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MATERIALS & CORROSION

Material selection

1950 1970 1990 2010 2030 2050 2070 2090 

First facilities
Power plants

New facilities
Generation IV and Fusion

Life time (Power & other plants, …)
Long term prediction (HLNW disposal)
High temperatures (innovative materials)

Failures investigations
Performance increases

Nuclear 
Waste

disposal

Reprocessing

Source : CEA

NUCLEAR MATERIALS: from yesterday to tomorrow
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MAIN ALLOYS USED IN PWRS

Evolution of the alloys due to corrosion issues

Carbon steels
Ferritic steels
Stainless steels
Nickel base alloys

Cladding: Zirconium alloys

Structural  alloys: steels and nickel base alloys

From Pugh & Nisbet reported by R. Staehle & P. Scott
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CORROSION ISSUES 
AND PWR SAFETY BARRIERS

1- Fuel cladding : corrosion of zirconium alloys limits the 
residence time of fuel materials 

2- Reactor coolant boundaries : pressure vessel 
(irradiation damages) is limited by irradiation 
damages, while stress corrosion cracking of the 
nickel base alloys tubes of the SG limits the life 
time of steam generators

3- Reactor containment : concrete 
and reinforced concrete evolution 
(repairs possible)
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OPERATIONAL EXPERIENCE & CORROSION

Events of Interest for Safety of French PWRs (IRSN, 2010)

Most degradation is caused by 
Flow Accelerated Corrosion (FAC).
Stress Corrosion Cracking (SCC) 
is highly generic and has a large 
impact on safety because it 
appears in the second containment 
barrier.

Main Degradation Mechanisms leading to NPPs shutdown (R. Killian,1995-2005)

Two main dominant mechanisms:
- Flow accelerated corrosion (FAC) 

and 
- Stress Corrosion Cracking (SCC)

- Pipes and internals
- SG tubes 

MIC
5,3%

galvanic corrosion
1,1%

H ind cracking
1,1%

Corrosion
18,7%

FAC
33,6%

SICC
1,7%

Ni Alloys
8,6%

IGSCC SS
12,2%

IGSCC sens
0,3%

TGSCC
15,9%

Pitting
1,4%

From P. Scott



PRIMARY CIRCUIT : 

PIPES & INTERNALS
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PRIMARY CIRCUIT: PIPES AND INTERNALS

Stainless steels are widely used in PWR primary circuits

From R. Staehle
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FIELD EXPERIENCE OF AUSTENITIC STAINLESS 
STEELS IN PWR PRIMARY WATER (SCC)

Practical experience shows that de-oxygenated, hydrogenated PWR 
primary water does not cause SCC. The reason is clearly related to the 
dissolved hydrogen in PWR primary circuits, which ensures that any 
radiolytic decomposition products of water are efficiently scavenged (unlike 
in BWRs on Normal Water Chemistry).

9

Stress corrosion cracking has 
been experienced on 
unirradiated stainless steels : 
- Low number of events
- 83% of the events occurred 

in low flow or stagnant 
(“occluded”) zones.

- 17% occurred in nominally 
free-flow conditions and 
have been associated with 
cold work and excessive 
hardness (>300 HV)

From Ilevbare & al., 2010
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INTEGRITY OF PWR INTERNALS (IASCC)

Extreme environment (irradiation, 
higth temperatures, …) for stainless steels

Irradiation assisted 
corrosion (IASCC) Life time

Objectives: to understand, to anticipate and to predict the degradation of PWR internals .

�Preventive maintenance for the replaceable components
�Extension of the operation time of the current PWRs (up to 60 years)
�Understanding the degradation phenomena
�Improvement for new PWRs (materials & design)

Upper internals

Lower internals
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Cloisons
(304 L)

Vis
(316)

CORROSION MECHANISMS OF PWR INTERNALS (IASCC)

PWR primary water: 155 bar, 300-340°C, 30ccH2/kgH20, 2 ppm Li, 1000ppm B 

� Irradiated Assisted Stress Corrosion Cracking 

� Cracking linked to the evolutions of the environment
(radiolysis) and the materials (damages) due to irradiation

� Major influence of the dose rate

STEAM GENERATOR TUBES

EVOLUTION OF THE MATERIAL LINKED
TO CORROSION ISSUES

ALLOY 600|  PAGE 12

CEA | 10 AVRIL 2012
From http://de.areva.com

C ≤ 0,15 % Cr  = 14-17 % Fe = 6-10 % Mn ≤ 1% Si ≤ 0,5 % Ni  > 72 %
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1953: Stress Corrosion Cracking occurred in 
the stainless steel tubing of the steam 
generator  of the prototype for the Nautilus. 
SCC failures occurred on the secondary 
surfaces of the tubes.

By 1957, H. Copson at INCO had 
demonstrated that the Stress corrosion 
cracking of Fe-Cr-Ni alloys, when exposed to 
boiling MgCl2, would stop above about 40% 
Ni. 

Inconel 600

Time to failure of 
laboratory alloys (1963)

STRESS CORROSION CRACKING OF SG TUBES
HISTORICAL PERSPECTIVES
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1959: Coriou et al. published that Alloy 600 (75% Ni & 15% Cr) is sensitive to SCC 
in “pure” water at 350°C.

“Coriou effect”

Intergranular oxidation on Alloy 600
(350°C, pure deoxygenated water, 3 months)Intergranular SCC of Alloy 600 (350°C, 

pure deoxygenated water) – 3 months

HISTORICAL PERSPECTIVES OF ALLOY 600 SCC: 1959
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Stress corrosion cracking susceptibility by CORIOU

SCC susceptibility as function of the nickel content (Coriou’s work –
summary 1967) 

Work done with a series of laboratory alloys Fe-18%Cr-Ni with various Ni 
content
Pure water and solution with 0.1% NaCl / 350°C / 6 months / 1.2 and 1.7 
E0.2

HISTORICAL PERSPECTIVES OF ALLOY 600 SCC
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HISTORICAL PERSPECTIVES OF ALLOY 600 SCC
1960-1985
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TODAY SCC PHASES & INVESTIGATIONS

Incubation: Passive film formation and evolution

Initiation: Film rupture & Intergranular oxidation

Propagation: Internal oxidation & Hydrogen

Incubation                 I     Initiation

Staehle, page 63
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8 février 
2017

M. Sennour & al, JNL, 393 (2009) 254-266
P. Laghoutaris & al. , JNM 393 (2009) 254–266
C. Guerre & al., Environmental Degradation, TMS, 2011, 1477-1488

INITIATION – GRAIN BOUDARY OXIDATION

Laghoutaris, page 319
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Two series of experiments were done, in which the specimens are exposed to:
– a PWR primary medium in which the water is replaced by deuterated water D2O (D 
content 97.90%) , pressurized by classical hydrogen gas (H2)
– a classical primary medium (with H2O), pressurized by deuterium gas (D2) (D 
content 99.05%). 

H2O / D2 D2O /  H2

ORIGIN OF THE ABSORBED HYDROGEN IN NI ALLOYS

Hydrogen absorption is associated with the cathodic reaction
(H2O + e- � 1/2H2 + OH-)

F. Jambon & al., Journal of Nuclear Materials 414 (2011) 386–392
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� Large progress on mechanisms

� Steam generator tubes are no longer made of Alloy 600 MA 
or alloy  600TT

� Good behavior of Alloy 690 and Alloy 800 linked to the 
higher chromium content

STRESS CORROSION CRACKING OF NI ALLOYS

Internal oxidation model with an eventual influence  of the cathodic 
hydrogen in  grain bound

Artist’s view of the Coriou’s crack, 
by Juliette Plisson



PWR SECONDARY CIRCUITS

FLOW ACCELERATED CORROSION 
(FAC) & CARBON STEELS

|  PAGE 21
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BRIEF HISTORICAL BACKGROUND OF FAC
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Electrochemical based phenomena accelerated by flow rate 
(and not mechanically – erosion / abrasion)

Metallic materials in contact with liquid water at high flow rates
Carbon steels  (CS) or low Alloyed Steels (LAS) covered with a protective 
layer  magnetite / hematite  (passive layer)
Stationary conditions: Vfilm formation = Voxide dissolution
High flow rate

Oxide dissolution is faster
Oxide film thickness is decreasing
Corrosion rate is increasing

FLOW ACCELERATED CORROSION - FAC

“BASIC UNDERSTANDING”

Low pressure reheaters: CS tubes

27 000 h, 184°C (two phase flow) Inside tubes
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FAC: IMPORTANCE OF THE CHEMICAL
CONDITIONNING

The flow accelerated corrosion rate decreases when pH 
increases (iron solubility decreases when pH increases)

Importance of the chemical agent (linked to the formation of 
complexes)

pH (25°C)
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IMPORTANCE OF THE CHROMIUM CONTENT IN THE STEEL

With only 0,5% of chromium in the steel, the FAC rates 
are decreased by a factor of 10 at least 
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MAJOR COUNTERMEASURES TO FAC IN POWER PLANTS

�Importance of the design of the components, modeling and prediction of 
degradations (COMSY, BRT-CICERO, WATHEC, CHECWORKS…)  
coupled with non-destructive examinations.

From S. Uchida & al., FAC2013



CONCLUSION

MODELLING & SIMULATION

Corrosion issues lead to evolutions of materials
• SG tubes: Alloy 600 to Alloy 690
• FAC: from carbon steels to low alloyed steels

(LAS – less than 1%Cr)

|  PAGE 27
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High temperature oxydation (EKINOX)

Diffusion-Poisson coupled
model DPCM

Stress 
corrosion 
cracking

Cellular Automata

Echelles

Diffusion du Ni 
dans une couche 

de passivation

Atome Mésoscopique Macroscopique

Oxydation du Ni

⇒⇒⇒⇒Needs to replace semi-empirical models by more phen omenological models 
⇒⇒⇒⇒Multiscale modeling is then needed
⇒⇒⇒⇒Strategy for homogenization & harmonization 

Intergranular
Corrosion
(CIANS)

MULTISCALE MODELING

PACTOLE,
OSCAR,
ALCYONE
….
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• Molecular dynamic simulation: LAMMPS
• Interatomic potential: EAM (type)
• 750 000 atoms (Ni)

Ductile crack without  H

Brittle crack with H

SCC: Influence of hydrogen on crack propagationSCC: Influence of hydrogen on crack propagation

P. Arnoux, Corrosion Science 52 
(2010) 1247–1257

Confirm by Cornell & Zamora, Physical Review B, 
060101 (R) 2012,  

P. Laghoutaris & al. , JNM 393 
(2009) 254–266

Atomistic simulation / role of hydrogen
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Atomistic simulation of oxidation & experimental observations in agreement

From B. Diawara & Al., Winter 
School, Modelling of corrosion, 
December 2011 Same results on Cr

N.K. Das & T. Shoji, SNA –MC, Paris, November
2013

Molecular simulation of the oxidation by water of N i 
(hydrogen in the metal from the cathodic reaction)

Molecular simulation of the oxidation by water of N i 
(hydrogen in the metal from the cathodic reaction)

H

Atomistic simulation / role of hydrogen
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Atoms & molecules by Juliette Plisson
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