

Maintaining parallel flows in microsystem during solvent extraction of concentrated Uranium(VI) solutions a solution for the screening of extractive molecules

J-P. Jasmin

► To cite this version:

J-P. Jasmin. Maintaining parallel flows in microsystem during solvent extraction of concentrated Uranium(VI) solutions a solution for the screening of extractive molecules. BIT's 5th Annual Conference of AnalytiX 2017, Mar 2017, Fukuoka, Japan. cea-02438340

HAL Id: cea-02438340 https://cea.hal.science/cea-02438340

Submitted on 14 Jan2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

Jean-Philippe JASMIN

Den—Service d'Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA

jean-philippe.jasmin@cea.fr

www.cea.fr

MAINTAINING PARALLEL FLOWS IN MICROSYSTEM DURING SOLVENT EXTRACTION OF CONCENTRATED URANIUM(VI) SOLUTIONS: A SOLUTION FOR THE SCREENING OF EXTRACTIVE MOLECULES

THE PUREX PROCESS

PUREX: Plutonium and Uranium Recovery Extraction

Nuclear plant purpose

- □ Recycling part of the spent nuclear fuel
- □ Uranium and plutonium
- □ Based on liquid–liquid extraction ion-exchange

Nuclear fuel cycle

DE LA RECHERCHE À L'INDUSTI

NEW EXTRACTIVE MOLECULES REQUIREMENT

TBP: Historically used

Assets and drawbacks:

- ✓ Highly effective
- Phosphorous atom
- Degradation products hardly manageable
- Redox U/Pu separation

Assets and drawbacks:

- ✓ CHON principle respected
- Incinerable
- Easy U/Pu separation

Aim of the study

Conception of a unique screening tool for the monoamides featuring:

- Few manipulations
- Low amount of reagents (radionuclides and extractant)
- Limited generated wastes

Microfluidics for the screening

Classic hydrodynamic principles conserved ^[1]

[1] Whitesides, Nature, 2006, 442, 368-373

EXPERIMENTAL SET-UP

Pyrex glass microchips (IMT, Japan)

✓ Resistance toward corrosive products (concentrated acid, solvents, radionuclides)

Channel geometry

Height $H = 100 \ \mu m$ ✓ High interfacial area
 A' = A/V = 10⁴ m⁻¹ Width $W = 40 \ \mu m$ Length $L = 12 \ cm$

Experimental conditions

٠

- **Parallel flows** • **Centered interface**
 - Phase separation
- Suitable contact time for efficient extraction ٠

$$t_{\rm aq} = \frac{h W L}{Q_{\rm aq}}$$

DE LA RECHERCHE À L'INDUSTI

HYDRODYNAMICS CONTROL FOR ONE CHEMICAL SYSTEM

Simple case: U-TBP reference chemical system

 $\begin{bmatrix} 30 \ \% \text{ TBP in } n\text{-dodecane } (v/v) \ / \ \mu_{org} = 1,97 \pm 0,01 \text{ mPa.s} \\ [U(VI)] = 10^{-4} \text{ M in } [HNO_3] = 3 \text{ M} \ / \ \mu_{aq} = 1,22 \pm 0,01 \text{ mPa.s} \end{bmatrix}$

- **Only one extractant**
- □ Low concentration of uranium
- Viscosities unchanged

Extraction equilibrium

 $UO_2^{2+} + 2NO_3^- + 2\overline{TBP} \rightarrow \overline{UO_2(NO_3)_2.2TBP}$

Flow patterns of the biphasic system

| PAGE 6

SPECIFICITY OF HYDRODYNAMICS CONTROL FOR THE SCREENING OF EXTRACTANTS

More difficult, if:

- □ Several extractants with different viscosities
- □ the viscosities evolve along the stream because high <u>concentrations</u>

[8] Maruyama et al., Analyst, 2004, 129, 1008-1013[9] Ban et al., J Nucl Sci Tech, 2011, 48, 1313-1318

Screening tool specifications

Main requirement for the screening tool:

- □ Same device for a wide range of molecules
- ❑ Screening with high U and Pu concentrations
 (≥ 10 g/L)

Conception strategy for the screening tool:

Two monoamides known for their respectively
 low and high viscosities were used

Molecule	MOEHA	DEHDMBA	
Formula		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Viscosity at 1.4 M in THP (mPa.s)	4.02 ± 0.01	8.04 ± 0.01	

Main challenges

- □ Each molecule owns a specific viscosity
- The viscosities evolve between inlets and the outlets

Parameters

- **U(VI)** in $[HNO_3] = 5 M$
- □ [Monoamide] = 1.4 M in THP

Extraction equilibrium

 $UO_2^{2+} + 2NO_3^- + 2\overline{monoamide} \rightarrow \overline{UO_2(NO_3)_2.2monoamide}$

Two objectives:

Parallel flows and centered interface for any

monoamide

Compare the efficiency of the monoamides

Determination of a common hydrodynamic protocole for monoamides

| PAGE 9

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

1st step: Determination of the suitable flow rate ratio

□ With the aqueous and organic phase initial viscosities:

Evolution of the aqueous phase viscosity $[HNO_3] = 5 M$ with [U(VI)].

Evolution of the aqueous flow rate ratio for MOEHA and DEHDMBA at 1.4 M with $[HNO_3] = 5$ M depending on [U(VI)].

Any inlet flow rate ratio can be determined knowing the organic phase viscosity

Flow rate ratio Range: $\frac{Q_{\text{org}}}{Q_{\text{aq}}}$ DE LA RECHERCHE À L'INDUSTRI

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

Common Length ratio: 2^{cd} step: Determination of the suitable Outlet length ratio Laq Lorg Outlet With batch experiments according to: 30 $\frac{Q_{\rm org}}{Q_{\rm aq}} \approx \left(\frac{\mu_{\rm aq}}{\mu_{\rm org}}\right)_{\rm Outlet}$ 25 Lorg (mPa.s) 20 15 Batch experiments ([U(VI)]=20 g.L⁻¹) ຼື ຍິງ 10 5 0 20 40 60 80 100 0 Qorg Vorg $[U(VI)]_{ora} (g.L^{-1})$ V_{aq} Qag Evolution of the organic phases viscosities with [U(VI)] in the organic phase after extraction, $V_{org}/V_{a\alpha} = 1$, T = 293 K. [DEHDMBA] = 1.4 M (red) and [MOEHA] = 1.4 M (green), (diluted in THP) 2,0 Monoamide **MOEHA DEHDMBA** 1,5 , 1, 1,с 2,0 5,0 Qorg μ_{aq} 0.34 0.17 Qaq μ_{org} / Inlet μaq 0.20 0.07 µ_{org} 0.0 Outlet 100 150 [U(VI)]_{aq} (g.L⁻¹) 50 200 0 L_{aq} 2.5 1.7 Lorg Evolution of the aqueous phase viscosity $[HNO_3] = 5 M$ with [U(VI)]. The outlet length ratio is determined with the batch extraction yields

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

3rd step: Determination of a suitable contact time

- With solvent extraction experiments in microsystem with:
 - Chip length: 12 cm

- Flow rates ratio: 0, 17 and 0, 34
- Outlet length ratio: $L_{aq} = 2 \times L_{org}$

 $[HNO_3] = 5 M and [monoamide] = 1.4 M, and L_{aq'Outlet}/L_{org,Outlet} = 2, T = 293 K.$

Equilibrium reached in 3 seconds or with a maximum flow rate of Q_{ag} = 0.3 mL.h⁻¹ **Common Contact time:** $t_{\rm aq} = \frac{h W L}{O_{\rm aq}}$

<u>1st Objective: Parallel flows and centered interface for any monoamide</u>

Initial parameters

- U(VI) in $[HNO_3] = 5 M$
- [Monoamide] = 1.4 M in THP

Hydrodynamic parameters

- Chip length: **12 cm**
- □ Flow rates ratio: 0.17 and 0.34
- Outlet length ratio: L_{aq} = 2 x L_{org}
 Aqueous flow rate: Q_{aq} = 0.3 mL.h⁻¹

<u>2^{cd} Objective: Compare the efficiency of the monoamides</u>

DE LA RECHERCHE À L'INDUSTR

MICROFLUIDIC SCREENING TOOL FOR MONOAMIDES

Validation of the method for [U(VI)] =20 g.L⁻¹

Screening of 3 monoamides A, B, C

Monoamide	Α	В	С
Viscosity at 1.4 M in THP (mPa.s)	6.07	5.6	5.45

ICC-DY15 (12cm), $[U(VI)] = 20 \text{ g.L}^{-1}$ in $[HNO_3] = 5 \text{ M}$ and [monoamide] = 1.4 M, and $V_{ao}/V_{org} = 1$, T = 293 K.

Same relative performances as batch experiments

CONCLUSION AND PERSPECTIVES

Conclusion

flow rate ratio evolution depending on the viscosity of the organic phase containing monoamide diluted 1.4 M in THP and [U(VI)]_{Initial} in aqueous phase.

Only 20 µL of solution are need

Screening method can be applicable with large range of uranium concentration

This conception strategy applicable on other kind of molecules

Perspectives

✓ CFD simulation (COMSOL) for the design of a custom-made chip

- Asymetrical geometry
- More suitable length of microchip
- Test with U(VI) and Pu(IV)

Establishment of a viscosity/phase ratio diagram

Thank your Attention

Question?

Publication

J.P. Jasmin and al. Solvent Extraction of Concentrated Uranium (VI) by 30 % TBP in a Parallel Flows Microsystem: Towards a Tool for Screening New Extractant Molecules Solvent Extraction and Ion Exchange, 2017,vol 35 http://dx.doi.org/10.1080/07366299.2017.1308151

Patent

Patent pending work: BD17584 (application submitted on december 2016)