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Kinetic Monte Carlo method
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• System	evolution	driven	by	defect	jumps.		

• One	transition	is	randomly	selected	
according	to	the	transition	rates.

• One	transition	is	randomly	selected	
according	to	the	transition	rate	distribution

• Simulation	time	is	advanced	with	the	
residence-time	algorithm.

Courtesy	of	C.	Domain	(EDF).
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PROBLEM
• Transition	rates	depend	on	the	
composition	of	the	local	chemical	
environment	à impossible	to	
calculate	them	all.

• Difficult	to	achieve	a	fully	reliable	physical	description	of	
the	system	with	traditional	cohesive	models	or	saddle-point	
energy	models.



Artificial neural network approach
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• Mathematical structures to	learn
complex relationships	between
given	input	and	output	variables,	for	
which usually no	simple	expressions	
can be	formulated.

• Here,	ANNs are used as	regression	
tools to	provide a	value of the	
migration	barrier related to	an	
unknown local chemical
composition, by	fitting a	set	of
parameters	in	each node of the	
hidden layer on	a	pool	of known
training cases.

• The	selection of training cases
must	be	representative	of all	
possible chemical compositions.

• ANNs provide accurate
predictions in	a	very
computationally efficient way,	and	
can be	applied on	the	fly	to	
atomistic simulations.



Scope of the work
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• Improve	the	prediction	accuracy	of	atomic	migration	rates	in	kinetic	Monte	Carlo	(KMC)	
simulations	of	microstructure	evolution.

• Migration	barriers	(𝐸*+,)	are	highly	non-linear	functions	of	the	local	chemical	
composition.	First-principles	methods	provide	accurate	calculations	of	𝐸*+,,	although	at	a	
very	high	computational	cost.

• The	amount	of	reliable	first-principles	physical	information	transferred	to	KMC	models	
can	be	maximized	by	training	artificial	neural	networks	(ANN)	on	Density	Functional	Theory	
(DFT)	databases	of	migration	barriers.

• The	proposed	DFT-ANN	approach	has	two	advantages:
ü The	physical	description	of	the	system	can	be	considerably	enriched	with	respect	to	

traditional	cohesive	models.
ü As	opposed	to	ANNs	trained	over	interatomic	potentials,	DFT	potentials	are	

available	for	(almost)	any	alloys.	Therefore,	increasing	the	chemical	complexity	of	
the	system	can	be	done	with	little	additional	effort.



Interatomic potentials vs ANN
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Interatomic	potentials	(IP) Density	Functional	Theory	(DFT)

• Fitted	on	experimental/ab	initio	data.	

• Highly	customizable	to	desired	specific	
properties.

• Computationally	cheap.

• System-specific.

• Fitting	is	a	time-consuming	and	non-
trivial/non-linear	task.

• Difficult	to	be	accurate	on	many	alloy	
properties	at	once.

• Provides	detailed	description	of	alloy	
thermodynamic	and	kinetic	properties.

• Can	be	applied	to	complex	
multicomponent	alloys	with	little	
complexity	addition.

• Computationally	expensive	(for	large	
amount	of	configurations).

EAM	➜ DFT
N.	Castin et	al.,	J.	Chem.	Phys. 132,	074507	(2010)
N.	Castin et	al.,	J.	Chem.	Phys. 135,	064502	(2011)
N.	Castin et	al.,	J.	Nucl.	Mater. 429,	315	(2012)
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Simulation of FeCu thermal aging
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• A	database	of	2000	migration	barriers is	obtained	by	means	of	DFT-NEB	calculations	with	
the	Vienna	ab	initio Simulation	Package	(VASP).

• The	database	maximizes the	variety	of	the	local	atomic	environments	(LAE)	around	the	
hopping	vacancy	and	the	distribution	of	migration	energy	values.

• The	samples	cases	are	selected	within	two	out	of	three	LAE	types	occurring	during	Cu	
precipitation:

DILUTE	ALLOY
(1000	cases)

SMALL	CLUSTERS
(1000	cases)

LARGE	CLUSTERS
(>	80	Cu)

Type I Type II Type III

Cu atom
Vacancy

Type-III	cases	are	not	
included	because	of	DFT	cell	
size	limitations	(250	atoms).



DFT database
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• Computational	cost	(≈5000	core-hours/NEB)	compels	to	find	optimum	between:
ü NEB	accuracy	(PAW-PBE,	3x3x3	kpoints,	300	ev cutoff)
ü DFT	cell	size	(250	atoms)
ü Amount	of	sample	cases	(2000	migration	barriers)
as	well	as	to	perform	a	clever	careful	choice	of	the	samples	in	the	database.
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Hybrid KMC simulations of thermal aging
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Cu-CLUSTER	DIFFUSION	COEFFICIENTS

• Hybrid	atomistic-object	KMC	approach(1) (Cu	clusters	above	15	atoms	are	
treated	as	objects).

• Object	part	is	parameterized	by	AKMC	simulations	driven	by	the	same	neural	
network.

• Simulation	time	is	rescaled	to	match	the	equilibrium	vacancy	concentration,	
but	it	is	not	fitted	on	experiments.

• Improved	prediction	of	precipitation	kinetics	with	respect	to	previous	EAM-
ANN	work(1):

ü Very	satisfactory	agreement	with	exp.	timescale
ü Well	reproduced	evolution	of	the	1.34%Cu	alloy
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Increasing	diffusion	coefficient	with	cluster	size	
shows	that	precipitation	is	mainly	driven	by	
coarsening	of	medium	and	large	clusters.



Thermal aging results
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SUCCESS!
DFT	properties	fully			
transferred	to	KMC

Model	limitations:
P1:	NO	CONTROL	OVER			
THERMODYNAMICS

P2:	SMALL	DFT	CELL	SIZE

P1 - Excessive	cluster	density	in	
0.6%Cu	alloy	➞
underestimation	of	Cu	solubility	
(due	to	wrong	DFT	prediction	of	
solution	energy).

P2 - Late	coarsening	phase	
suddenly	stops	➞ this	stage	is	
not	correctly	reproduced	due	to	
the	lack	of	type-III	cases	in	the	
training	database.

Excellent	timescale	matching!
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DFT-ANN potentials
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• Objective:	exploit	DFT	database	more	extensively,	to	predict	not	only	migration	barriers	
but	also	the	total	energy	associated	to	a	given	atomic	configuration.

TOTAL	ENERGY x =	Fe,	Cr,	Cu											
𝑎7 =	atom	of	species	x	

• Each	𝐸7899 provides	an	estimate	of	the	energy	assigned	to	each	atom	of	species	x, and	is	
calculated	by	a	dedicated	neural	network.

• 𝜌(<=) is	the	atomic	density	at	the	position	of	atom	𝑎7,	written	as	a	series	of	spherical	
harmonics.		
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DFT database sets
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FeCuà 2000	vac.	jumps
FeCrà 2000	vac.	+	5600	int.	jumps

50	million	core-hours
DFT	datasets

I. Energy	of	fully	relaxed	
equilibrium	configurations	(1,	
5).

II. Saddle-point	energies of	
selected	migration	events	(3).	

III. Energies	of	several	
intermediate	relaxation	steps	
(2,	4,	from	1R	to	1,	from	5R	to	
5).

IV. Energies	of	randomly	
perturbed	configurations (1*,	
3*,	5*).

Thanks	to	set	IV,	the	neural	
networks	learn	that	the	energy	
should	increase	when	departing	
from	equilibrium	states.



Rigid-lattice potentials
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• Metropolis	MC	prediction	of	𝐸?@? at	thermodynamic	equilibrium,	based	on	ANN	trained	on	
dataset	I.	

Satisfactory!	(missing	𝜎 phase)

PREDICTED	PHASE	DIAGRAMS	(DATASET	I)

FeCr

FeCu

confirmed	underestimated	solubility

• Now	we	have	a	mean	to	control	the	thermodynamic	properties	of	the	system!	



Fe-20%Cr thermal aging
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• AKMC	simulations	(FeCr +	1vac)	at	500	°C.

• Migration	barriers	obtained	with	two	separate	
neural	networks:

𝐸KUV =
1
2Δ𝐸XYX

ZBB + 𝐸<\XZBB

Results	analyzed	with	the	eyes	of	atom	probe:

ü 60%	of	atoms	are	randomly	discarded.

ü Random	distortions	in	atomic	coordinates	due	
to	the	measurement.

ANN	1 ANN	2

End-state	energy	difference	from	
rigid-lattice	potentials	(set	I)

Saddle-point	
energy	(set	II)



Lattice-free potentials
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• All	sets	(I	to	IV)	are	used.	No	explicit	force	fitting,	but	excellent	force	prediction	thanks	to	
dataset	IV.

• Application:	re-calculation	of	migration	barriers.	Very	good	comparison	with	DFT	
barriers!

2000	barriers

2000	barriers

5600	barriers

Trustworthy	tools	to	extend	the	DFT	
database	with	more	sample	cases and	
larger	simulation	cells!	(e.g.	30000	SIA	

jumps	in	FeCr).



Conclusions

• This	new	DFT-ANN	approach	can	ensure	an	accurate	physical	description	of	the	multifold	
properties	of	an	alloy	in	KMC	and	other	mesoscale	simulations,	maximizing	the	amount	of	
information	transferred	from	first-principles	calculations.	It	is	therefore	a	very	promising	
support	to	microstructure	evolution	simulations	of	alloys	in	a	wide	range	of	applications	and	
conditions.

• The	computational	challenges	due	to	the	heavy	requirement	of	DFT	calculations	can	be	
addressed	by	combining	several	ANNs	to	create	accurate	rigid-lattice	and	lattice-free	
potentials.	The	splitting	between	equilibrium	and	saddle-point	ANNs	allows	for	the	choice	of	
the	most	appropriate	methods	to	target	thermodynamic	and	kinetic	properties	separately,	
methods	that	can	possibly	differ	from	one	another.

• The	following	planned	application	is	modeling	the	microstructure	evolution	of	FeMnNi
alloys,	representative	of	reactor	pressure	vessel	steels.
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