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FVCA8 benchmark for the Stokes and Navier-Stokes equations with the TrioCFD code -benchmark session
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This paper is devoted to the study of convergence orders of several numerical methods that are implemented in the TrioCFD code dedicated to the simulation of turbulent flows and heat transfer in nuclear engineering applications. The spatial discretization is based on Finite Difference-Volume or Finite Element-Volume methods. A projection method is applied to update the velocity and the pressure. The time scheme can be either explicit or implicit, and hexahedral or tetrahedral meshes can be used for simulations. In this paper, the test cases are relative to steady Stokes problems, steady and unsteady Navier-Stokes problems, and finally the well-known lid-driven cavity flow case. The latter proposes several comparisons between our simulations and numerical data already published in the literature, while the other cases yield the values of convergence orders by using the analytical solutions. The accuracy of the results obtained with TrioCFD differs according to the types of mesh used for simulations, the viscosity values or the source terms in the equations.

Introduction

TrioCFD [START_REF]TrioCFD: Website[END_REF] is a Computational Fluid Dynamics code developed at CEA, dedicated to simulate incompressible or quasi-compressible flows in nuclear engineering applications. The code is open source [START_REF]TrioCFD: Website[END_REF] and massively parallel. The aim of this paper is to study the convergence order of TrioCFD numerical schemes through various 2D and 3D solutions of the Stokes and Navier-Stokes equations. The comparisons focus on a general incompressible Navier-Stokes model for newtonian flows, which writes: ∇ ∇ ∇ ¡u = 0;

(t; x) P (0; T ] ¢D; (1a) θ u t ν∆ u + χ(u ¡∇ ∇ ∇)u + ∇ ∇ ∇p = f;

(t; x) P (0; T ] ¢D; 

(if θ = 1) u(x; 0) = u 0 (x)

x P D:

Eq. (1a) represents the mass balance for incompressible flow where u u(x; t) is the velocity. Eq. (1b) refers to the conservation equation for momentum where ν is the kinematic viscosity, p p(x; t) is the pressure and f is a force term. The two coefficients θ = 0; 1 and χ = 0; 1 are introduced in order to simplify the flow model. If χ = 0 the set of equations becomes the Stokes model, whereas χ = 1 indicates that the Navier-Stokes model is considered. The case θ = 0 (respectively θ = 1) means that only the stationary (resp. unsteady) solution of the Navier-Stokes equations is considered. The test cases of the FVCA8 benchmark are presented in Ref. [START_REF] Boyer | Benchmark for the FVCA8 Conference finite volume methods for the Stokes and Navier-Stokes equations[END_REF]. The paper is organized as follows. Section 2 briefly describes the numerical schemes applied in this work. Section 3 presents comparisons with exact solutions of steady Stokes model. Section 4 presents comparisons for steady Navier-Stokes model. Section 5 presents comparisons for unsteady Navier-Stokes model. Section 6 focuses on robustness with respect to invariance property for the steady Stokes and Navier-Stokes models. Section 7 provides comparisons with literature results for the lid-driven cavity flow problem. Finally, some concluding remarks are given in Section 8.

Numerical schemes in TrioCFD

This section briefly describes the TrioCFD numerical schemes. The spatial discretization methods are presented in section 2.1. The projection method and time discretization scheme are presented in section 2.2.

Spatial discretizations

Two types of spatial discretization are avalaible according to the considered element type: the "Finite Difference-Volume" (FDV) method for hexahedral grids and "Finite Element-Volume" (FEV) method for tetrahedral ones. In the FDV (respectively FEV) method, the equations are discretized and solved on control volumes whereas the fluxes and the differential operators are computed by means of finite difference (respectively by finite element) approximations. The main advantage of those types of methods lies on the local conservative property.

Hereinafter are given some details about the FEV method, even if the FDV [START_REF] Emonot | Méthodes de volumes éléments finis : applications aux équations de Navier-Stokes et résultats de convergence[END_REF] is also applied for simulations. The description below is a summary of Refs. [START_REF] Emonot | Méthodes de volumes éléments finis : applications aux équations de Navier-Stokes et résultats de convergence[END_REF][START_REF] Fortin | Une méthode d'éléments finis à décomposition L2 d'ordre élevé motivée par la simulation des écoulements diphasiques bas Mach[END_REF][START_REF] Heib | Nouvelles discrétisations non structurées pour les écoulements de fluides à incompressibilité renforcée[END_REF]. The FEV method can be viewed as a modification of the Crouzeix-Raviart element [START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations i[END_REF]. The discrete pressure is defined on the primary grid while the discrete velocity is defined on a face-based staggered dual grid. As in Finite Volume approches, the local equations are integrated over the control volumes. The control volumes for mass are the primal mesh cells whereas the dual mesh cells (denoted by ω hereafter) are the control volumes of impusion. The controle volume ω associated to each face is obtained by joining the gravity centers of the two adjacent cells sharing the face (see Fig. 1(b)). The fluxes and the differential operators are computed by means of a Finite Elements (FE) formulation.

Unlike the Crouzeix-Raviart element for which the pressure is piecewise constant per element, it is possible to add more freedom degrees for the pressure. Typically, the results presented in this work have been obtained by computing the pressure at the element barycenters and the element nodes. A two-dimensional example is presented on Fig. 1(a). As demonstrated in Refs. [START_REF] Heib | Nouvelles discrétisations non structurées pour les écoulements de fluides à incompressibilité renforcée[END_REF], the introduction of piecewise linear pressure function greatly improves the Crouzeix-Raviart element stability properties.

When discretizing the Stokes equations, Ref. [START_REF] Heib | Nouvelles discrétisations non structurées pour les écoulements de fluides à incompressibilité renforcée[END_REF] shows that the FEV discrete system is equivalent to the FE one, except for the right-hand side (source term). The reference also presents some proofs for inf-sup stability property, consistency and convergence with a second-order accuracy for velocity and first-order for pressure. Some superconvergence results are showed in some particular cases (when f can be expressed as the gradient of a regular enough function Φ), the accuracy is of third-order for velocity and second-order for pressure.

In TrioCFD, several methods have been developped for approximating the nonlinear convective term, among which upwind, MUSCL, QUICK schemes. All these methods consist in introducing upwinding to stabilize. In the present work, we use
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Fig. 1 (a) DoF for Crouzeix-Raviart element (black squares for velocity u and black dots for pressure p). In our simulations, the pressure p is also computed at vertices of each cell (circles). (b) Control volume w i between two triangles T i and T j of respective center C i and C j . The control volume is defined by nodes C i ; S 1 ; C j and S 2 .

basically the upwind scheme within the FDV discretization and the MUSCL scheme within the FEV discretization. Our experience having shown that these options satisfied many cases.

Time scheme

In TrioCFD, the time discretization schemes can be either explicit (such as Forward Euler, Runge-Kutta, Adams-Bashforth, Crank-Nicholson) or implicit (such as Backward Euler and Adams-Moulton). For the steady cases the solution is obtained as the asymptotic limit of the transient state. In this case, a multiplicative factor can be applied on the time step to speed up the convergence towards the steady state. Generally, few time steps are sufficient to reach the steady state.

In order to separate the velocity and the pressure, a multi-step (projectioncorrection) technique [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Temam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF] is employed, where an intermediate velocity is computed and the mass conservation is then enforced by solving a Poisson equation for pressure. Several alternative formulations for decoupling the velocity and pressure like SIMPLE, SIMPLEC and PISO are also available in the code (see TrioCFD [START_REF]TrioCFD: Website[END_REF] user manual).

Benchmarks with TrioCFD

All simulations were performed with the version 1.7.3 of TrioCFD. Several options are possible for computations. They will be specified in each test case when neces-sary. The meshes are taken from the GitHub repository [1] and converted to one format suited for TrioCFD (med format). Results of the benchmarks will be presented as mentioned in Ref. [START_REF] Boyer | Benchmark for the FVCA8 Conference finite volume methods for the Stokes and Navier-Stokes equations[END_REF]. The nomenclature of tables are reminded in Appendix.

In TrioCFD, the unsteady Navier-Stokes model was applied for all simulations, even for Stokes problem by cancelling the convective term. Four types of meshes are used: squares and triangles (2D), and hexahedral and tetrahedral meshes (3D). For square and hexahedral meshes, the numerical discretization is based on the FDV method. For triangular and tetrahedral meshes the numerical discretization is based on the FEV method. The complexity tables relative to 2D grids are presented in Tabs. 2 and 4. For hexahedral meshes, the complexity table is presented in Tab. 6.

For tetrahedral meshes, it is presented in Tab. 8. The time scheme is either explicit or implicit. The implicit time scheme system is solved using the iterative GMRES method and the solver used for the Poisson equation is based on a direct Cholesky factorisation.

Steady Stokes tests

In this section, two test cases are presented: the first one (subsection 3.1) is the "2D Bercovier-Engelman" test case [START_REF] Bercovier | A finite element for the numerical solution of viscous incompressible flows[END_REF] and the second one (subsection 3.2) is the "3D Taylor-Green vortex" [START_REF] Taylor | Mechanism of the production of small eddies from large ones[END_REF]. For both test cases, the kinematic viscosity is set to ν = 1.

The 2D Bercovier-Engelman test case

The exact solution of the 2D Bercovier-Engelman problem [START_REF] Bercovier | A finite element for the numerical solution of viscous incompressible flows[END_REF] is:

u ex (x) = (u 1 (x; y); u 1 (y; x)) T ; p ex (x) = x 1 2 y 1 2 ;
with u 1 (x; y) = 256x 2 (x 1) 2 y(y 1)(2y 1). The source term is defined by:

f(x) = ( f 1 (x; y) + (y 1=2); f 1 (y; x) + (x 1=2)) T , with f 1 (x; y) = 256 ¢ x 2 (x 1) 2 (12y 6) + y(y 1)(2y 1)(12x 2 12x + 2) £ . The com- putational domain is D = [0; 1] 2 with non homogeneous Dirichlet boundary condi- tions.
The accuracy tables are presented respectively in Tabs. 1 and 3 for both mesh types. The velocity error erru w.r.t. the number of velocity unknowns nnu is presented on Fig. 2 for both type of meshes. The second-order of convergence is wellcaptured for cartesian meshes (red line) and triangular meshes (blue line) as confirmed by Tab. 1 and 3 respectively. On the pressure, the convergence order follows the same trend for cartesian meshes, and it is of first-order for triangular meshes. 

3D Taylor Green Vortex

The exact solution of the 3D Taylor Green Vortex [START_REF] Taylor | Mechanism of the production of small eddies from large ones[END_REF] is: and the force term is defined by: f = ( 36π 2 cos(2πx) sin(2πy) sin(2πz); 0; 0) T .

u ex = H d 2 
The computational domain is D = [0; 1] 3 with non homogeneous Dirichlet boundary conditions.

The velocity error erru is presented on Fig. 3 (a) for both meshes. On that figure, one can see that the second-order of convergence is well-captured for hexahedral meshes (red line) as confirmed by Tab. 5. The results are less accurate for tetrahedral meshes (see Tab. 7), but the convergence order ordu remains superior to 1:7 for the three most refined grids (blue curve). For pressure (see Fig. 3 (b)), the second-order of convergence is well-captured for hexahedral meshes, and the accuracy is of firstorder for tetrahedral meshes. For both test cases, simulations were performed for three values of the viscosity: ν = 10 1 , ν = 10 2 and ν = 10 3 , for triangular and rectangular meshes (2D), and hexahedral and tetrahedral meshes (3D). In this paper, we present only the results for ν = 10 1 and ν = 10 3 . For ν = 10 2 , the four tables of results are given in the folder "data" but are not presented here because the precision stands between the one obtained for ν = 10 1 and ν = 10 3 .

Steady 2D tests

The simulations are carried out with two types of meshes: a triangular one and a cartesian one. The computational domain is D = [0; 1] 2 with non homogeneous Dirichlet boundary conditions. The source term is f = 0. The exact solution of that problem is: u ex (x) = (y; x) T and p ex (x) = 0:5(x 2 + y 2 ) 1=3.

In Tabs. 11 and 12, which refer to cartesian meshes for ν = 10 1 and ν = 10 3 respectively, we observe that the convergence order on velocity decreases when the viscosity decreases. Indeed, for the three most refined grids (mesh #5, #6 and #7) when ν = 10 1 , the convergence order is ordu > 1:9 (see Fig. 4(a)) whereas ordu < 1:4 when ν = 10 3 (see Fig. 4(b)). When the viscosity decreases, the diffusive term influence decreases, and the convective term becomes more important. The convergence order of the solution is close to unity. The values of the convergence order on the pressure is comparable to the convergence order of the velocity. In Tabs. 9 and 10, which refer to triangular meshes, the trends are similar. The convergence orders of u decrease when the viscosity decreases: when ν = 10 1 , ordu > 1:6 whereas ordu < 1:4 when ν = 10 3 . 

Steady 3D tests

The three-dimensional analytical solution of this problem is: u ex (x) = (y z; z x; x y) T and p ex (x) = (x 2 + y 2 + z 2 ) xy xz yz 1=4. The accuracy results are presented in Tabs. 13 and 14 for hexahedral meshes and Tabs. 15 and for tetrahedral meshes. For this benchmark, the convergence order on velocity is almost of second-order when ν = 10 1 for hexahedral and tetrahedral meshes. The results are much less accurate when ν = 10 3 . They are of first-order of convergence. 10ν . The source term is f = 0. The exact solution of the problem considered here is given by: u ex (x) = (∂ y ψ; ∂ x ψ), with ψ = e 5νπ 2 t cos(πx) cos(2πy), and p ex (x) = 1 4 e 10νπ 2 t π 2 (4 cos(2πx) + cos(4πy)).

The time discretization scheme employed here is the explicit third order Runge-Kutta. For this test case, when the cartesian meshes are considered, the QUICK scheme for discretizing the convective term was employed.

In Tabs. 19 and 20, which refer to cartesian meshes for ν = 10 1 and ν = 10 2 respectively, we observe that the convergence orders decrease when the viscosity decreases.The convergence order on velocity is almost of second-order when ν = 10 1 and first-order when ν = 10 2 . In Tabs. 17 and 18, which refer to triangular meshes, the trends are similar. 

Robustness with respect to the invariance property

The aim of this test is to verify that the numerical discretization preserves the following invariance property of the incompressible Stokes and Navier-Stokes equations. For boundary conditions independent of pressure, if (u; p) is solution of equations with the right-hand side f, then (u; p + ψ) is solution of equations with the righthand side f + ∇ψ.

Test on the 2D steady Stokes system

In this section, we focus on the invariance property of the 2D steady Stokes equations. For homogeneous Dirichlet conditions on velocity, if the forcing term is chosen such as f = ∇ψ, then we must obtain u = 0 and p = ψ. In this test case, the function ψ is set to ψ(x; y) = exp( 10(1 x + 2y)).

Simulations were performed on triangular and rectangular meshes (2D) for two viscosity values: ν = 10 1 and ν = 10 2 . For triangular meshes, the convergence results are presented in Tabs. 21 and 22. For nomenclature definition of tables, we refer to [START_REF] Boyer | Benchmark for the FVCA8 Conference finite volume methods for the Stokes and Navier-Stokes equations[END_REF]. We observe that the convergence order is almost of third-order on velocity (codu) and second-order on pressure (codp) for both viscosity values. This confirms the super-convergence result found in Ref. [START_REF] Heib | Nouvelles discrétisations non structurées pour les écoulements de fluides à incompressibilité renforcée[END_REF]. Tabs. 23 and 24 refer to results obtained for rectangular meshes. In this case, for both values of viscosity, we remark a second-order accuracy on velocity and pressure. 

Test on the 2D steady Navier-Stokes system

In this section, the Navier-Stokes equations are considered. We use the lid driven cavity test described in section 7. The computational domain is D = [0; 1] 2 , the viscosity is set to ν = 1=400, and simulations were performed on triangular and rectangular meshes. We compare the solution obtained without source term (see section 7) to the one obtained with the source term that is defined by f = ∇ψ, with ψ = exp( 10(1 x + 2y)). Tab. 25 refers to results obtained for triangular meshes. We observe that the convergence order is almost of fourth-order on velocity and second-order on pressure. Tab. 26 refers to results obtained for rectangular meshes. We notice a second-order accuracy on velocity and pressure. These results show that both numerical schemes preserve accurately the invariance property. 

2D lid driven cavity tests

Simulations are carried out with two types of meshes: a triangular one and a cartesian one. The computational domain is D = [0; 1] 2 with no-slip conditions at the boundaries x = 0 and x = 1. For y = 0 and y = 1, the two following Dirichlet boundary conditions are respectively applied: u = (0; 0) T and u = (1; 0) T . The source term is zero f = 0. For this test case, when the cartesian meshes are considered, the QUICK scheme for discretizing the convective term was employed. Simulations are carried out for four viscosity values: ν = 1=100, ν = 1=400, ν = 1=1000 and ν = 1=5000. Only tables for maximum and minimum viscosity values are presented here. All other results are given in the folder "data". The results are compared with the available results in the literature.

In Fig. 5, we present a comparison between experimental data from Ref. [START_REF] Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF] (blue squares), Ref. [START_REF] Marchi | The lid-driven square cavity flow: numerical solution with a 1024 x 1024 grid[END_REF] (green dots) and TrioCFD (solid lines) for the x-(Fig. 5(a)) and ycomponents (Fig. 5(b)) of the velocity. The finest triangular and rectangular meshes are considered here and the comparison is done for the maximum and minimum viscosity values. The simulations achieve a very good agreement with literature results for both mesh types and for both viscosity values.

In Tabs. 27 and 28, which refer to the finest triangular mesh for ν = 1=100 and ν = 1=5000 respectively, the maximum and minimum values of the stream function (along with the coordinates where they are reached) are summarized. Tabs. 23 and 24 refer to the results obtained for the finest rectangular mesh.

(2a)-(2d). In these relationships, i is the number of mesh and d = 2 or 3 is the space dimension. In Eq. (2a), k∇ ∇ ∇uk 2 = ∑ i j (∂ u i =∂ x j ) 2 . In Eq. (2b), kuk 2 = ∑ i u 2 i . In Eq. (2c), p ε = (p R D pdV ) p ex . The quantities nuu and npu are defined in Tab. 35.

Symbol Number of nuu

: velocity unknowns npu : pressure unknowns nnzu : non-zero terms in the velocity-velocity matrix (only for implicit time schemes) nnzp : non-zero terms in the pressure-pressure matrix. nnzup : non-zero terms in the velocity-pressure matrix. Undefined here because no velocity-pressure matrix (use of a projection method) 

  t)dx = 0; t P (0; T ];

Fig. 2

 2 Fig. 2 Convergence order on (a) velocity and (b) pressure for cartesian (red) and triangular (blue) meshes.

Fig. 3

 3 Fig. 3 Convergence order on (a) velocity and (b) pressure for hexaedral (red) and tetrahedral meshes (blue).
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 4 Fig. 4 Convergence order on velocity for (a) ν = 10 1 and (b) ν = 10 3 .
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 2 Complexity table : 2D Bercovier-Engelman -Triangle meshes

	for cartesian (red) and triangular (blue)

2 -6:341 ¡10 2 -13:700 -3:278 ¡10 16 -4:437 ¡10 2 0:448 1:528 ¡10 2 1:724 4:855 1:267 2:521 ¡10 16 -1:797 ¡10 2 1:288 3:968 ¡10 3 1:922 2:267 1:087 2:695 ¡10 16 -4:742 ¡10 3 1:394 5:474 ¡10 4 2:072 0:851 1:024 3:169 ¡10 18 -2:044 ¡10 3 1:211 1:394 ¡10 4 1:971 0:408 1:059 1:98 ¡10 18 -9:357 ¡10 4 1:122 3:444 ¡10 5 2:007 0:202 1:009 8:449 ¡10 19 -

Table 1 Accuracy table : 2D Bercovier-Engelman -Triangle meshes

-4:282 ¡10 2 1:278 6:958 ¡10 2 1:554 2:050 1:095 9:742 ¡10 17 -1:345 ¡10 2 1:741 1:939 ¡10 2 1:920 0:635 1:687 7:919 ¡10 17 -3:626 ¡10 3 1:933 4:996 ¡10 3 2:001 0:171 1:896 7:138 ¡10 17 -9:265 ¡10 4 1:991 1:259 ¡10 3 2:010 4:356 ¡10 2 1:971 1:299 ¡10 18 -2:328 ¡10 4 2:002 3:154 ¡10 4 2:007 1:095 ¡10 2 1:991 7:823 ¡10 19 -5:831 ¡10 5 2:002 7:888 ¡10 5 2:005 2:74 ¡10 3 1:998 3:501 ¡10 19 -

Table 3

 3 Accuracy table : 2D Bercovier-Engelman -Rectangle meshes

	mesh #	nuu	npu	nnzu	nnzp nnzup
	1	80	16	164	64	-
	2	288	64	652	288	-
	3	1088	256	2588	1216	-
	4	4224	1024 10300	4992	-
	5	16640 4096 41084 20224	-
	6	66048 16384 164092 81408	-
	7	263168 65536 655868 326656	-

Table 4

 4 Complexity table : 2D Bercovier-Engelman -Rectangle meshes

Table 5

 5 Accuracy table : 3D Taylor-Green -Hexahedral meshes

	).

Table 7

 7 Accuracy table : 3D Taylor-Green -Tetrahedral meshes

	mesh #	nuu	npu	nnzu	nnzp nnzup
	0	1536	303	28476	3509	-
	1	12960 2499 255852 31485	-
	2	24744 4755 495216 60911	-
	3	48498 9324 979254 120436	-
	4	95127 18275 1935081 237899	-
	5	188361 36172 3856923 473998	-
	6	374982 72050 7718886 948404	-

Table 8

 8 Complexity table : 3D Taylor-Green -Tetrahedral meshes 4 Steady Navier-Stokes tests and robustness with respect to viscosity coefficient value Two steady test cases are presented here. The first one is a two-dimensional test (subsection 4.1) and the second one is a three-dimensional test (subsection 4.2).

Table 12

 12 Accuracy table : 2D Steady Navier-Stokes -Rectangular meshesν = 10 3

Table 14

 14 Accuracy table : 3D Steady Navier-Stokes -Hexahedral meshesν = 10 3

	mesh # 0 1 2	errgu 0:282 0:161 0:136	ordgu -0:791 1:012 ¡10 2 1:914 0:202 1:420 1:872 ¡10 erru ordu errp ordp errdivu 3:947 ¡10 2 -0:549 -6:407 ¡10 0:778 7:035 ¡10 3 1:683 0:164 0:961 1:17 ¡10 18	orddivu --

Table 17

 17 Accuracy table : 2D Unsteady Navier-Stokes -Triangular meshesν = 10 1

	mesh # 1	errgu 5:033 ¡10 2 -ordgu	erru 0:386	ordu -	errp 0:527	ordp -	errdivu 3:307 ¡10 15	orddivu

Table 18

 18 Accuracy table : 2D Unsteady Navier-Stokes -Triangular meshesν = 10 2

	mesh # 1	errgu 0:158	ordgu -	erru 7:377 ¡10 2 -ordu	errp 0:247	ordp -	errdivu 1:552 ¡10 16	orddivu

Table 19

 19 Accuracy table : 2D Unsteady Navier-Stokes -Rectangular meshesν = 10 1

	mesh # 1	errgu 5:629 ¡10 2 -ordgu	erru 0:174	ordu -	errp 0:266	ordp -	errdivu 1:577 ¡10 15	orddivu

Table 20

 20 Accuracy table : 2D Unsteady Navier-Stokes -Rectangular meshesν = 10 2

Table 21

 21 Comparison table : 2D Steady Stokes -Triangular meshesν = 10 1

	mesh #	devgu	codgu	devu	codu	devp	codp
	1	1:171					

Table 22

 22 Comparison table : 2D Steady Stokes -Triangular meshesν = 10 2

	mesh # 1	devgu 4:78 ¡10 3	codgu	devu	codu	devp	codp

Table 23

 23 Comparison table : 2D Steady Stokes -Rectangular meshesν = 10 1

	mesh # 1	devgu 4:78 ¡10 2	codgu	devu	codu	devp	codp

Table 24

 24 Comparison table : 2D Steady Stokes -Rectangular meshesν = 10 2

Table 25

 25 Comparison table : 2D Steady Navier-Stokes -Triangular meshesν = 1=400

	mesh #	devgu	codgu	devu	codu	devp	codp
	1	0:430	-	0:425	-	0:783	-
	2 3	0:221 5:152 ¡10 2 2:186 3:752 ¡10 2 2:363 7:001 ¡10 2 2:037 1:043 0:181 1:334 0:287 1:444

Table 26

 26 Comparison table : 2D Steady Navier-Stokes -Rectangular meshesν = 1=400

Table 35

 35 Nomenclature of freedom degrees and non-zero terms. 1=2 ordgu = d ln(errgu i ) ln(errgu i 1 ) ln(nuu i ) ln(nuu i 1 )

	errgu =

R D k∇ ∇ ∇(u u ex )k 2 R D k∇ ∇ ∇u ex k 2 ! R D jp ex j 2 i 1=2 ordp = d ln(errp i ) ln(errp i 1 ) ln(npu i ) ln(npu i 1 ) (2c) errdivu = ¢R D j∇ ∇ ∇ ¡uj 2 £ 1=2 orddivu = d ln(errdivu i ) ln(errdivu i 1 ) ln(nuu i ) ln(nuu i 1 )

In Tabs. 31/33 (respectively Tabs. 32/34), which refer to the finest triangular mesh for ν = 1=100 (resp. ν = 1=5000), the horizontal/vertical velocities are given for different positions along midlines of the cavity. For the finest rectangular grid, the four tables of results are given in the folder "data" but are not presented in this paper. 

Conclusion

In this paper, several two-and three-dimensional test cases were carried out in order to check the accuracy and convergence orders of TrioCFD. Various types of meshes were applied for those tests (rectangle, triangle, tetrahedron, hexahedron). For steady Stokes tests, the results are of second-order for velocity and pressure for rectangular and hexahedral grids. For triangular and tetrahedral grids, they are of second-order for velocity and only of first-order for pressure, as expected for the "Crouzeix-Raviart" element applied for those tests. The trends are similar for steady Navier-Stokes tests for each type of mesh. However, the convergence order for velocity decreases when the viscosity value becomes smaller because the numerical scheme for the non-linear convective term is only of first-order. The numerical scheme is robust with respect to the invariance property: a third-order accuracy is obtained for velocity and a second-order for pressure. These results do not depend on viscosity values. Finally, for the lid-driven cavity flow, excellent fittings were obtained with literature results.

Appendix: nomenclature

In this Appendix, the nomenclature of symbols (appearing in tables) is recalled in Tab. 35. The computational errors and accuracy of the results are defined by Eqs.