

Simultaneous estimation of groundwater recharge and hydrodynamic parameters for groundwater flow modeling

F. Hassane Maina, P. Ackerer, Olivier Bildstein

▶ To cite this version:

F. Hassane Maina, P. Ackerer, Olivier Bildstein. Simultaneous estimation of groundwater recharge and hydrodynamic parameters for groundwater flow modeling. SAMO 2016 - International Conference on Sensitivity Analysis of Model Output, Nov 2016, Le Tampon, France. cea-02435102

HAL Id: cea-02435102 https://cea.hal.science/cea-02435102

Submitted on 10 Jan2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

SIMULTANEOUS ESTIMATION OF GROUNDWATER RECHARGE AND HYDRODYNAMIC PARAMETERS FOR GROUNDWATER FLOW MODELING

Fadji HASSANE MAINA (Université de Strasbourg) Philippe ACKERER (Université de Strasbourg) Olivier BILDSTEIN (CEA Cadarache) DE LA RECHERCHE À L'INDUSTR

INTRODUCTION

The hydrologic cycle

♣

- **Groundwater (aquifers)**: 3rd freshwater reservoir on the planet
- Replenished essentially by precipitation through groundwater recharge

♣

INTRODUCTION

- **Groundwater (aquifers)**: 3rd freshwater reservoir on the planet
- Replenished essentially by precipitation through groundwater recharge
- The main available water resources for many countries
- Threatened by pollution and over-exploited

> Usually described by models Simulations of piezometric levels (Hydraulic heads)

Physical Models are widely used

1. Continuity equation (mass conservation): $S \frac{\partial H}{\partial t} + \nabla q = q_s$

2. **Darcy's law** (computation of fluxes): $q = -K\nabla H$

Diffusivity equation (flow equation): $S \frac{\partial H}{\partial t} - \nabla [K\nabla H] = q_s$

Values of H knowing S, K and $q_s \rightarrow S$ and K are constant, q_s includes groundwater recharge

DE LA RECHERCHE À L'INDUSTRI

Cez

GROUNDWATER RECHARGE

Recharge : water transfer from precipitation to groundwater

© Groundwater flow models: Sophisticated and accurate

- ⊗ Recharge modeling: Challenge
 - Complex hydrological component

Groundwater recharge depends on:

- Climatic conditions
- Vegetation
- Soil and root zone
- Unsaturated zone

DE LA RECHERCHE À L'INDUSTRI

Ces

GROUNDWATER RECHARGE

Recharge : water transfer from precipitation to groundwater

© Groundwater flow models: Sophisticated and accurate

⊗ Recharge modeling: Challenge

• Complex hydrological component

Groundwater recharge depends on:

- Climatic conditions
- Vegetation
- Soil and root zone
- Unsaturated zone

Values can not be directly measured

- Direct methods: lysimeters, TDR
- Empirical methods
- Tracers

Mathematical models

RECHARGE ESTIMATION: COUPLED MODEL

Simulation of flow in both unsaturated and saturated zones

NASH MODEL

Nash parameters: RUMAX, RN, TAU

PARAMETERS ESTIMATION

- Ø Model uses constants called parameters
- ⊗ Aquifers are highly heterogeneous → Parameters are not known accurately or even unknown in natural environments

\otimes Correlation between recharge and storage capacity (S and q_s)

Calibration is performed over time and space \odot

But... recharge is variable over time while the storage capacity is constant \odot

When $q = 0 \rightarrow 0 = -K\nabla H \rightarrow$ Determination of K When $q \neq 0 \rightarrow$ Determination of q knowing K

Global sensitivity analysis \odot Assess the calibration approach and guide the parameter estimation

GLOBAL SENSITIVITY ANALYSIS

Uncertain parameters: variability ranges known in Quantify the effects of parameters uncertainty

Global sensitivity analysis: focuses on the output uncertainty over the entire range of values of the input parameters both single and in combination with one another

CLASS SOBOL INDICES : CHAOS POLYNOMIAL EXPANSION

Let us consider a model with y as output and n input parameters, X the parameters vector

> ANOVA decomposition :
$$y = f_0 + \sum_{i=1}^n f_i(x_i) + \sum_{j>1}^n f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,n}(x_1, x_2, \dots, x_n)$$

f_i : contribution of single parameter i to the output

 \boldsymbol{f}_{ij} : contribution of the combined effect of parameters i and j to the output

$$H = H_0 + f_s(S) + f_K(K) + f_{RN}(RN) + f_{RN,K}(RN,K) + f_{S,K}(S,K) + \dots$$
Orthogonality of f
$$V = \sum_{i=1}^n V_i + \sum_{j>1}^n V_{ij} + \dots + V_{1,\dots,n}$$
> Sensitivity (Sobol) Indices : $S_i = \frac{V_i}{V}; S_{ij} = \frac{V_{ij}}{V}$
Computation of f
Polynomial expansion

Chaos polynomial expansion

$$y = \sum_{j=0}^{+\infty} a_j \psi_j \left(x_1, \dots, x_n \right)$$

- x : variable
- Ψ : orthogonal polynomial (Legendre, Hermite)
- a : coefficients determined by least squares regression

Field based sensitivity analysis

GLOBAL SENSITIVITY ANALYSIS:

- Nash parameters for recharge: RUMAX, RN, TAU
- Aquifer parameters: K and S
- Parameters defined by zones (Zonation)

20 parameters

- Nash parameters for recharge: RUMAX, RN, TAU
- Aquifer parameters: K and S
- Parameters defined by zones (Zonation) 20 parameters

Mean and Variance of the hydraulic head

- Hydraulic heads range between 140 and 165 m
- Variance ranges between 0 and 100: the imposed boundaries have the lowest variance

Temporal variation of sensitivity indices at point 1

Influential parameters: S, K, RUMAX, RN

INIVERSITÉ DE STRASBOUR

Temporal variation of sensitivity indices at point 1

RN: water transfer in the unsaturated zone (delay and spreading) **RUMAX:** threshold parameter

Temporal variation of sensitivity indices at point 1

0,00

0

100

200

300

Time (days)

400

RUMAX: threshold parameter

13

500

Temporal variation of sensitivity indices at point 1

RN: water transfer in the unsaturated zone (delay and spreading) **RUMAX:** threshold parameter

Temporal variation of sensitivity indices at point 1

RN: water transfer in the unsaturated zone (delay and spreading) **RUMAX:** threshold parameter

RN

Sensitivity maps over time

GLOBAL SENSITIVITY ANALYSIS: CONCLUSION

Determination of influential parameters

Nash: RUMAX and RN Groundwater flow: K and S

Temporal variation of parameter sensitivity

Nash: saturation of the 1st reservoir (RUMAX) and recharge (RN) **Permeability:** decrease of the hydraulic heads **Storage capacity:** increase of the hydraulic heads

Weak interactions between aquifer and recharge parameters

DE LA RECHERCHE À L'INDUSTRI

Thank you for your attention

DE LA RECHERCHE À L'INDUSTRIE

GLOBAL SENSITIVITY ANALYSIS

Parameters Interactions

Nash model

Richards model

Diffusivity equation (Transient state with recharge) $S \frac{\partial H}{\partial t} - \nabla . [K \nabla H] = q_s$

Steady state without recharge

 $-\nabla \cdot \left[K \nabla H \right] = 0$

Steady state with recharge

$$-\nabla \cdot \left[K \nabla H \right] = q_s$$

Transient state without recharge

$$S\frac{\partial H}{\partial t} - \nabla \cdot \left[K\nabla H\right] = 0$$

OVERESTIMATION OF RECHARGE

Assumption of constant hydraulic head over decade

$$q_i^n = -K \frac{\partial}{\partial z} (h-z) = K \left(h_{i+\frac{1}{2}} \right) \left(\frac{h_i^n - h_{i+1}^n}{\Delta z_i} + 1 \right)$$

If the hydraulic heads decreases, the imposed pressure decreases, and the flux calculated is positive and strong

If the hydraulic heads increases, the imposed pressure increases, and the flux calculated is negative DE LA RECHERCHE À L'INDUSTRIE

RESOLUTION OF RICHARDS EQUATION

