

Multiscale materials modeling – MMM 2015 Dijon, France October 14th, 2016

Ab initio-trained neural-network driven kinetic Monte Carlo simulations of microstructure evolution of iron alloys

L. Messina^(a,e), N. Castin^(b), C. Domain^(c), R. C. Pasianot^(d), P. Olsson^(e)

(a) Service de Recherche de Métallurgie Physique, CEA Saclay, France
 (b) SCK•CEN Belgian Nuclear Research Centre, Mol, Belgium
 (c) EDF R&D, Moret-sur-Loing, France
 (d) Comisión Nacional de Energía Atómica (CNEA), San Martín, Argentina
 (e) Reactor Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Outline

- Kinetic Monte Carlo method
- DFT-ANN-based prediction of migration barriers
 - Thermal aging of dilute FeCu alloys
- DFT-ANN prediction of cohesive energy and migration barriers
 - Rigid-lattice potentials (phase diagrams)
 - Thermal aging of Fe-20%Cr alloys
 - Lattice-free potentials
- Conclusions

Kinetic Monte Carlo method

• System evolution driven by defect jumps.

• One transition is randomly selected according to the transition rates.

$$\Gamma_j = \Gamma_0 \exp\left(-\frac{E_j^{\rm mig}}{k_{\rm B}T}\right)$$

• One transition is randomly selected according to the transition rate distribution

• Simulation time is advanced with the residence-time algorithm.

$$\Delta t = \frac{1}{\sum_j P_j}$$

PROBLEM

Transition rates depend on the composition of the local chemical environment → impossible to calculate them all.

• Difficult to achieve a fully reliable physical description of the system with traditional cohesive models or saddle-point energy models.

Artificial neural network approach

• Mathematical structures to learn complex relationships between given input and output variables, for which usually no simple expressions can be formulated.

 Here, ANNs are used as regression tools to provide a value of the migration barrier related to an unknown local chemical composition, by fitting a set of parameters in each node of the hidden layer on a pool of known training cases.

• The selection of training cases must be **representative of all possible chemical compositions**.

• ANNs provide accurate predictions in a very computationally efficient way, and can be applied *on the fly* to atomistic simulations.

Scope of the work

• Improve the **prediction accuracy of atomic migration rates** in kinetic Monte Carlo (KMC) simulations of microstructure evolution.

- Migration barriers (E^{mig}) are highly **non-linear functions of the local chemical composition**. First-principles methods provide accurate calculations of E^{mig} , although at a very high computational cost.
- The amount of **reliable first-principles physical information** transferred to KMC models can be maximized by training **artificial neural networks** (ANN) on **Density Functional Theory** (DFT) databases of migration barriers.
- The proposed DFT-ANN approach has two advantages:
 - ✓ The physical description of the system can be considerably enriched with respect to traditional cohesive models.
 - ✓ As opposed to ANNs trained over interatomic potentials, DFT potentials are available for (almost) any alloys. Therefore, increasing the chemical complexity of the system can be done with little additional effort.

Interatomic potentials vs ANN

Interatomic potentials (IP)

- Fitted on experimental/*ab initio* data.
- Highly customizable to desired specific properties.
- Computationally cheap.
- System-specific.
- Fitting is a time-consuming and non-trivial/non-linear task.
- Difficult to be accurate on many alloy properties at once.

N. Castin *et al., J. Chem. Phys.* **132**, 074507 (2010) N. Castin *et al., J. Chem. Phys.* **135**, 064502 (2011) N. Castin *et al., J. Nucl. Mater.* **429**, 315 (2012)

Density Functional Theory (DFT)

- Provides detailed description of alloy thermodynamic and kinetic properties.
- Can be applied to complex multicomponent alloys with little complexity addition.
- Computationally expensive (for large amount of configurations).

EAM -> DFT

Outline

- Kinetic Monte Carlo method
- DFT-ANN-based prediction of migration barriers
 - Thermal aging of dilute FeCu alloys
- DFT-ANN prediction of cohesive energy and migration barriers
 - Rigid-lattice potentials (phase diagrams)
 - Thermal aging of Fe-20%Cr alloys
 - Lattice-free potentials
- Conclusions

Simulation of FeCu thermal aging

- A database of **2000 migration barriers** is obtained by means of DFT-NEB calculations with the Vienna *ab initio* Simulation Package (VASP).
- The database **maximizes** the variety of the local atomic environments (LAE) around the hopping vacancy and the distribution of migration energy values.
- The samples cases are selected within **two out of three LAE types** occurring during Cu precipitation:

DFT database

- **Computational cost** (≈5000 core-hours/NEB) compels to find optimum between:
 - ✓ NEB accuracy (PAW-PBE, 3x3x3 kpoints, 300 ev cutoff)
 - ✓ DFT cell size (250 atoms)
 - ✓ Amount of sample cases (2000 migration barriers)

as well as to perform a clever careful choice of the samples in the database.

Hybrid KMC simulations of thermal aging

- Hybrid atomistic-object KMC approach⁽¹⁾ (Cu clusters above 15 atoms are treated as objects).
- **Object part** is parameterized by AKMC simulations driven by the same neural network.
- Simulation **time is rescaled** to match the equilibrium vacancy concentration, but it is **not fitted on experiments**.
- Improved prediction of precipitation kinetics with respect to previous EAM-ANN work⁽¹⁾: Cu-CLUSTER DIFFUS
 - \checkmark Very satisfactory agreement with exp. timescale
 - ✓ Well reproduced evolution of the 1.34%Cu alloy

Increasing diffusion coefficient with cluster size shows that precipitation is mainly **driven by coarsening of medium and large clusters**.

Cu-CLUSTER DIFFUSION COEFFICIENTS

Thermal aging results

SUCCESS! DFT properties fully transferred to KMC

Excellent timescale matching!

P1 - Excessive cluster density in
0.6%Cu alloy →
underestimation of Cu solubility
(due to wrong DFT prediction of solution energy).

✓ P2 - Late coarsening phase suddenly stops → this stage is not correctly reproduced due to the lack of type-III cases in the training database.

> Model limitations: P1: NO CONTROL OVER THERMODYNAMICS P2: SMALL DFT CELL SIZE

Outline

- Kinetic Monte Carlo method
- DFT-ANN-based prediction of migration barriers
 - Thermal aging of dilute FeCu alloys
- DFT-ANN prediction of cohesive energy and migration barriers
 - Rigid-lattice potentials (phase diagrams)
 - Thermal aging of Fe-20%Cr alloys
 - Lattice-free potentials
- Conclusions

DFT-ANN potentials

• Objective: exploit DFT database **more extensively**, to predict not only migration barriers but also the **total energy** associated to a given atomic configuration.

$$E_{\text{tot}} = \sum_{x} \sum_{a_x}^{Na_x} E_x^{\text{ANN}} \rho_{(a_x)}$$

λŢ

x = Fe, Cr, Cu $a_x = atom of species x$

• Each E_x^{ANN} provides an **estimate of the energy assigned to each atom** of species *x*, and is calculated by a dedicated neural network.

• $\rho_{(a_x)}$ is the **atomic density** at the position of atom a_x , written as a series of spherical harmonics.

$$\rho_{(a_x)}(r,\theta,\phi) = \sum_{n=1}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{nlm}^{(a)} R_n(r) Y_{lm}(\theta,\phi)$$

DFT database sets

Ι.

50 million core-hours

FeCu \rightarrow 2000 vac. jumps FeCr \rightarrow 2000 vac. + 5600 int. jumps

DFT datasets

- Energy of **fully relaxed** equilibrium configurations (1, 5).
- Saddle-point energies of selected migration events (3).
- Energies of several **intermediate relaxation steps** (2, 4, from 1R to 1, from 5R to 5).
- IV. Energies of randomly perturbed configurations (1*, 3*, 5*).

Thanks to set IV, the neural networks learn that the energy should increase when departing from equilibrium states.

Rigid-lattice potentials

• Metropolis MC prediction of E_{tot} at **thermodynamic equilibrium**, based on ANN trained on dataset I.

PREDICTED PHASE DIAGRAMS (DATASET I)

• Now we have a mean to control the thermodynamic properties of the system!

Fe-20%Cr thermal aging

• AKMC simulations (FeCr + 1vac) at 500 °C.

to the measurement.

Lattice-free potentials

- All sets (I to IV) are used. No explicit force fitting, but **excellent force prediction** thanks to dataset IV.
- Application: re-calculation of migration barriers. Very good comparison with DFT barriers!
 1.5 ______ 1.2 _____

Trustworthy tools to extend the DFT database with **more sample cases** and **larger simulation cells**! (e.g. 30000 SIA jumps in FeCr).

Conclusions

- This new DFT-ANN approach can ensure an accurate physical description of the multifold properties of an alloy in KMC and other mesoscale simulations, maximizing the amount of information transferred from first-principles calculations. It is therefore a very promising support to microstructure evolution simulations of alloys in a wide range of applications and conditions.
- The computational challenges due to the heavy requirement of DFT calculations can be addressed by combining several ANNs to create accurate rigid-lattice and lattice-free potentials. The splitting between equilibrium and saddle-point ANNs allows for the choice of the most appropriate methods to target thermodynamic and kinetic properties separately, methods that can possibly differ from one another.
- The following planned application is modeling the microstructure evolution of FeMnNi alloys, representative of reactor pressure vessel steels.

THANKS FOR YOUR ATTENTION!

Acknowledgments: financial support by Vattenfall AB, Göran Gustafsson Stiftelse, the European projects MATISSE (FP7) and SOTERIA (H2020), and the Argentinian project PIP-CONICET. Computational resources provided by EDF and SNIC (Swedish National Infrastructure for Computing). Special thanks to L. Malerba, F. Soisson, and the colleagues of the NUGENIA project for the valuable discussions.