

Properties of vacancy clusters in FeMnNi alloys for the parameterization of OKMC models

L. Messina, M. Chiapetto, C. Becquart, C. Domain, P. Olsson, P. Efsing, L.

Malerba

► To cite this version:

L. Messina, M. Chiapetto, C. Becquart, C. Domain, P. Olsson, et al.. Properties of vacancy clusters in FeMnNi alloys for the parameterization of OKMC models. International Group for Radiation Damage in Materials (IGRDM-19), Apr 2016, Asheville NC, United States. cea-02435105

HAL Id: cea-02435105 https://cea.hal.science/cea-02435105

Submitted on 10 Jan2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IGRDM-19, Asheville NC April 11th-15th 2016

Properties of vacancy clusters in FeMnNi alloys for the parameterization of OKMC models

<u>L. Messina^{a,b}</u>, M. Chiapetto^c, C. Becquart^d, C. Domain^e, P. Olsson^b, P. Efsing^{b,f}, L. Malerba^c

^a CEA Saclay, Service de Recherches de Métallurgie Physique (France)
^b KTH Royal Institute of Technology, Reactor Physics (Sweden)
^c SCK•CEN, Nuclear Materials Science Institute (Belgium)
^d Université de Lille 1, Unité Matérieux et Transformations (France)
^e EDF-R&D, Département Matérieux et Mécanique des Composants (France)
^f Vattenfall AB, Sweden

III PhD thesis on modeling of Mn-Ni-Si clusters in RPV steels III "Multiscale modeling of atomic transport phenomena in ferritic steels" L. Messina, KTH Royal Institute of Technology (December 2015) Asheville, April 12th 2016 Contact: me

Contact: messina@kth.se

PhD thesis summary

Systematic vacancy drag at 300°C

Solute-defect flux coupling in dilute alloys Fe(X), X = Cr, Cu, Mn, Ni, P, Si (and many more)

- 1. Solute transport by vacancy drag (Cu, Mn, Ni, P, Si) and single dumbbells (Cr, Mn).
- 2. Predicition of radiation-induced segregation profiles.
- 3. Effect of strain fields on solute transport next to dislocation lines.

Modeling of solute transport in kinetic Monte Carlo (KMC) simulations

- 1. Properties of vacancy-solute clusters in FeMnNi alloys.
- 2. Prediction of energy barriers by DFT-aided artificial neural networks.
- 3. Microstructure evolution simulation of high-Mn, high-Ni RPV steels (Ringhals).

PhD thesis summary

Systematic vacancy drag at 300°C

Solute-defect flux coupling in dilute alloys Fe(X), X = Cr, Cu, Mn, Ni, P, Si (and many more) PRESENTED AT IGRDM-18

- 1. Solute transport by vacancy drag (Cu, Mn, Ni, P, Si) and single dumbbells (Cr, Mn).
- 2. Predicition of radiation-induced segregation profiles.
- 3. Effect of strain fields on solute transport next to dislocation lines.

Modeling of solute transport in kinetic Monte Carlo (KMC) simulations

This presentation

- 1. Properties of vacancy-solute clusters in FeMnNi alloys.
- 2. Prediction of energy barriers by DFT-aided artificial neural networks.
- Microstructure evolution simulation of high-Mn, high-Ni RPV steels (Ringhals).
 Lorenzo's presentation

Interstitial loops \Leftrightarrow MNSPs

Introduction

- Objective: parameterization of object KMC simulations of RPV microstructure evolution.
- Two alloys: model Fe-C-MnNi alloy^[1] and Ringhals RPV steel^[2].

 Parameterization of all objects. 		Size	Pref ^{mig}	E ^{mig}	Prefdiss	Ediss
		1	8.1e13	0.31 eV	-	-
MOBILITY	STABILITY	2	3.4e14	0.42 eV	6e12	0.30 e\
Probability of migration*	Probability of dissociation	3	1.2e13	0.42 eV	6e12	0.30 e\
		4	1.2e13	0.80 eV	6e12	0.30 e\
		5	1.6e12	0.10 eV	6e12	0.30 e\

- Solutes can be introduced explicitly or with a "gray-alloy" approach.
- Usual techniques: kinetic Monte Carlo, molecular dynamics, ab initio with mean-field treatment. [1] M. Hernández-Mayoral *et al.*, J. Nucl. Mat. **399** (2010).

[1] M. Hernández-Mayoral *et al.,* J. Nucl. Mat. **399** (20 [2] P. Efsing *et al.,* J. ASTM Int. **4** (2007).

L. Messina et al., IGRDM-19 Asheville, April 10-15th 2016

Defect clusters in FeC

V. Jansson et al., J. Nucl. Mat. 443 (2013)

- D. Terentyev *et al.*, Phys. Rev. B **75** (2007) N. Anento *et al.*, Mod. Sim. Mat. Sci. Eng. **18** (2010)
- Molecular dynamics simulations.
- Postulated substantial slowdown for n >

L. 90-ssina et al., IGRDM-19 Asheville, April 10-15th 2016

- N. Castin et al., J. Nucl. Mat. 429 (2012).
- Atomistic KMC simulations with neural network prediction of migration barriers, based on molecular dynamics database.

INTERSTITIALS

- Mobility reduction due to strong attractive interaction between interstitial clusters and Mn, Ni.
- In analogy to effect of Cr on interstitial clusters in Fe^[1].

 $D^{ ext{FeMn}}$

Cluster-solute binding energy (DFT calculations by C. Domain):

Vacancy clusters in FeC-MnNi

VACANCIES

- "Arbitrary" reduction of vacancy cluster mobility (and immobilization for n > 10) to match experimental characterization of FeMnNi alloy.
- Same assumption works also for Ringhals steels (Lorenzo's previous presentation).
- Possible explanations: effect of Mn/Ni solutes OR vac-Mn-Ni interaction with carbon traps.

L. Messina et al., IGRDM-19 Asheville, April 10-15th 2016

Atomistic KMC method

0.24 nm

V-Cr

V-Cu

V-Mn

V-Ni

V-P

V-Si

Vacancy-solute pairs

FROM AB INITIO DATA!!

Cez

Mobility of $V_x Mn_y Ni_z$ clusters

Stability and mobility of a di-vacancy in a random Fe-MnNi alloy

- Presence of Ni atoms has strong immobilizing effect.
- Presence of Mn atoms increases the probability of dissociation (because of strong V-Mn binding).
- Functions $E^{m/d} = f(x_{Mn}, x_{Ni})$ to be directly implemented in OKMC code.

C22

VACANCY CLUSTERS Migration frequency

Conclusions

• The properties of vacancy clusters in FeMnNi were calculated by means of atomistic kinetic Monte Carlo simulations.

- Mn transport in Fe alloys is more efficient than Ni and Si.
- Mn seems to have a stabilyzing effect on vacancy clusters, whereas Ni contributes more to the slowdown.

• The current calculations do not confirm a slowdown of vacancy clusters as strong as assumed by Lorenzo's OKMC model. Effect of vacancy-carbon(-solute) complexes?

THANKS FOR YOUR ATTENTION!

messina@kth.se

Publications

- L. Messina, M. Nastar, T. Garnier, C. Domain, P. Olsson, *Exact ab initio transport coefficients in bcc Fe-X dilute alloys,* Physical Review B **90**, 104203 (2014).
- L. Messina, L. Malerba, P. Olsson, *Stability and mobility of small vacancy-solute complexes in Fe-MnNi and dilute Fe-X alloys: A kinetic Monte Carlo study*, Nuclear Instruments and Methods in Physics Research B **352**, 61-66 (2015).
- L. Messina, *Multiscale modeling of atomic transport phenomena in ferritic steels*, PhD Thesis, KTH Royal Institute of Technology (2015).
- L. Messina, M. Nastar, N. Sandberg, P. Olsson, *Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron*, accepted for publication in Physical Review B (2016).
- L. Messina, M. Chiapetto, P. Olsson, C. Becquart, L. Malerba, *An object kinetic Monte Carlo model for the microstructure evolution of neutron-irradiated reactor pressure vessel steels*, accepted for publication in Nuclear Instruments and Methods in Physics Research B (2016).

Acknowledgments

- Financial support from Vattenfall AB, Göran Gustafsson Stiftelse, MatISSE and SOTERIA FP7 European projects.
- Computational power from SNIC, CSCS, EDF.
- Host institutions: KTH, CEA, EDF, SCK-CEN.
- Collaborators:
 - M. Nastar, T. Garnier, F. Soisson, T. Schuler (CEA)
 - C. Domain (EDF)
 - N. Castin, L. Malerba, M. Chiapetto (SCK-CEN)
 - C. Becquart (Université de Lille)

Financial support from: Vattenfall AB, Göran Gustafsson Stiftelse, MatISSE and SOTERIA FP7 EU projects

