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Trapped atomic ions embedded in optical cavities are a promising platform to enable long-distance quantum
networks and their most far-reaching applications. Here we achieve and analyze photon indistinguishability in
a telecom-converted ion-cavity system. First, two-photon interference of cavity photons at their ion-resonant
wavelength is observed and found to reach the limits set by spontaneous emission. Second, this limit is shown to
be preserved after a two-step frequency conversion replicating a distributed scenario, in which the cavity photons
are converted to the telecom C band and then back to the original wavelength. The achieved interference visibility
and photon efficiency would allow for the distribution and practical verification of entanglement between ion-
qubit registers separated by several tens of kilometers.

DOI: 10.1103/PhysRevA.102.052614

I. INTRODUCTION

Envisioned quantum networks, consisting of remote quan-
tum matter linked up with light [1,2], offer a fundamentally
new communication paradigm [3] as well as a practical path
to large-scale quantum computation and simulation [4] and
to precision measurements in new regimes [5–7]. Trapped
atomic ions are expected to enable the most promising ap-
plications of large-scale quantum networks [8–10] given their
demonstrated capabilities for quantum logic [11], multiqubit
registers [12], and optical clocks [13]. Ion qubits have been
entangled with propagating photons [14] and those photons
have been used to entangle ions in traps a few meters apart
[15–17]. Integrating ion traps with optical cavities offers the
possibility of a near-deterministic and coherent light-matter
interface for quantum networking [9,10], and both ion-photon
entanglement [18] and state transfer [19] have been achieved
in this setting.

Photons from trapped ions have recently been converted to
the optimal telecom wavelengths for long-distance quantum
networking [20–22]. Those experiments used near-infrared
photons from a trapped calcium ion, allowing for direct, low-
noise conversion in the long-pump wavelength regime [22,23]
and efficiencies of tens of percent. The combination of tele-
com conversion and ion-photon collection using an optical
cavity could allow for entangled ions spaced by a hundred
kilometers [22] via the entanglement swapping protocol [25],
orders of magnitude further than the state of the art of a few
meters [15–17]. However, the quality of the swapped entan-
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glement is set by the degree to which the involved photons
are indistinguishable, and this has not previously been studied
for either an ion-cavity system or for telecom conversion of
ion-compatible photons.

The extent to which photons are in identical pure states
and therefore indistinguishable can be quantified by the vis-
ibility in a two-photon interference experiment [24]. The
visibility is directly related to the swapped entangled state
fidelity [25]. For a detailed theoretical analysis of two-photon
interference from quantum emitters without conversion see,
e.g., [26,27]. While direct two-photon interference has been
achieved using neutral atoms in cavities [28,29], it has not
previously been reported for ions in cavities. As will be
shown, the limiting factor on the interference visibility in
our ion-cavity system is unwanted spontaneous emission from
the ion during the cavity-mediated photon generation process.
Such spontaneous emission is particularly relevant for ion-
cavity systems demonstrated to date in which the ion-cavity
coupling rate does not overwhelm the spontaneous scatter-
ing rate. Furthermore, photon conversion stages can easily
introduce additional distinguishability, e.g., by directly adding
noise photons at a rate that depends strongly on the particular
photon and pump laser wavelengths and filtering bandwidth
[23], and must be assessed on a system-dependent basis.

In this work, we present comprehensive experimental and
theoretical results of photon distinguishability in a telecom-
converted ion-cavity setting, based on interference between
two photons produced sequentially from an ion in a cavity.
First, we introduce the experimental system and a simple
theoretical model of the effect of spontaneous emission on
the emitted cavity photon. Second, two-photon interference
results of cavity photons at the ion-resonant wavelength
are presented, showing that spontaneous emission is the
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FIG. 1. Experiment schematic. (a) An atomic ion (red sphere)
in a linear Paul trap (gold electrodes) and coupled to a vacuum
antinode of an optical cavity (coupling strength g). Raman laser (Rabi
frequency �) pulses generate sequential orthogonally polarized pho-
tons, first vertical (|V 〉) then horizontal (|H〉) that are split into two
paths, with a time separation equal to the delay line [panel (c)], such
that their wave packets arrive simultaneously at the beam splitter
[panel (d)]. (b) Three-level model: Ground state |S〉, metastable state
|D〉 (1.17 s lifetime), and excited state |P〉 (6.9 ns lifetime). Spec-
troscopic notation shown. For |H〉 and |V 〉 photons the m j = −5/2
and m j = −3/2 Zeeman states of |D〉 are used (see appendices). The
coherent cavity-photon generation process competes with sponta-
neous emission from the short-lived P state (decay rates γps and γpd ).
(c) Single-photon quantum frequency conversion (QFC) and inverse
process (QFC−1) with wavelength changes shown. A 3 km spool of
telecom SMF-28 Ultra fiber. (d) Beam splitter (BS). Superconducting
nanowire photon detector D1 (D2) with efficiency 0.88 (0.89) and
free-running dark counts 0.3 (0.4) per second. Fiber coupler (FC),
mating sleeves (MS).

dominant limiting factor. Third, two-photon interference re-
sults are presented after a two-step frequency conversion,
converting the wavelength of one cavity photon to the telecom
band and back to the ion-resonant wavelength, showing that
the photon indistinguishability is essentially preserved. As an
outlook, we calculate that the achieved interference visibilities
and overall detection efficiencies could already allow for the
first observation of entanglement of ions tens of kilometers
apart and present paths to significantly extend that distance.

II. EXPERIMENTAL DETAILS AND MODEL

Experiments employ a single 40Ca+ atom in the center
of a linear Paul trap and in the focus of a near-concentric
optical cavity near-resonant with the 854 nm electronic
dipole transition (Fig. 1) [22]. We begin by Doppler-cooling
the ion’s motional state and optical pumping into an elec-
tronic ground state |S〉 = |4 2SJ=1/2, mj=−1/2〉 (Fig. 1). Each

photon is generated via a Raman laser pulse at 393 nm which
triggers emission, by the ion, of a polarized 854 nm photon
into a vacuum cavity mode, via a cavity-mediated Raman
transition [30]. Two photons are generated sequentially with
a time gap between the beginning of their respective Raman
pulses of 13.35 μs, such that after delay of the first (the
vertical “long-path” photon; |V 〉) in a 3 km optical fiber spool,
both photon wave packets (the second being the horizontal
“short-path” photon; |H〉) arrive simultaneously and with their
polarizations rotated to be parallel, at different input ports of
a 50:50 beam splitter. Different photon polarizations are gen-
erated and modeled by 3-level Raman transitions that differ
in the final Zeeman state of the |3 2DJ=5/2〉 manifold (Figs. 1
and 5). Specifically, after the generation of a |V 〉 (an |H〉)
photon the ion is in the final state |3 2DJ=5/2, mj= − 5/2〉
(|3 2DJ=5/2, mj= − 3/2〉). We switch the polarization of the
generated photons by changing the detuning of the Raman
laser pulse by δ = 7.1 MHz: the frequency splitting of the
aforementioned transitions. In every experiment we use a
Raman laser Rabi frequency of � = 2π × 64(1) MHz.

The arrival times of photons at the beam splitter output
ports are recorded with single-photon detectors. In each ex-
perimental cycle, we generate two pairs of photons: while the
temporal wave packets of the first pair (synchronous) arrive
simultaneously at the beam splitter, a time gap is introduced
between the wave packets of the second pair (asynchronous)
that provides complete temporal distinguishability. Each full
experiment consists of many repeated cycles as described in
Appendix C. The coincidence rates of detection events from
the synchronous and asynchronous photon pairs are denoted
as C|| and C⊥, respectively. The two-photon interference vis-
ibility is given by V (T ) = 1 − C||(T )/C⊥(T ), where T is the
coincidence window: the maximum time difference between
photon clicks that is counted as a coincidence.

In the case of perfectly indistinguishable photons entering
separate ports of a symmetric beam splitter, the well-known
Hong-Ou-Mandel photon bunching effect occurs: two perfect
detectors placed at the output ports of the beam splitter never
fire simultaneously, resulting in C|| = 0 and V (T ) ≡ 1. Yet in
practice, perfect bunching is never observed, and it is impor-
tant to understand the source of the imperfections. During the
photon generation process (Fig. 1), spontaneous decay events
from the short-lived excited state (|P〉) onto the final state
manifold (|D〉) act only as losses—no cavity photon is emitted
through the Raman process if such an event occurs. In con-
trast, following any number of spontaneous decay events from
|P〉 back to the initial state (|S〉) during the Raman laser pulse,
a cavity photon can still be subsequently generated while the
Raman laser remains on. Every spontaneously scattered pho-
ton carries away the information that the cavity photon has not
yet been emitted. Consequently, the cavity photons impinging
on the beam splitter are each in a (temporally) mixed state and
therefore they do not bunch perfectly.

The effect of spontaneous scattering on the visibility is
precisely quantified through a theoretical model describing
the evolution of a three-level atom embedded in a cavity
using a master equation; see Appendix E. In the model, an
expression for the mixed state of photons emitted from the
cavity is obtained in two steps. First, we calculate the wave
function of photons emitted from the cavity conditioned on the
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ion being in the initial state |S〉 at time s and no spontaneous
decay events happening for later times. Second, we compute
the rate of spontaneous decay events from |P〉 to |S〉 as a
function of time. The state of the emitted cavity photon is
then expressed as a mixture over all the possibilities where
the last |P〉→|S〉 decay happens at time s or no decay events
occur and a pure state photon is emitted afterward, plus the
vacuum component collecting all the possibilities where no
cavity photon is emitted. With the emitted photon states in
hand, it is then straightforward to calculate the visibility of
pairs of photons (Appendix E). We refer to this model that in-
cludes only imperfections due to spontaneous scattering as the
basic model. As an alternative from our model, the visibility
could be computed from the master equation via the quantum
regression theorem [26].

The results of two full 2-photon interference experiments
are presented below. In the first experiment, the |V 〉 photon is
sent directly to the fiber spool. In the second experiment, the
|V 〉 photon is first converted to 1550 nm (telecom C band) via
difference frequency generation (DFG) in a ridge-waveguide-
integrated PPLN crystal with a 1902 nm pump laser. This first
“down-conversion” stage is described in Refs. [22,31]. After
the spool, an “up-conversion” stage (not previously reported)
converts the photon back to 854 nm via the reverse process:
sum frequency generation (SFG). Approximately 0.2 W of
pump laser power is used for each stage.

III. RESULTS

Results are now presented for the case without pho-
ton conversion. The temporal profiles of the short-path and
long-path single-photon detection events from the second
(asynchronous) photon pair are shown in Fig. 2(a). These
single-photon wave packets are presented as a probability
density ρd (t ) = Nd/(k�t ), where Nd is the number of de-
tection events registered in a time bin �t = 125 ns and k is
the number of trials. Integration of the wave packets gives
the probability of detecting a short-path (long-path) photon as
12.4% (2.7%). Differences in the single-photon wave packet
shapes are due to slight differences in the corresponding tran-
sition strengths (Appendix F).

The temporal profiles of the coincidence detection events
(cross-correlation function) for the synchronous and asyn-
chronous photon pairs are compared in Fig. 2(b). Here the
coincidence probability density ρc(τ )‖,⊥ = N‖,⊥

c /(k�τ ) is
used, where N‖,⊥

c are the number of coincident detection
events per time bin for the first and second pair of photons,
respectively, and τ is the difference in detection times. Fig-
ure 2(c) shows the visibility V (T ) and integrated coincidence
rate of the asynchronous photons C⊥(T ) = ∫ T

−T ρ⊥
c (τ )dτ . For

the smallest coincidence window presented, the interference
visibility V (125 ns) is 0.986 ± 0.006 (0.987 ± 0.005 after
subtracting detector dark counts). When considering a coin-
cidence window containing the whole photon wave packet,
the visibility V (9 μs) is 0.472 ± 0.008. From the theory, we
calculate that the expectation value of the number of spon-
taneously emitted photons on the |P〉→|S〉 transition, given
generation of a cavity photon, was 3.5.

FIG. 2. Two-photon interference without photon conversion.
Solid (dashed) lines show basic theory (extended theory) model and
shapes show data in all the panels. Probability densities are obtained
by dividing the probability of detection (coincidence) per time bin
by the bin size; see Appendices D and E for details. (a) Single-
photon wave packets for short path (red circles) and long path (black
diamonds; rescaled by multiplication factor 4.6 to correct delay line
losses). Vertical dotted line shows the end of the Raman laser pulse.
(b) Photon coincidences for temporally synchronous (ρ ||

c ; blue cir-
cles) and asynchronous (ρ⊥

c ; green diamonds) cases. (c) Interference
visibility V (left axis; blue diamonds) and integrated asynchronous
coincidence probability C⊥ (green circles; right axis). Error bars rep-
resent ± one standard deviation due to Poissonian photon-counting
statistics, not shown when smaller than shapes.

The differences between the basic model and data in Fig. 2
are consistent with an extension to the model that, in addi-
tion to spontaneous emission, includes a combination of an
overall time-independent distinguishability factor of 1% and
a center frequency difference of the two photons of 40 kHz
(Appendix F). This small photon frequency difference could
be caused by several reasons, e.g., cavity length instability,
acoustic noise in the 3 km delay line fiber, and cavity birefrin-
gence. The 1% time-independent distinguishability can arise
from slight polarization mode mismatch at the beam splitter
or imbalance of the 50:50 beam splitter itself. The agreement
between data and the basic model shows that we are close
to the fundamental limit of photon indistinguishability set by
spontaneous scattering in our system.

Figure 3 presents results for the case with photon con-
version and is constructed in the same way as Fig. 2. The

052614-3



M. MERANER et al. PHYSICAL REVIEW A 102, 052614 (2020)

FIG. 3. Two-photon interference with photon conversion. Solid
(dotted) lines show basic theory (extended theory) model and shapes
show data in all the panels. Probability densities are obtained by
dividing the probability of detection (coincidence) per time bin by
the bin size (see Appendix D). (a) Single-photon wave packets for
short path (red circles) and long path (black diamonds; rescaled by
multiplication factor 19 to correct delay line losses). Vertical dotted
line shows the end of the Raman laser pulse. (b) Photon coincidences
for temporally synchronous (ρ ||

c ; blue circles) and asynchronous (ρ⊥
c ;

green diamonds) cases. (c) Interference visibility V (left axis; blue
diamonds) and integrated probability C⊥ (green circles; right axis).
Error bars represent ± one standard deviation due to Poissonian
photon-counting statistics.

probability of detecting a short-path (long-path) photon across
the entire wave packet is 10% (0.5%). The visibility is 0.96 ±
0.04 for the minimum coincidence window of 250 ns and
0.37 ± 0.04 for the full wave packet window of 9 μs. The
differences between the basic model and frequency-converted
data (Fig. 3) are consistent with an extended model that in-
cludes a frequency drift of the unstabilized photon conversion
pump laser at the level of 50 kHz on a 10 μs timescale
(consistent with independent measurements) and background
coincidences; see Appendix F 3. We anticipate no signifi-
cant challenges to frequency-stabilizing the pump laser to the
few-kilohertz level in future work. Remote photon conversion
stages in distributed networks will need independent pump
lasers with absolute long-term frequency stability to within
a fraction of the networking photon bandwidth.

IV. DISCUSSION

The achieved visibilities and coincidence rates in our ex-
periments could already allow for remote ion entanglement
over tens of kilometers of optical fiber. Consider the entan-
glement swapping protocol of [8], which leads to maximal
entanglement of two remote (ion) qubits with state fidelity
F (T ) = [1 + V (T )]/2 [25] at a heralded rate Rswap(T ) ∝
Rgen × C⊥(T ), where Rgen is the photon generation attempt
rate at each ion-trap network node. For single emitters
separated by distance L, the propagation delay imposes a
maximum possible entanglement distribution attempt rate of
Rmax

gen < c/L [22]. Using Rgen = 30 kHz, the achieved values
without photon conversion (Fig. 2) would allow for 3 km ion-
ion entanglement distribution with F (T = 9 μs) = 0.736 ±
0.004. Using 0.18 dB/km for telecom fiber losses and Rmax

gen =
4 kHz, the achieved performance with photon conversion
(Fig. 3) would allow for 50 km distant ion-ion entanglement
generation with F (T = 9 μs) = 0.69 ± 0.02 at rates on the
order of 1 Hz (assuming photon detector dark count rates of
1 Hz).

The aforementioned rates and fidelities are practical values
for the first observation of ion-ion entanglement over tens
of kilometers. Such long-distance experiments must tackle
location-dependent environmental noise in deployed optical
fibers, absolute frequency stabilization of remote laser sys-
tems, and matching photons from remote network nodes. The
maximum attempt rate (Rmax

gen ), when using a single ion-qubit
in each node, presents a strong restriction on the entanglement
distribution rate—over 50 km of fiber with minimal prop-
agation loss—and assuming perfect photon collection and
conversion efficiency, the maximum rate would be 0.4 kHz.
Multiplexing is a solution to overcome this limit and signifi-
cantly improve rates and fidelities: to run many entanglement
distribution processes in parallel, using many qubits in each
node to produce or store entanglement with many parallel or
closely spaced traveling photons. In our system, time multi-
plexing involving strings of tens of ions might be possible,
with the depth limited by the temporal extent of the photon
wave packet. Methods to both decrease photon duration and
to improve visibility, without reducing the photon generation
rate, are those that can significantly increase the coherent
ion-cavity coupling rate g, such as coupling multiple ions in
entangled (superradiant) states to the cavity [32,33] and recent
developments in trapped-ion fiber cavities [34–36].

Our model reveals that there is an optimal drive-laser
Rabi frequency (�; Fig. 8) that achieves the highest photon
generation probability (and therefore C⊥) for a given thresh-
old visibility, highlighting the important role such models
will play in enabling the upcoming next generation of long-
distance networking experiments. Our results present a path
to distributing entanglement between trapped-ion registers
spaced by several tens of kilometers at practical rates for veri-
fication: significantly further than state-of-the-art experiments
involving spacings of a few meters [15–17] and a practical
distance to start building large-scale quantum-logic-capable
quantum networks.

Note added. Recently we became aware of complementary
work in which sequential interference of photons from an ion
in a cavity is achieved and studied [37].
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FIG. 4. Detailed experimental diagram. (a) Ion cavity node. A single atomic ion (red sphere) in the center of both a 3D radio-frequency
(RF) linear Paul trap (gold electrodes) and an optical cavity. The two smaller electrodes are held at DC voltage. The 4 larger electrodes (two
shown in figure projection) are driven with RF. Two cross sections are depicted: along the cavity axis (top), showing the ≈4.229 gauss DC
magnetic field (quantization axis) generated by rings of permanent magnets and the circularly polarized Raman laser for generating 854 nm
cavity photons. Following a Raman pulse, an 854 nm cavity photon exits the cavity via the right mirror (transmission T2). The photon then
passes the following elements: in-vacuum collimating lens (C); vacuum chamber viewport (VP); wave plates; 3 filters to remove the 806 nm
laser light to which cavity length is continuously and actively stabilized; polarizing beam splitter (PBS) for directing the vertical photons
into a single-mode fiber, and the horizontal photons into a polarization-maintaining fiber (PMF). (b) Delay line. For the experiment without
photon conversion, points A and A′ as well as points B′ and B directly are fiber connected, such that the vertical photon only has to pass the
3 km fiber spool (Corning SMF-28 Ultra). For the experiment with the conversion, the setup is as shown here. The injected 854 nm photon
passes wave plates (used for system optimization with classical light) and is overlapped with 800 mW of 1902 nm laser light (Tm-doped fiber
laser; AdValue Photonics AP-SF1-1901.4-01-LP; measured at PM) on a dichroic mirror (DM1) and free-space-coupled into one of the ridge
waveguides of temperature-stabilized PPLN1 using an asphere (AS; 11 mm; positioned by an XYZ translation stage). The 1902 nm input path
is described in Ref. [22]. A gold parabolic mirror ( f = 15 mm) is used to collimate all fields at the output of PPLN1. A dichroic mirror (DM2;
Thorlabs DMLP1800) splits the converted 1550 nm photons from the 1902 nm pump laser. A combination of a shortpass (SP 1610) and a
longpass (LP 1400) filter reduces unwanted pump laser and other noise light fields. The 1550 nm photon couples into the 3 km SMF-28 fiber
spool, which is used as an optical delay line. The output of the fiber spool passes wave plates, to correct for polarization rotations through the
fiber, and is overlapped (with a dichroic mirror DM3; Thorlabs DMLP1800) back with the 1900 nm pump light, which passes wave plates to
set correct pump power for the second crystal (PPLN2). Via a second gold parabolic mirror ( f = 15 mm) all fields are coupled into the second
temperature-controlled chip PPLN2, where the 1550 nm photon is converted back to the initial 854 nm via the reverse (up-conversion) process.
An asphere (AS) collimates the output field, before a shortpass (SP 1600; OD5 at 1902) filters the 1902 nm pump laser from the 854 nm
single photons. After passing an etalon filter (EF; LightMachinery; bandwidth ≈870 MHz) a combination of a waveplate and PBS is used to
filter unpolarized noise photons before coupling the 854 nm photon into a single-mode fiber, which goes to the interference board. (c) Photon
interference. Both inputs pass wave plates and PBSs (cleaning polarization) and overlap on a 50:50 beam splitter (50:50 BS). Both outputs
of the beam splitter are filtered with an 854 nm bandpass filter (BP 854); coupled to single-mode fibers; polarization control paddles (PC)
correct to most efficient polarization for followed single-photon detector [D1 (D2); Scontel; efficiency 88% (87%); dark count rate 0.5 s−1 (0.3
s−1)]. The electronic pulses produced by the detectors are detected with a time-tagging module (Swabian Instruments Time Tagger 20). Mating
sleeves (MS), fiber coupler (FC).
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APPENDIX A: EXPERIMENTAL SETUP

A detailed experimental diagram is presented in Fig. 4.
For details on the ion trap and cavity system please see our
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recent paper in Ref. [22]: the same ion-trapping frequencies,
geometry of laser beams, and optical cavity were employed.
A few key parameters are now recapped.

The optical cavity around the ion is near-concentric with
a length of 19.906(3) mm, a cavity waist of ω0 = 12.31 ±
0.07 μm, and a maximum ion-cavity coupling rate of g0 =
2π × 1.53 ± 0.01 MHz. The finesse of the cavity (at 854 nm)
is F = 2π

L = 54000 ± 1000, with the total cavity losses L =
T1 + T2 + L1+2 = 116 ± 2 ppm, determined from measure-
ments of the cavity ring-down time. This gives the cavity
linewidth 2κ = 2π × 140 ± 3 kHz, κ being the half-width at
half-maximum.

As explained in the main text, in the second experiment
the delayed photon undergoes a two-stage frequency conver-
sion. Each frequency conversion uses a single 48-mm-long
ridge-waveguide-integrated PPLN crystal (NTT Electronics;
reported in Refs. [22,31]) where the input single photon
is overlapped with the pump laser at 1902 nm. The first
(“down-conversion”) stage brings the 854 nm (V) photon to
the 1550 nm telecom C band [(854 nm)−1 − (1902 nm)−1 ≈
(1550 nm)−1] as detailed in the first experiment in Ref. [31].
This photon is separated from the pump field with a dichroic
plate, injected into the 3 km spool and recombined with the
pump before the second stage. The second (“up-conversion”)
stage brings the 1550 nm photon back to the original 854 nm
wavelength via sum frequency generation (SFG). The total
pump laser power of correct polarization for conversion in-
coupled into each crystal is 0.2 W, controlled by the wave
plate angles before and after the first stage.

While in the ideal case the second stage is the reverse
process of the first, there are two differences which are now
summarized. In the down-conversion process, unwanted pho-
tons at the telecom output wavelength are generated directly
from anti-Stokes Raman scattering (ASR) of the pump laser
from 1902 nm to 1550 nm. In the up-conversion process,
unwanted photons at the 854 nm output wavelength are gen-
erated by a two-stage process. First, as before ASR scattering
of the pump laser generates telecom photons. Second, these
photons are up-converted back to 854 nm via SFG [23,38].
A second difference is that the fundamental waveguide mode
at 1550 nm has a higher overlap with the free-space Gaus-
sian mode of the in-coupling laser field than the waveguide
mode at 854 nm. As such, we achieve a higher in-coupling
efficiently into the fundamental waveguide mode at 1550 nm
and subsequently a higher conversion efficiency for the up-
conversion (presented in the next section).

APPENDIX B: PHOTON CONVERSION PERFORMANCE

A set of characterization measurements of the two-stage
conversion process was carried out using classical laser light
and the results are now described. The total efficiency from
the start of the converted delay line (point A in Fig. 4) to the
end of the delay line (point B in Fig. 4) was measured to be
0.098 ± 0.005 at the last calibration before the two-photon ex-
periments (the error stands for the last digit of the powermeter
reading).

The efficiencies of separate parts were characterized
independently. The values below stand for the final charac-
terization after alignment-optimization before the two-photon

experiment reported in the main text. The intervals are de-
rived from the calibration measurements after optimization on
other days, representing maximum and minimum values ob-
served. The laser powers and setup stability on the timescale
of performing the characterization are also taken into ac-
count. The down-conversion stage efficiency from point A
to the in-coupling of the delay fiber was 0.50 ± 0.03 (we
refer to it as down-conversion external efficiency). The delay
fiber transmission was measured to be 0.6+0.01

−0.05, including in-

coupling (0.75+0.005
−0.05 ) and two mating sleeves (0.95 ± 0.02).

The up-conversion external efficiency (from the delay fiber
out-coupler to the etalon) was measured to be 0.53 ± 0.03.
The etalon transmission was 0.84+0.005

−0.04 and the coupling to
the fiber that goes to the Hong-Ou-Mandel (HOM) board was
0.73+0.05

−0.03. The provided value above of external up-conversion
efficiency of 0.53 ± 0.03 includes the wavegide in- and out-
coupling losses and transmission of the filter that blocks the
pump field (see Fig. 4).

We define the internal conversion efficiency as conver-
sion efficiency without coupling and transmission losses. It
is calculated as the ratio of the mean photon number in the
output-converted 1550 nm field to the mean photon number in
the transmitted unconverted 854 nm field without conversion
(the latter was measured by switching off the pump light).
We observe at best alignment 89(0.5)% internal efficiency
for the up-conversion and estimate a waveguide coupling and
propagation efficiency of 70(5)%, limited by the mismatch of
the out-coupler of the delay fiber and the in-coupler of the con-
version waveguide. For the down-conversion, the performance
was reported in Ref. [31] and yields 66(6)% internal efficiency
if the waveguide in-coupling and propagation losses are taken
into account according to the definition above. This efficiency
was shown to be limited by the unintentional excitation of
higher-order waveguide modes. In order to prove that the
up-conversion coupling and propagation efficiency of 70(5)%
is dominated by coupling, we performed a separate measure-
ment with adjusted 1550 beam diameter before the waveguide
in-coupler and achieved 82(3)% efficiency calculated as the
ratio of the number of photons at 854 nm wavelength right
after the waveguide to the number of 1550 nm photons right
before the waveguide. Note that the external and internal up-
conversion efficiencies reported here are higher than the ones
achieved in similar systems before [39,40].

On the day of the two-photon interference experiment us-
ing photon conversion (Fig. 3 of the main text), the total
efficiency of the delay line was measured to be approximately
5%. This lower efficiency, compared to the aforementioned
values achieved with classical light, is caused by the combi-
nation of the following: an additional fiber joiner between the
ion node and delay line [panels (a) and (b) in Fig. 4] when
working with single photons (compared to classical light), im-
perfectly optimized fiber couplers throughout the delay line,
and potential slight mismatch between the photon polarization
and the nonlinear crystal axis.

The noise, at the single photon level, introduced by the con-
version process is now presented. These values are extracted
from the photon detector click rate outside of the known ion-
photon arrival times recorded in the experiment presented in
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FIG. 5. Relevant energy level scheme of 40Ca+. Following op-
tical pumping, the ion (single outer valence electron) begins in the
state 4 2S1/2,m j=−1/2. Photons are generated via a cavity-mediated
Raman transition (CMRT) [18,22,30,41]. In the case of detuning
δ = 0, a 393 nm Raman laser pulse leads to the generation of a
horizontally polarized |H〉 photon in the optical cavity and the elec-
tron ends up in the state 3 2D5/2,m j=−3/2. In the case of a different
appropriate detuning δ = 7.107(1) MHz to match the D-state Zee-
man splitting (achieved by change of frequency of the Raman laser)
a vertically polarized |V 〉 photon is generated in the optical cavity.
Here H stands for the linear polarization along the B-field quantiza-
tion axis (π photons). The V polarization stands for the orthogonal
linear polarization, produced by the projection of the σ -polarized
photons into the plane perpendicular to the cavity direction (and
perpendicular to the B-field quantization axis). The overall detuning
� = 403 ± 5 MHz.

Fig. 3 of the main text. Recall that final narrow-band filtering
is performed at 854 nm via a temperature-controlled etalon
(bandwidth 870 MHz, free spectral range 30 GHz) that has
a maximum transmission of 84%. We observed 13.3 ± 0.7
background counts per second (cps) on each of the detec-
tors, where 11 ± 3 cps was independently measured to be the
conversion-pump-induced noise and the detectors’ dark count
rate is <0.5 cps. From this and the known losses in the optical
path between the etalon and the detectors we estimated the
conversion photon noise level of 50 ± 10 s−1 right after the
final etalon filtering stage.

APPENDIX C: PHOTON GENERATION SEQUENCE

We sequentially generate photons of orthogonal polariza-
tions using a cavity-mediated Raman transition (see Fig. 5)

with ion state reinitialization in between. The full experimen-
tal sequence is shown in Fig. 6. First, a 40 μs “initialization”
laser pulse at 393 nm is measured by a photodiode in
transmission of the ion-trap chamber and used for intensity
stabilization of the subsequent 393 nm photon generation Ra-
man pulses with a sample-and-hold system. The initialization
pulse is followed by 2000 μs of Doppler cooling, involving
three laser fields as indicated. Next, a cycle starts in which
the photon-pair generation attempt takes place. This cycle is
repeated (looped) 40 times before the whole sequence starts
again.

In summary, each cycle contains four Raman pulses—V1,
H1 and V2, H2—which attempt to generate the two pairs of
photons that are refereed to as “synchronous” and “asyn-
chronous” in the main text. The first, synchronous pulse pair
(V1, H1) has a time difference of 13.35 μs, corresponding to
the length of the delay line, such that the generated photon
wave packets arrive at the interference beam splitter simul-
taneously (the delay was measured with <50 ns accuracy by
recording the photon arrival times). The second, asynchronous
pulse pair (V2, H2) has an additional delay twait and generates
a fully temporally distinguishable photon pair as a reference
(twait = 30 μs). Before the V1 pulse in each loop we produce
an electronic trigger pulse that is recorded on a separate chan-
nel of the time tagger, along with the photon detection events,
to provide exact Raman pulse timing information.

In detail, each cycle starts with an additional
Doppler-cooling pulse (20 μs) and optical pumping to
the SJ=1/2,mj=−1/2 (see Fig. 5) state via circularly polarized
397 nm laser light (46 μs). The photon generation Raman
pulse V1 (9.4 μs, constant up to 1% variation intensity,
with rise and fall slope duration <0.5 μs) creates the
vertical polarized photon that is directed to the delay line
by a polarizing beam splitter (PBS). This is followed by a
4-μs-long, 854 nm repump pulse which pumps the ion back
to the initial ground state. A second photon generation Raman
pulse H1 (9.4 μs, same profile as V1) creates a horizontal
photon that is directed directly to the interference region.
After a Doppler-cooling pulse of 20 μs and optical pumping
of 46 μs, the second pair of photons is produced.

APPENDIX D: DATA ANALYSIS

During the experimental run we record the absolute time
stamps of two detector events D1 and D2, and of an elec-
tronic trigger pulse generated simultaneously with V1 at time
t1 in each cycle (see Fig. 6). We then work in a time
frame referenced to the trigger pulse. In this frame the
photon arrival times are grouped into three time windows:
the first group contains the overlapped synchronous photons

FIG. 6. Sequence of the laser pulses during the experiment. Wavelengths and duration of pulses are labeled. Each cycle (what is shown
within the loop) contains four Raman laser pulses, which attempt to generate four photons. The first two are referred to as the synchronous
pair and the second pair as the asynchronous pair. Each cycle is looped 40 times and this sequence is repeated thousands of times to produce
the data presented in the main text.
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(generated by V1 and H1), the second group contains the first
of the time-displaced “asynchronous” photons (V2, through
the delay line), and the third group contains the later asyn-
chronous photon (H2, direct path). In Fig. 2(a) of the main text
we sum up the data for two detectors and plot separately the
probabilities of events corresponding to (windows containing)
V2 and H2. This is done by shifting the distributions in time by
a fixed offset t (t + twait) for V2 (H2), with t being the delay
between the trigger pulse and the expected V2 photons’ front
slope; twait is the known additional wait time (30 or 40 μs
in different realizations). We plot the detection-probability-
density (see main text), defined as the number of events
detected in a certain time bin during the experiment divided by
the number of trials and bin duration. The error bars represent
±1 standard deviation of Poissonian photon-counting statis-
tics. The subtraction of background counts was performed for
a correct efficiency comparison of the two paths.

To plot the coincidence distribution [Figs. 2(b) and 3(b) of
the main text] we first choose a time window (software gate)
where the corresponding photons are expected to arrive based
on sequence timing and the histogram of all recorded events.
Then we calculate the probability density ρc(D1(t1), D2(t2))
of observing a two-photon detection event in a given trial
as a function of the detection time difference τ = t2 − t1.
The plotted values in the figures are calculated as ρc(τ ) =

1
�t k

∫
gate dt1

∫ t1+τ+�t

t1+τ
dt2N (t1, t2) where N (t1, t2) is the number

of two-photon clicks with given times, �t is the bin size in the
figure, and k is the total number of attempts. The error bars for
each point in the figures are calculated from the total number
of events detected for this bin assuming Poissonian statistics.
The coincidence distribution for the distinguishable photons
(from V2, H2), originally peaking at τ = ±twait, is shifted to
τ = 0 and summed over positive and negative branches to
represent the expected coincidence distribution for the fully
distinguishable but synchronized photons.

Given the coincidence distribution in time we define the
visibility [plotted in Figs. 2(c) and 3(c) of the main text] as

V (T ) = C⊥(T ) − C‖(T )

C⊥(T )
, (D1)

where C⊥(T ) [C‖(T )] are the coincidence probabilities for
the distinguishable (overlapped) pair of photons plotted in
Figs. 2(b) and 3(b) of the main text integrated over the delay
range τ ∈ [−T ; T ]: C(T ) = ∫ T

−T ρc(τ )dτ .
For the passive delay-line experiment (without conversion)

we perform in total 7.5 million cycles, where each cycle cor-
responds to one loop (cycle) in Fig. 6 (attempt to generate four
photons). The experiment with frequency conversion consists
of a total of 2.5 million cycles.

APPENDIX E: THEORY MODEL

1. The master equation

We start by writing down a master equation for a single
40Ca+ ion trapped inside a cavity and driven by a pump
laser. We restrict the atomic model to a � system formed
by three levels |s〉, |p〉, and |d〉 (see Fig. 7) corresponding to
sublevels of SJ=1/2,mj−1/2, PJ=3/2,mj=−3/2, and DJ=5/2,mj=−5/2

(or DJ=5/2,mj=−3/2) that are of direct importance for the exper-

FIG. 7. Scheme of the � system relevant for the experiment. The
transition between |s〉 and |p〉 is off-resonantly driven by a pump
laser with frequency ωL while the states |p〉 and |d〉 are coupled by
the field of a cavity with frequency ωC . The explicit expressions of
each detuning are given in the text.

iment; see Fig. 5 for details. The ion is initially prepared in the
state |s〉. The laser is driving off-resonantly the p-s transition
with a frequency ωL = ωps + � − δs, where both � and δs are
negative. We denote a, a† the bosonic operators associated to
the cavity field whose frequency is given by ωC = ωpd + �.

In the experiment, the laser Rabi frequency �t is much lower
than the detuning |�| and the state |s〉 undergoes a Stark
shift �2

t /4�. The additional laser detuning δs = �2
t /4� is

chosen to preserve the two-photon resonance between s-d.
The Hamiltonian of the atom-cavity system is given by

H = ωCa†a + ωps|p〉〈p| + ωds|d〉〈d|
+ 1

2 (eiωLt + e−iωLt )(�t |s〉〈p| + �t |p〉〈s|)
+ g(|d〉〈p| + |p〉〈d|)(a† + a), (E1)

where we have set h̄ to 1. The Hamiltonian can be simplified
by noting that the cavity mode is initially empty |0〉. There-
fore, without additional coupling terms the atom-cavity sys-
tem remains in the three-level manifold {|s, 0〉, |d, 1〉, |p, 0〉}.
Under the rotating-wave approximation, the Hamiltonian in
this subspace is thus given by

Ht =
⎛
⎝ 0 0 �t/2

0 δs g
�t/2 g −� + δs

⎞
⎠, (E2)

in the rotating frame with a† → e−iωCt a†, |p〉 → e−iωLt |p〉,
|d〉 → e−i(ωL−ωC )t |d〉, and |s〉 → |s〉.

Let us now introduce the nonunitary terms which will
appear in the master equation. First, the photon can escape
the cavity mode with rate κ . This decay channel is precisely
the one in which the photons are collected into a fiber and
sent to the detectors. Yet, for the atom-cavity system, this
process corresponds to a loss term L1 = √

2κ|d, 0〉〈d, 1|.
Note that in practice, photons can leave the cavity through
channels that are not the detected channel. This additional
cavity loss is taken into account by adjusting the photon
detection efficiency. Finally, there are two scattering terms
L2 = √

2γsp|s, 0〉〈p, 0| and L3 = √
2γd p|d, 0〉〈p, 0|. With this
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in hand, we can write down the master equation for the atom-
cavity system

̇t = −i [Ht , t ] +
3∑

i=1

(
Lit L

†
i − 1

2
{L†

i Li, t }
)

, (E3)

where t has to be defined on a four-level manifold includ-
ing |d, 0〉. Ht is extended trivially on the added level via
Ht |d, 0〉 = δs|d, 0〉; that is, |d, 0〉 is not coupled to the other
three levels. Hence, the atom-cavity system evolves in the
{|s, 0〉, |d, 1〉, |p, 0〉} manifold until it is brought to the state
|d, 0〉 either by the scattering term L3 or by emitting a photon
toward the detector via L1.

2. The photon state

We can now address the question of interest: What is the
state of the photon emitted from the cavity to the detected
mode? The photon state is computed in two steps. First, we
obtain the subnormalized wave function of a photon in the
pure state conditioned on the atom-cavity system being in the
state |s, 0〉 at time s and no scattering events L2 and L3 happen-
ing at later times. Second, we solve the full master equation
to compute the probability of a scattering via L2 happening at
time s. Such a scattering event projects the system back onto
|s, 0〉.

a. Conditional pure photon wave function

Let us start by addressing the wave function of a photon
in a pure state (pure photon) conditioned on the atom-cavity
system being in the state |s, 0〉 at time s and no scattering
events L2 and L3 happening at later times. To do so, we need to
solve the evolution of the atom-cavity system conditioned to
the case with no scattering. The Lindbladian part of the mas-
ter equation (E3) describes random noise processes affecting
the system. In particular, the term Lit L

†
i dt corresponds to a

scattering happening during an infinitesimal time interval dt .
In contrast, the conjugate term − 1

2 {L†
i Li, t }dt corresponds to

no scattering happening during dt . Its role can be thought of as
reducing the probability to find the system in the prescattered
state t+dt → t − 1

2 {L†
i Li, t }dt . Hence, to describe the evo-

lution of the system conditioned on no scattering, we drop all
the terms Lit L

†
i but keep their conjugate terms − 1

2 {L†
i Li, t }

in the master equation (E3). It is straightforward to see that
such an evolution preserves the purity of a state, and can
be written in the form of the Schrödinger equation with a
non-Hermitian Hamiltonian

˙|�t 〉 =
(

−iHt − 1

2

∑
i

L†
i Li

)
|�t 〉. (E4)

With the initial condition |�s〉 = |s, 0〉, this equation can be
solved to give the system state |�t |s〉 conditioned on the event
corresponding to no scattering at time t � s. In particular,
for a (piecewise) constant Rabi frequency, the solution reads
|�t |s〉 = e(−iH− 1

2

∑
i L†

i Li )(t−s)|s, 0〉 which can be computed nu-
merically. To obtain the amplitude of the emitted photon at a
given time we project the atom-cavity state at this time into

√
2κ〈d, 1|. In the laboratory frame, this gives

|ψs〉 =
∫ ∞

s
ψs(t ) a†

t |0〉dt,

ψs(t ) =
√

2κ e−iωCt 〈d, 1|�t |s〉. (E5)

The photonic state |ψs〉 is subnormalized. Its norm

ppure(s) = 〈ψs|ψs〉 (E6)

is precisely the probability that no scattering event happens
after time s (given the initial condition). The conditional state
thus reads |ψs〉/

√
ppure(s). One notes that ppure(0) is the prob-

ability that a photon is emitted without a single scattering
during the evolution.

b. Scattering probability

We now solve the full master equation (E3) and obtain the
atom-cavity state t for all times. Note that for a (piecewise)
constant Rabi frequency, the solution can be obtained ana-
lytically by vectorizing the master equation and the density
matrix. From this state, we compute the probability of scatter-
ing back to |s, 0〉 at time s,

P(s) = Tr(s L†
2L2). (E7)

c. The photon state

The state of the emitted photon is given by

ρ = |ψ0〉〈ψ0| +
∫ ∞

0
P(s)|ψs〉〈ψs|ds + P0|0〉〈0|, (E8)

where |ψs〉 is given in Eq. (E5) and P(s) in Eq. (E7). Let
us comment on each contribution separately. The first term
|ψ0〉〈ψ0| describes a pure photon emitted without a single
scattering (L2, L3). This happens with probability ppure(0).
The integral collects all the possibilities where the last p-
s scattering happens at time s and no scattering events
happen at later times. Any such history happens with prob-
ability P(s)ppure(s) and yields a pure photon in the state
|ψs〉/

√
ppure(s). Finally, the last term P0|0〉〈0| with

P0 = 1 − Tr

(
|ψ0〉〈ψ0| +

∫ ∞

0
P(s)|ψs〉〈ψs|ds

)

= 1 − ppure(0) −
∫

P(s)ppure(s)ds (E9)

collects the cases where no photon is emitted from the cavity.
If the laser pulse is not turned off, this term can be alterna-
tively computed as the overall probability of the p-d scattering

P0 =
∫ ∞

0
tr(L†

3L3 ρt ). (E10)

To shorten the equations we will combine the first two contri-
butions of Eq. (E8) together by defining

P̄(s) = P(s) + 2δ(s), (E11)

where δ(s) is the delta function with 2
∫ ε

0 δ(s)ds = 1. The
photon state ρ in Eq. (E8) then simply reads

ρ =
∫ ∞

0
P̄(s)|ψs〉〈ψs|ds + P0|0〉〈0|. (E12)
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d. Expected number of scattering events

Note that the average number of L2 scattering events per
experimental run is simply given by the time integral of the
scattering rate

∫ ∞

0
P(s)ds, (E13)

and equals the expected number of laser photons scattered on
the p-s transition.

3. Photon statistics

Now that we have computed the photonic state ρ emitted
from the cavity, let us consider the Hong-Ou-Mandel (HOM)
interference of two such photons, as depicted in Fig. 1 of the
main text. More precisely, we consider two photons described
by Eq. (E12) that enter the two ports of a 50:50 beam splitter
followed by two photon detectors D1 and D2. We assume
detection with unit efficiency here, and discuss the general
case in the next section.

a. Single-click rates

The probability density that a photon in the state ρ given in
Eq. (E12) triggers a click on the detector D1 (the same result
is obtained for the detector D2) at time t is given by ps(t ) =
1
2 Tr(ρ a†

t |0〉〈0|at ). Here, the 1/2 factor comes from the 50:50
beam splitter. Direct application of Eqs. (E12) and (E5) gives

ps(t ) = 1

2

∫ ∞

0
P̄(s)|ψs(t )|2ds, (E14)

where we formally set ψs(t ) = 0 for s > t here and in the
following.

b. Coincidence rates

We can now compute the twofold coincidence rate when
one photon is sent at each input of the beam splitter. For two
photons with orthogonal polarizations corresponding to states
ρa and ρb⊥ , the probability to get a click at time t1 in the
detector D1 and a click at time t2 in the detector D2 is given
by

pC⊥(t1, t2) = p(a)
S (t1)p(b⊥ )

S (t2) + p(a)
S (t2)p(b⊥ )

S (t1) (E15)

simply because there is no interference.
Next, we consider two photons with the same polariza-

tion ρa and ρb. They are respectively characterized by P̄a(sa)
with ψ (a)

sa
and P̄b(sb) with ψ (b)

sb
accordingly to Eq. (E12). The

twofold coincidence probability with the detector D1 clicking
at time t1 and the detector D2 clicking at t2 is computed
as pc(t1, t2) = Tr(ρa ⊗ ρb �t1,t2 ) where �t1,t2 is the projector
onto

1
2

(
a†

t1 + b†
t1

)(
a†

t2 − b†
t2

)|00〉, (E16)

where a†
t1 for example is the bosonic creation operator for the

input mode a at time t1, as in Eq.(E5). From Eqs. (E12) and

(E5) we find

pC‖(t1, t2) = 1

4

∫ ∞

0
P̄a(sa)P̄b(sb)

× ∣∣ψ (a)
sa

(t1)ψ (b)
sb

(t2) − ψ (a)
sa

(t2)ψ (b)
sb

(t1)
∣∣2

dsadsb.

(E17)

The integrand in the last equation reads∣∣ψ (a)
sa

(t1)ψ (b)
sb

(t2) − ψ (a)
sa

(t2)ψ (b)
sb

(t1)
∣∣2

= ∣∣ψ (a)
sa

(t1)
∣∣2∣∣ψ (b)

sb
(t2)

∣∣2 + ∣∣ψ (a)
sa

(t2)
∣∣2∣∣ψ (b)

sb
(t1)

∣∣2

− ψ (a)
sa

(t1)ψ (a)∗
sa

(t2) ψ (b)∗
sb

(t1)ψ (b)
sb

(t2)

− ψ (a)∗
sa

(t1)ψ (a)
sa

(t2) ψ (b)
sb

(t1)ψ (b)∗
sb

(t2). (E18)

The last two terms are responsible for a destructive interfer-
ence and bunching of the incident photons, which reduces the
coincidence rate as compared to the orthogonal case.

c. Visibility of the Hong-Ou-Mandel pattern

The absolute detection times t1 and t2 are not relevant
for computing the visibility of the Hong-Ou-Mandel (HOM)
interference pattern. What matters is the difference between
the detection times

τ = t1 − t2. (E19)

We define the coincidence rate as a function of this delay
between the clicks

pC‖(⊥)(τ ) =
∫

pC‖(⊥)(t2 + τ, t2)dt2. (E20)

Furthermore, we define detection window T by accepting only
the coincidence events with a delay |τ | � T falling inside this
window. For a fixed window T the HOM visibility is defined
as

V (T ) = 1 − R(T ), (E21)

where R(T ) is the ratio between the coincidence probabilities
for parallel and orthogonal polarizations with a bounded delay
|τ | < T :

R(T ) =
∫ T
−T pC‖(τ )dτ∫ T
−T pC⊥(τ )dτ

. (E22)

As mentioned after Eq. (E18), the effect of the photon
bunching on the visibility is captured by∫ T

−T
dτ

∫
dt2 ψ (a)

sa
(t2 + τ )ψ (a)∗

sa
(t2) ψ (b)∗

sb
(t2 + τ )ψ (b)

sb
(t2)

+ H.c.

From this equation, we see that pC‖(0) = 0. The visibility thus
increases when the detection window T is shortened. This
can be intuitively understood from the fact that narrowing the
detection window removes some of the temporal mixedness
of the photons and effectively purifies them. The price to pay
for decreasing T is that the probability

Psucc(T ) =
∫ T

−T
pC⊥(τ )dτ (E23)
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FIG. 8. A parametric plot of the Hong-Ou-Mandel visibility
V (T ) versus the success probability Psucc(T ) for different values of
the Rabi frequency �. For each curve T ∈ [0, ∞) is increasing from
left to right. All the features are computed for � = −2π × 400 MHz,
κ = 2π × 0.07 MHz, γsp = 2π × 10.7 MHz, γd p = 2π × 0.7 MHz,
and g = 2π × 1.2

√
4/15 MHz.

to observe a coincidence within the detection window de-
creases with T for orthogonally polarized photons.

4. Predictions

With such a theoretical model for the state of emitted
photons and the HOM interference pattern, we can find exper-
imental parameters facilitating the implementation of certain
tasks that are relevant for quantum networking. An interest-
ing experiment in this framework aims to entangle two ions
remotely by first creating locally ion-photon entanglement
and then performing a photonic Bell state measurement at a
central station [15,42]. Ion-photon entanglement is created by
modifying our experiment to enable the transitions from the
excited state |p〉 to two states |d〉 and |d ′〉 leading to cavity
photons with orthogonal polarizations, as we have previously
shown [18,22]. Two such photons emitted from cavities lo-
cated at different locations are then sent into a beam splitter
which is followed by two detectors. A twofold coincidence
projects the two ions into an entangled state. In such an en-
tanglement swapping experiment, the fidelity F (with respect
to a maximally entangled two-qubit state) of the two-ion state
can be shown to be proportional to the HOM visibility V [25].
Furthermore, the rate at which the entangled states are created
is related to the success probability Psucc defined in Eq. (E23).
Hence, both the visibility V and the success rate Psucc play
an important role for the entanglement swapping experiment.
We thus wish to find experimental parameters maximizing the
success rate given that the visibility stays above a threshold
value (or vice versa). In particular, we focus on the impact of
the Rabi frequency � on the visibility V and the success rate
Psucc. In Fig. 8, we give a parametric plot of V and Psucc for
various detection windows T . Different curves correspond to
different values of the Rabi frequency �t = � for t � 0. We
see that in the range of small Psucc where V remains high, there

is a globally optimal Rabi frequency �opt ≈ 2π × 40 MHz
which maximizes V for all values of Psucc.

5. Extended models: Imperfections beyond scattering

In this section we discuss various imperfections that are
detrimental for the photon-counting statistics, and show how
to describe them within our model.

a. Detection efficiency

The nonunit detection efficiency is modeled by a loss chan-
nel acting on the photon state prior to detection. Since the
photonic state ρ in Eq. (E12) is a mixture of a single photon
distributed across difference temporal modes and a vacuum
component, the effect of loss is particularly simple to describe.
A loss channel with transmission rate η simply maps

P̄(s) �→ ηP̄(s), P0 �→ 1 − η(1 − P0). (E24)

The loss of cavity photons outside of the detected mode is also
equivalent to a lack of detection efficiency. In such a case, the
total cavity decay rate entering in the master equation is the
sum of the loss rate toward the detector κdet and in modes that
are not measured κloss, that is, κ = κdet + κloss. The detection
efficiency is reduced by an additional factor ηκ = κdet

κ
.

b. Mode mismatch

In practice, the two modes entering the beam splitter pre-
ceding the two detectors do not perfectly overlap, which
reduces the visibility of their interference pattern. An im-
perfect overlap of ε means that with probability ε the two
photons entering the interference will not see each other. The
coincidence rate for two photons with the same polarization
becomes

pC‖ → (1 − ε) pC‖ + ε pC⊥. (E25)

This is how we model a fixed nonzero distinguishability of the
interfering photons in order to reproduce experimental data;
see Figs. 2 and 3 of the main text.

c. Photon frequency mismatch

We here model the effect of the frequency distinguisha-
bility of the two photons arriving at the beam splitter on the
HOM-type interference experiment. We restrict ourselves to
a simple approximation where the photons have a constant
offset and a linear drift of the frequency in time

ω(t ) = ω0 + ωs + ωdt, (E26)

where ωs and ωd can be random variables over the experimen-
tal attempts. We will come to their distributions later.

In the two-photon experiment, the frequency uncertainty
affects the phase of the photonic wave function. In particular,
for the computation of the coincidence rate, we are interested
in the factor

f = 〈ei[φ1(t1 )−φ1(t2 )−φ2(t1 )+φ2(t2 )]〉, (E27)

where φ1 and φ2 are the phases of photons emitted at times
t1 and t2, and 〈· · ·〉 denotes the statistical average over the
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phases. The photon phase is the time integral of its instan-
taneous frequency

φ(t ) =
∫ t

0
ω(s)ds = ωst + ωd

t2

2
. (E28)

Given that the second photon is delayed from the first one by
a time τ, we get

[φ1(t1) − φ1(t2) − φ2(t1) + φ2(t2)]

= [φ(t1) − φ(t2) − φ(t1 + τ ) + φ(t2 + τ )]

= ωdτ (t2 − t1) (E29)

and thus

f =
∫

eiωd τ (t2−t1 ) p(ωd )dωd

= p̃(τ (t2 − t1)), (E30)

where p̃ is the Fourier transform of p(ωd ). Let us assume that
the distribution of the drift is a Gaussian with a zero mean and
an unknown variance σ 2:

p(ωd ) = 1√
2πσ

e− ω2
d

2σ2 . (E31)

In this case,

f = e− 1
2 τ 2(t2−t1 )2σ 2

. (E32)

It remains to relate σ to experimentally measured parameters.
In the experiment, we measure v(T̄ )—the average squared
deviation of the cavity frequency over a time T̄ . Under our
assumption, this quantity reads

v(T̄ ) = 〈[ω(0) − ω(T̄ )]2〉 = T̄ 2σ 2. (E33)

We obtain

f (|t2 − t1|, τ ) = e− 1
2 τ 2(t2−t1 )2 v(T̄ )

T̄ 2

≈ 1 − τ 2(t2 − t1)2v(T̄ )

2T̄ 2
.

(E34)

Finally, let us note that we do not need to assume the exact
form of the distribution p(ωd ). As long as the distribution is
symmetric p(ωd ) = p(−ωd ) and the dephasing effect is small,
we can develop the Fourier transform of the distribution p(ωd )
to the second order to get

p̃(τ (t2 − t1)) ≈ 1 − τ 2(t2 − t1)2σ 2 (E35)

as a function of a single parameter σ 2, which is expressed in
the same way as v(T̄ )/T̄ 2.

APPENDIX F: DATA MODELING

1. General principles

a. Spontaneous-scattering rates

For all modeling, the scattering rates are γpd = 2π ×
0.68 MHz and γps = 2π × 10.7 MHz (Fig. 1, main text).

b. g factors, Clebsch-Gordan factors, and
finite-temperature effects

Following [43], by adiabatically eliminating the P-state
population, the coherent part of the cavity-mediated Raman

transition (CMRT) can be described as an effective two-level
system driven with �eff = �′βg0

�+δ
. Here, �′ is the drive strength

of the CMRT (defined later), β is the product of the Clebsch-
Gordan coefficient of the 854 nm atomic transition and the
projection of the polarization plane of the cavity mode onto
the atomic dipole moment, � + δ is the detuning (Fig. 5),
and g0 is the maximum ion-cavity coupling strength. The
finite temperature of the ion after Doppler cooling leads to the
Raman laser coupling to the ion motional sidebands and thus
a reduced coupling strength on the desired carrier transition
�′ = α�. Here, α (a real number, less than 1) is the reduction
factor of the carrier drive strength and � is the Raman-laser
Rabi frequency used for the theory calculations [Eq. (E1)]
and throughout the paper. We calculate α using Eq. (3.11) of
[44] for the known (independently measured) motional state
of the ion in all directions. We define the effective ion-cavity
coupling g = αβg0, which is used for the theoretical calcu-
lations [Eq. (E1)]. For the transition to the Dmj=−5/2 state (V
photon, long path) β = √

(10/15)(1/2), where 1/2 stands for
the projection of the polarization plane of the cavity mode to
the atomic dipole moment. For the transition to the Dmj=−3/2

state (H photon, short path) β = √
4/15.

c. Calibration of experimental parameters

The maximum ion-cavity coupling strength g0 is calcu-
lated using the known cavity length and waist, and indirectly
measured by comparing photon wave-packet and genera-
tion efficiency (measured at negligible temperature, with
additional sideband cooling) to numerical simulations [43].
Both approaches give a value of g0/2π = 1.53 ± 0.01 MHz.
We calculate that the ion’s wave packet delocalization after
Doppler cooling introduces no significant (compared to α)
decrease of the ion-cavity coupling strength (the delocal-
ization is predominantly in a direction perpendicular to the
vacuum cavity standing waves). We determine � by perform-
ing 393 nm spectroscopy of the Raman resonance for different
intensities of the Raman beam and extracting the induced
AC Stark shift. The cavity detuning (� = 403 ± 5 MHz),
measured with a wavemeter, is the frequency difference of the
393 laser when tuned on resonance with the S-P transition and
when tuned to the Raman resonance condition. The lifetime of
the P state limits the precision of this measurement.

We determine the mean phonon number of each motional
mode of the ion by performing Rabi flops on the 729 (S1/2 →
D5/2) transition and fitting the observed dependence of the ex-
citation probability on the pulse length with a model that takes
into account the ion temperature (for details see [44]). Flops
are taken with two different 729 nm laser beam directions,
allowing the temperature in different motional modes to be
distinguished.

2. Modeling in Figure 2

a. Ideal model

For the theory curves presented in Fig. 2 of the main
text, we experimentally determine �/2π = 63.5(5) MHz,
�/2π = 403(5) MHz. The coupling-reducing factor α =
0.75(2) [g/(2πβ ) = 1.1 MHz] was calculated from a mean-
phonon-number of 14 on the axial mode (ωax = 0.9 MHz)
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and a mean phonon number of 6 on the radial mode (ωrad =
2.4 MHz).

b. Extended model

For the extended-model curves in Fig. 2 we model the
frequency mismatch as a constant frequency offset according
to Eq. (E26), with ωs/2π = 40 kHz, ωd = 0 (from best match
to the experimental data).

Due to the excess of distinguishability in the experiment
compared to theory even for the smallest coincidence window
T , an additional constant distinguishability of ε = 0.01 was
introduced into the model, according to (E25). This could
be caused by any mode mismatch, e.g., imperfect photon
polarizations at the final beam splitter due to an imperfectly
aligned PBS and slight imperfections in the beam splitter
itself. The effect of background coincidences [due to dark
counts, background light, imperfect g(2)(0)] was measured to
be at the 5 × 10−4 level and was neither subtracted from the
experiment data nor taken into account in the model.

3. Modeling in Figure 3: Frequency-converted case

a. Ideal model

For the theory curves presented in Fig. 3 (main text) we
determine �/2π = 64.3(5) MHz, �/2π = 403(5) MHz. The
coupling reducing factor α = 0.69(2) [g/(2πβ ) = 1.05 MHz]
was determined from the best fit of the simulated photon wave
packet. This value is lower than the value expected from the
temperature calibration measurement before the experiment
[g/(2πβ ) = 1.15 MHz] which could be caused by slight drift
of the Doppler laser cooling parameters.

b. Extended model

As in the case of the experiment without conversion, the
discrepancy of theoretical and experimental visibilities, which
depends on the coincidence window size, is attributed to the
photons’ frequency mismatch. When implementing photon
frequency conversion before and after the delay line, the effect
of the frequency instability of the unstabilized conversion
pump laser (1902 nm) has to be taken into account and is the
dominant effect. In our implementation there is a significant
optical path length difference of ∼15 μs (the whole delay
line) between the pump laser field and the photon (see Fig. 4).
In that case any laser frequency drift on this timescale will
result in a frequency mismatch of the short and long path
photons at the interference beam splitter. Note, however, that
the constant (in time) part of the pump-laser frequency is
expected to cancel out since the down- and up-conversion
processes are symmetric. Based on the laser specification we
expect ∼50 kHz instability on a 10 μs timescale, making it
the dominant source of frequency mismatch.

To plot the extended-model curves in Fig. 3 we use (E33)
with v(10 μs) = 2π × 50 kHz and take into account the
measured background coincidence rate by adding a con-
stant coincidence probability density of 0.8 × 10−6 μs−1

[Fig. 3(b)]. The extended theory lines of Fig. 3(c) are cal-
culated by integrating the coincidence distributions including
this background floor. The background coincidences are sig-
nificant in the experiment with conversion because the signal
level is 5 times lower. Also, the observed free-running noise
counts were 13(2) cps compared to 2(2) cps per detector for
the experiment without conversion due to the photon noise
introduced by the frequency conversion process.
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