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Kinetic Monte Carlo
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• Microstructure	evolution	driven	by	point-defect	migration.		

• Migration	barriers	depend	on	local	atomic	environment.

• Too	many	combinations!

• Poor	thermodyanmic	and	kinetic	descriptions	with	inaccurate	predictions.

ATOMISTIC	KMC	 OBJECT	KMC	

Atomic	transition	rates Object	event	rates,	obtained	by	AKMC



KMC simulations
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RPV	surveillance	
samples	[4]

SIA	cluster	density	in	RPV	steels	[3]

Composition	of	solute	clusters	[2]

Resistivity	recovery	simul.	in	Fe	alloys	[1]

[1]	R.	Ngayam-Happy	et	al.,	J.	Nucl.	Mater.	407,	16-28	(2010).
[2]	R.	Ngayam-Happy	et	al.,	J.	Nucl.	Mater.	426,	198-207	(2012).
[3]	L.	Messina	et	al.,	submitted	to	Phys.	Status	Solidi	A	(2016).
[4]	M.	K.	Miller	et	al.,	J.	Nucl.	Mater.	437,	107-115	(2013).	



Artificial neural networks
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EAM-ANN simulations of FeCu thermal aging
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• Hybdrid	AKMC/OKMC	simulations	of	Cu	precipitation	in	α-Fe	(thermal	ageing).
• Clusters	N	≥	15	considered	as	objects.

N.	Castin	et	al.,	J.	Chem.	Phys. 135 (2011),	064502.

• 3	stages
a)	Barriers	predicted	with	artificial	neural	network,	based	on	104 NEB	
calculations	with	EAM	interatomic	potential.

b)	Calculation	of	stability	and	mobility	of	N	≥	15	clusters.	Clusters	can	
emitt	the	vacancy,	or	a	V-Cu	pair.

c)	AKMC/OKMC	simulations	of	thermal	ageing.	Coalescence	of	
mobile	precipitates plays	an	important	role.

10000	barriers!



Interatomic potential vs DFT

77

Interatomic	potentials Density	Functional	Theory

• Fitted	on	experimental/ab	initio	
data.	

• Highly	costumizable	to	desired	
specific	properties.

• Computationally	cheap.

• System-specific.

• Fitting	is	a	time-consuming	and	
non-trivial/non-linear	task.

• Difficult	to	be	accurate	on	many	
alloy	properties	at	once.

• Provides	detailed	description	of	
alloy	thermodynamic	and	kinetic	
properties	(no	need	of	
compromises).

• Can	be	applied	to	complex	
multicomponent	alloys	with	little	
complexity	addition.

• Computationally	expensive	(for	
large	amount	of	configurations).

• Limited	simulation-cell	size	and	
amount	of	computations.



Neural network training

• Test	case:	thermal	aging	of	FeCu	alloys	(only	1	vacancy).
• 2000	configurations	(training	+	validation).	
• Maximize	variety	of	selected	atomic	environments.

3	millions	core-hours!

DFT	settings

PAW-PBE, 300	eV,	33 k-points

Full-kp	relaxations	of	end	states

NEB	relaxations with	23 kp	grid

Full-kp	energy calculation	of	saddle	point
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Cu cluster stability & mobility
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Cu	Cluster	properties	are	now	
different!

• Much	larger	stability,	higher	
dissociation	energy

• Explained	by	low	vacancy	
formation	energy	in	BCC	copper	
(0.85	eV	in	Cu	vs	2.18	eV	in	Fe).

• Lower	activation	energy

• Much	longer,	temperature-
dependent	mean	free	paths.

Precipitation	driven	by	coalescence	
of	medium-sized	clusters.
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Cu cluster dissociation

20	atoms,	750	K• Frequent	loss	of	Cu	atoms	before	vacancy	emission.
• Independent	of	cluster	size	and	temperature	until	1100	K.
• Related	to	vacancy-copper	correlation	(drag)	active	below	1100	K	(*).

*	L.	Messina	et	al.,	Phys.	Rev.	B	90	(2014). 10



Thermal ageing of FeCu alloys

20	atoms,	750	K
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• General	satisfactory	
agreement.

• Improved	time-scale	
match	with	respect	to	
IAP-based	study.

• Overestimation	of	
cluster	density	in	
dilute	alloy.

• Incorrect	DFT	
prediction	of	solubility	
limit	(0.76	eV	vs	
0.5	eV).		

11Confidential	- Not	to	be	disseminated!
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FeCu test case - conclusions

• It	is	nowadays	possible	to	obtain	large	DFT	database	and	apply	
advanced	regression	schemes.

• Improved	thermal	ageing	evolution	(well-described	time	scales).	

• Thermodynamic	description	is	not	accurate	because	of	inexact	DFT	
prediction.	Need	to	perform	ANN	regression	on	equilibrium	energies	
and	migration	barriers	separately.		

• Technical	limitations	due	to	computational	costs	(box	size	and	
amount	of	calculations).

• Next:	FeCr	alloys	and	ANN-based	cohesive	models.	



Advanced modeling of FeCu and FeCr

20	atoms,	750	KObjective:	train	two	ANN’s	to	perform	thermodynamic	and	kinetic	modeling	separately.

THERMODYNAMIC	ANN KINETIC	ANN

Predicts	total	energy	(cohesive	model)	of	a	
given	atomic	configuration,	by	interpolation	
on	a	database	of	DFT-computed	energies.

Predicting	the	saddle-point	energy	of	a	given	
defect	migration	event,	by	interpolation	on	a	
database	of	DFT-computed	migration	barriers	
OR	by	using	the	TD	cohesive	model.

APPLICATIONS

RIGID-LATTICE	FeCu	AND	FeCr	POTENTIAL	
- Phase	diagram	calculation	by	means	of	Metropolis	Monte	Carlo.
- Interpolation	of	DFT	energies	neglecting	atomic	forces.

AKMC	THERMAL	AGEING	OF	FeCr	ALLOYS
- Vacancy	migration	barriers	calculated	by	two	separate	ANN’s	using	the	rigid-lattice	
potential	and	DFT-computed	saddle-point	energies.

LATTICE-FREE	FeCu	AND	FeCr	POTENTIALS
- Atomic	forces	are	included	indirectly.
- Saddle-point	energies	are	obtained	and	compared	with	the	DFT	values.
- Allows	to	extend	the	set	of	DFT	migration	barriers.	 13



(1) Rigid-lattice FeCu and FeCr potentials
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TOTAL	ENERGY:

Atomic	energy	functions	(estimation	of	average	energy	assigned	to	each	atom	of	species	x).
Outputs	of	the	neural	network	trained	on	DFT	energies	of	4000	atomic	configurations.

Local	atomic	density	around	atom	a	(describes	univoquely	the	local	atomic	environment).

PREDICTED	PHASE	DIAGRAMS	(MMC)

Very	satisfactory	agreementUnderestimated	Cu	solubility

FeCu FeCr

Cu	concentration	[at%] Cr	concentration	[at%]

Confidential	- Not	to	be	disseminated!



(2) Thermal ageing of FeCr alloys
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VACANCY	MIGRATION	
BARRIER:

Accuracy	of	migration	energy	prediction

Confidential	- Not	to	be	disseminated!

Provided	by	the	rigid-lattice	potential Given	by	neural	network	trained	on	DFT-NEB	
calculations	of	2000	vacancy	migration	events	

Thermal	ageing	in	Fe-20%Cr	alloy

Average	error:	0.048	eV	(Fe)
0.033	ev	(Cr)



(3) Lattice-free FeCu and FeCr potentials

16Confidential	- Not	to	be	disseminated!

• Objective:	introduce	atomic	displacements	and	forces	in	order	to	mimick	the	DFT	saddle-
point	energies	of	defect	migration	and	extend	the	computational	capability	of	DFT.
• SIA	migration	requires	much	larger	training	database	due	to	increased	complexity.
• Forces	introduced	indirectly	by	training	ANN	on	>	104 DFT-calculated	energies	of	atomic	
configurations,	where	atoms	were	slightly	displaced	from	their	equilibrium	positions.

Recalculated	migration	barriers	(ΔE	+	Esad)

2000	cases

2000	cases

5600	cases

Extended	database	of	30000	
SIA	migration	barriers

(0.026	eV)

(0.049	eV)

(0.054	eV)

(0.031	eV)

(0.060	eV)

(0.060	eV)

30000	cases

(0.039	eV)
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Conclusions & Perspectives

THANKS	FOR	YOUR	ATTENTION!

• First-of-a-kind	parameterization	of	KMC	simulations	with	fully	DFT-based	
advanced	regression	scheme,	applied	to	FeCu	and	FeCr	alloys.

• Neural	networks	are	widely	employed	to	ensure	full	transferability	of	DFT	
properties	to	the	KMC	simulation.

• Portability	to	different	and	more	complex	systems	with	little	additional	
complexity.	

• Limitations	due	to	the	high	computational	cost	of	massive	amounts	of	DFT	
calculations	are	overcome	by	developing	ANN	cohesive	models	mimicking	DFT	
(“DFT	potentials”).

• Preliminary	applications	to	FeCu	and	FeCr	alloys	shows	satisfactory	agreement	
with	thermal-ageing	experiments.

• Future	application	to	electron-irradiated	FeCr	alloys	and	FeMnNi	alloys	is	
foreseen,	with	the	final	goal	of	approaching	real	RPV	steel	compositions.


