Φ

ρCp Volumic heat capacity

σ A macroscopic cross-section

ξi Elementary function for mechanics

b j =
1
2

(
∇ξ j + ∇ξ j

t
)

(elementary strain)

ξi Elementary function for heat transfer and neutron
transport

A Global matrix with Ane, Ath and Ame on the diagonal

Ame Matrix of the mechanics problem

Ane Matrix of the neutron diffusion problem

Ath Matrix of the heat transfer problem

B Concatenation of Bne, Bth and Bme

Bme Right hand side of the mechanics problem

Bne Right hand side of the neutron diffusion problem

Bth Right hand side of the heat transfer problem

Dg Diffusion coefficient of group g

Dg
p Diffusion coefficient of group g over Ωp

F = AX − B

Kg Power production cross-section

P Volumic power

U Discretized form of the displacement

Vg Speed of neutrons of group g

X Concatenation of Φ, T and U
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