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Abstract - We investigate the spatial fluctuations of a neutron population close to criticality: the interplay
between random births and deaths leads to a spontaneous clustering of the diffusing individuals. By resorting
to a statistical mechanics approach, we determine the behaviour of the average neutron neutron density, the
pair correlation function and other relevant physical observables. When the individuals are left free to evolve,
their ultimate fate is the so-called critical catastrophe, i.e., extinction. When a global constraint is imposed on
the total number of individuals, the impact of clustering on diffusion depends on the competition between the
time required for a neutron to explore the whole reactor, and the time over which the population has undergone
a full generational renewal. In order to illustrate these results, exact formulas and scaling functions are derived
for a simple model of nuclear reactor and are compared to Monte Carlo simulations.

I. INTRODUCTION

Self-sustaining chains of neutrons in nuclear reactors form
a prototypical example of a system operating at the critical
point [1, 2]. At criticality, which means when births by fission
are exactly compensated by losses by capture and leakage,
the interplay between the fluctuations stemming from birth-
death events and those stemming from random displacements
subtly affects the spatial distribution of the particles in such
systems. This is particularly important during start-up using
weak sources: although the population may eventually rise
to a level where fluctuations are negligible, yet their effect
might persist for long times due to the impact on the initial
conditions [2]. The analysis of this statistical behaviour is
typically carried out by developing the evolution equations for
the first few moments of the neutron population [1, 2, 3, 4].

The physical mechanisms underlying the complex nature
of the moment equations can be probed by Monte Carlo sim-
ulation. In particular, it has been recently shown that at and
close to the critical point a collection of neutrons, although
spatially uniform at the initial time, may eventually display a
highly non-Poisson patchiness (see Fig. 1) [5].

The emergence of such neutron clustering due to the com-
petition between fission, capture and diffusion has been first
investigated in [6], based on a formal analogy with the be-
haviour of ecological communities [7, 8, 9, 10, 11], and later
extended to take into account finite-size effects [12], popu-
lation control [13] and the impact of delayed neutrons [14].
In this work we will revisit the basic findings about neutron
clustering and single out the key ingredients that govern the
spatial fluctuations.

I1. A SIMPLE MODEL OF A MULTIPLYING SYSTEM

In order to illustrate the features of neutron clustering,
we will introduce a simplified model of a multiplying sys-
tem that yet retains all the key ingredients. Neutrons will be
represented as a collection of particles undergoing random
diffusion, reproduction and capture within a homogeneous

Fig. 1. Monte Carlo simulation of neutrons in a two-
dimensional box with reflecting boundaries. At ¢ = 0, the
spatial particle distribution is uniform. In case a), particles
obey regular Brownian motion: the spatial distribution stays
uniform. In case b), particles obey a binary branching Brown-
ian motion with equal birth and death rates: particles sponta-
neously form random clusters. Eventually, the entire popula-
tion goes to extinction.

d-dimensional box of finite volume V = L?, L being the lin-
ear size. To simplify the matter, the box will have perfectly
reflecting boundaries. The stochastic paths of neutrons are
known to follow position and velocity dependent exponential
flights [2]. For our model, we approximate these paths by
d-dimensional branching Brownian motions with a constant
diffusion coeflicient D. The diffusing walker undergoes cap-
ture at rate y and reproduction at rate 8. In this latter case, the
neutron disappears and is replaced by a random number k of
descendants, distributed according to a law p; with average
vi = Y kpr. We are assuming here that all fission neutrons
are prompt, so as to keep notation to a minimum: the effects
of precursors will be included later.

At the critical point, we must have y = B(v; — 1), i.e.,
losses compensate births. In this regime, the Galton-Watson
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theory shows that the total number N(f) of particles in the sys-
tem stays constant on average, i.e., E[N(#)] = Ny, whereas the
variance grows in time, i.e., o2[N] = E[N?(t)] - B’ [N(¢)] o
BNot. This implies that the typical fluctuations of the whole
population size, say o,[N], will become comparable to the
average value Ny over a time t ~ Ny/B: then, a single fluc-
tuation is capable of killing the entire population !. In the
context of reactor physics, the extinction of the fission chains
at criticality goes under the name of critical catastrophe [2].
In the following, we will show how the spatial distribution
of neutrons within the box is affected by the fission-chain
fluctuations.

III. THE PHYSICAL OBSERVABLES

Let us denote by n(x, ¢) the instantaneous density of neu-
trons located at x at time #. The evolution equations for the
statistical moments of n(x, f) can be derived by resorting to
the Pal-Bell equations [1], which can be regarded as a par-
ticular case of the more general Feynman-Kac path-integral
approach [12]. Both strategies are based on the the reciprocity
property of random walks [4, 1, 2]: the idea is to write down
the equations governing the probability generating functions
for n(x, f), from which the average particle density and the
correlations can be obtained by simple derivation (some hints
are provided in the Appendix).

Let us denote by G,(x; Xo) the Green’s function satisfying
the backward equation

0 .
5,91 (%:%0) = L3, Gi(X: Xo), ey

where .
Ll =DV2 +pvi - 1) -7, )

with the boundary conditions of the problem at hand and
the initial condition Go(X;X9) = (X — Xp). Intuitively, the
Green function physically represents the average number of
particles appearing at x at time 7 for a single particle started
at xo at t = 0, or equivalently the average number of particles
originally present at Xy at ¢ = O for a single particle detected
at x at time ¢, by the reciprocity theorem [4]. The average
neutron density ¥,(x) at a point X can be expressed as

Ui(x) = Bln(x, 0] = N f dxogx0Gx: %), ()

where N is the number of individuals composing the initial
neutron population, and ¢ is the spatial probability distribution
function of each neutron at time # = 0 (assuming indepen-
dence) [12]. For a critical reactor, S(vi — 1) = y and we
thus have Lio = DV,Z‘O. In order to simplify the forthcoming
discussion, it is convenient to require that the initial spatial
distribution in the box is uniform, namely, ¢ = 1/V. This
corresponds to taking the population at equilibrium compat-
ibly with the assigned mass-preserving boundary conditions
at t = 0. Then, from Eq. (3) we would therefore have a flat
average density y,(x) = N/V =y at any time, insensitive to
local fluctuations.

IStrictly speaking, the mean extinction time of a critical system is infinite.
Here we are providing a heuristic argument based on a typical time [7].

The analysis of the spatial inhomogeneities shown in
Fig. 1 can be carried out by resorting to the two-point correla-
tion function A,(X,y) = E[n(x, r)n(y, )], which is proportional
to the joint probability density for particle pairs simultane-
ously occupying positions x and y [1, 2]. The correlation
length can be extracted from the shape of the function A: if h
is almost flat in space, then the correlations will have the same
relevance at any spatial site; on the contrary, spatial clustering
will be mirrored in a peak at x ~ y, i.e., an increased probabil-
ity of finding particles lying at short distances [12, 13]. The
overall intensity of the correlations is simply provided by the
amplitude of A.

The function /,(x,y) can be generally written as i, = hi¢ +
h,, where hid is the contribution from independent trajectories,
and 7, is the contribution of the trajectories correlated via a
fission event. For the former, we have

BAX,y) = en (W) + Y (X)6(x — y), “4)

including self-correlations, where ¢y = (N — 1)/N =~ 1 for
large N > 1 [12]. For the latter, we have

h(x,y) = [} dt’ [ dXPrX,1)G1-r (X X)Gr (¥: X)), (5)

where P, (x,1) = Bvay,(X) is the average rate of appearance
of particle pairs at position x and time ¢, the coefficient v, =
>k k(k — 1) py being the mean number of pairs created at each
fission [12]. For an exactly critical system, assuming again
q = 1/V, we have P»(Xx, ) = Svo1, and the pair correlation
function thus yields

h(x,y) = h(x, y) + Brato fo A Gy, (6

where we have used the Markov property of the Green’s func-
tions, namely,

f dx'G(x;x)G/(y;: X') = Gu(x;Y). )

Actually, it is customary to introduce the (dimensionless) nor-
malized and centered pair correlation function g [11], namely,

hi(x,y) — hi4(x,y)

8
U (X (y) ®

gl(x7 Y) =

When particles trajectories are very weakly correlated,
h(X,y) ~ h;'d(x, y) and thus g; ~ 0: we will therefore have
Poisson fluctuations. When g; ~ 1, the typical local fluctua-
tions will be comparable to the average local density ¢,. From
Egs. (6) and (8), for an exactly critical system we have

gy =22 f At Gar (). ©)
Yo Jo

The amplitude of g; decreases with increasing particle density
Yo and with decreasing fission rate 3, as expected on physical
grounds.
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IV. INCLUDING DELAYED NEUTRONS

The coupled stochastic evolution of neutrons and pre-
cursors can be modelled as a multi-type Galton-Watson re-
production process [2]: the parent neutron disappears and
is replaced by a random number k,, of prompt neutrons, be-
having as the parent particle, and a random number k; of
precursors, with joint probability py «, [1, 2]. We will de-
note by A the rate at which a precursor decays to a delayed
neutron. When delayed neutrons are considered, the system
is critical if B(v), + va — 1) =y, where v;, = Y i, kpPr, i, 18
the average number of prompt neutrons emitted per fission,
and vq = Xy x, kaP, k, 1s the average number of precursors
created per fission.

Similarly as done for prompt neutrons alone, we will
assume that the neutron and precursor populations are at equi-
librium within the box at r = 0. The analysis of the statistical
moments of the neutron population in the presence of precur-
sors can be again carried out by resorting to the backward
approach based on probability generating functions. However,
the multi-type branching process will give rise to a coupled
system of two equations to be solved simultaneously (see the
Appendix), and the resulting expressions for the moments are
particularly cumbersome in their general form. Some simplifi-
cations can nonetheless be obtained by observing that the rate
Bva at which precursors are created and the rate A at which pre-
cursors are converted to delayed neutrons are actually strongly
separated. Setting % = 4/(Bv,), for typical nuclear systems we
have ¢ ~ 1073 [1, 2]. This leads to the possibility of introduc-
ing singular perturbation techniques, which are amenable to
physically meaningful results [15].

In particular, it is possible to show that for the average
neutron density we have [14]

Yi(X) = gl (X), (10)

where zpf; ,(X) is the average neutron density for a reactor that
were to be run based on prompt neutrons alone (i.e., Eq. (3)).
This means that in the presence of precursors the time evo-
lution of ¥ is slowed down by a factor ¢. This behaviour is
coherent with the classical findings in reactor control theory.

As for the normalized pair correlation function, for a
critical system the precursors induce a stronger effect [14],
namely,

g(x,y) = 9g (X, y) an

where g” is the correlation function for a reactor that were to
be run based on prompt neutrons alone (i.e., Eq. (9)). Precur-
sors are therefore extremely effective in quenching the spatial
clustering of the neutrons: the spatial correlation function of
the neutron population has a much slower evolution in time
(t — 1), and its amplitude is further rescaled by a factor .
A rigorous derivation can be found in [14]. Equations (10)
and (11) allow transposing the results obtained for ¢ and g”
to the case of systems run with both neutrons and precursors.

V. THE THERMODYNAMIC LIMIT

The so-called thermodynamic limit is attained by consid-
ering a large number N — oo of particles in a large volume

V — oo [11, 12]. Suppose that the individuals are uniformly
distributed in V at time ¢ = 0, and impose that the limit average
particle density Yo = N/V is finite. At criticality, the Green’s
function for a d-dimensional infinite system without delayed
neutrons is the Gaussian density
_2
e Db

Gi(X;Xg) = ArDiyi?

(12)

which spatially depends only on the relative particle distance
r = |x — Xg|. The average particle density is stationary, namely,
¥(X) = Yo when starting from a flat initial condition g = 1/V.
As for the pair correlation function, from Eq. (9) we get

B2 2-d r
&rTDwor a1 301" (13)

&(r) =
where I',(2) = f * e u""'du is the incomplete Gamma func-
tion [11]. The asymptotic time behaviour of Eq. (13) depends
on the dimension d: it is known that g,(r) ~ vt ford = 1,
g:(r) ~ log(¢) for d = 2, and g,(r) ~ gu(r) ford > 2,

'8V2F<(51 B 1>r2—d

14
87Td/2DlﬂQ ( )

ga(r) =

being an asymptotic stationary spatial shape [11, 12]. This
means that in low dimension d < 2 a critical multiplying
system will eventually display clustering (g, diverges), irre-
spective of the average particle density ¢. For d > 3, the am-
plitude of g,(r) can be reduced by acting on i, and clustering
can be thus quenched. The dimension-dependent behaviour
of g,(r) is basically a consequence of the Polya’s theorem,
which states that diffusion in unconstrained domains is very
effective for d > 2 (for d < 2 particles have a finite probability
of coming back to their starting point).

VI. CONFINED GEOMETRIES

We will now focus on particles evolving in a finite-size
d-dimensional box of linear size L. For the sake of simplicity,
we will neglect delayed neutrons. By evoking the separation
of variables, G,(X; X() can be expanded in terms of a discrete
sum of eigenfunctions ¢y of the operator .E,T(o [12], in the form

Gi(x:%0) = ) () (Xo)e™, (15)
k

where i are the associated eigenvalues. The functions gol(xo)
can be explicitly derived from the completeness condition

D kXl (%) = 6(x — Xo), (16)
k

and imposing normalization. By applying Neumann boundary
conditions, for the d-dimensional box we have

d
o0 = [ ] cos (nki%) (17)

i=1
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Fig. 2. The normalized and centered pair correlation function
g:(x,y) for an initial collection of N = 10? branching Brow-
nian motions with diffusion coefficient D = 1072 and birth
rate S = 1/2 in a one-dimensional box of size L = 2. We
take y = 0 and plot g,(x,y = 0) at times ¢ = 1 (blue triangles),
t = 10 (magenta squares) and ¢ = 40 (grey circles). Symbols
correspond to Monte Carlo simulations with 10° realizations,
solid lines to exact solutions (Eq. (9)).

and
d 7r2kl.2

T +pvi—1)~v,
i=1

ax =-D (18)
so that the fundamental eigenstate is spatially flat, and the
associated fundamental eigenvalue is @9 = S(v; — 1) — .

For an exactly critical system, a9 = 0. From Eq. 5, by
resorting to the eigenfunction expansion and singling out the
fundamental mode we get

e ) = U520+ H k), (19)
where
1- —2|at
HY) = Brado ), — = a®a ) 20)

k+0

is a bounded function for large 7 [12].

Analysis of Eq. (19) shows that the spatial fluctuations
are ruled by two distinct time scales: a mixing time Tp =
—ay o« L2?/D and an extinction time Tg = N/(Bv>) [12]. The
quantity 7p physically represents the time over which a particle
has explored the finite viable volume V by diffusion. The
emergence of the time scale 7 is a distinct feature of confined
geometries (in the thermodynamic limit, 7, — c0). Because
of a finite 7p, the shape of the correlation function only weakly
depends on dimension d. The quantity 7z represents the time
over which the fluctuations due to births and deaths lead to the
extinction of the whole population. When the concentration
Yo = N/V of individuals in the population is large (and the
system is spatially bounded), it is reasonable to assume that
TE > Tp.

The shape of the rescaled g,(x, y) depends on the interplay
of 7p and 7 [12], as illustrated in Fig. 2. Immediately after

0.2

Fig. 3. The normalized and centered pair correlation function
g¢(x, y) for an initial collection of N = 10% branching Brown-
ian motions with diffusion coefficient D = 1072 and birth rate
B = 1/2 in a one-dimensional box of size L = 2. Wetake y = 0
and plot g¢(x,y = 0) at times ¢ = 1 (blue triangles), t = 10
(magenta squares) and ¢t = 40 (grey circles). Symbols corre-
spond to Monte Carlo simulations with 10° realizations, solid
lines to exact solutions (Eq. (29)). At later times, g;(x,y = 0)
converges to an asymptotic shape, displayed as a black dashed
curve (Eq. (30)).

the initial time, g,(x, y) displays a peak at short distances x ~ y,
which mirrors the effects of local fluctuations responsible for
spatial clustering. The amplitude of the peak is proportional
to the dimensionless ratio & = Bv,L?/(ND) « Tp/Tg, which
precisely reflects the competition between migration and re-
production: the amplitude is smaller for larger D and smaller
B (for fixed L and N), and vice-versa. The width of the peak,
which is related to the correlation length of the system, is
governed by diffusion, and is a growing function of D. For
times shorter than the mixing time 7p, the amplitude of the
peak grows due to births and deaths dominating over diffusion,
whereas its width increases due to diffusion. When ¢ > 1p,
the particles have explored the entire volume, and H(x,y)
freezes into a tent-like shape

Pk(X)p;(y)

21
Y Y

Heo(x,y) = lim H,(x,¥) = Bvatho ) |

k#0

The total number of neutrons in the reactor also under-
goes global fluctuations, N being finite. This progressively
lifts upwards the contribution H., (X, y) by a spatially flat term
(associated to the fundamental mode) that diverges linearly
in time as ~ t/7g. Finally, for times larger than the extinc-
tion time 7g, g,(X,y) > 1 everywhere. This physically means
that, no matter how dense is the population is at t = 0, neu-
trons are eventually doomed to extinction within ¢ ~ 7g: in
this respect, statistical equilibrium at the critical point is "a
mathematical fiction", as argued in [3]. Including delayed neu-
trons would not qualitatively change these findings. However,
the extinction time 7 =~ TZ /9% would be much longer than
TZ = N/(Bv,) corresponding to prompt neutrons alone [14].
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VII. FLUCTUATIONS CLOSE TO CRITICALITY

Let us assume that the system is initially at equilibrium
with respect to the spatial distribution, with ¢ = 1/V, but
criticality is not ensured, i.e., y # B(v; — 1). From Eq. (3) we
have thus

Yi(X) = Yoe™. (22)

The sign of the fundamental eigenvalue oy = S(vi — 1) — ¥
determines the asymptotic behaviour of the average particle
density: when @y > O the system is super-critical and the
population diverges in time; when ¢ < O the system is sub-
critical and the population shrinks to zero. As for the pair
correlation function, from Eq. (8) assuming again g = 1/V we
obtain

!
f A Guxy),  (23)
0

The ultimate fate of the pair correlation function at long times
depends on the rate @y at which the average population is
increasing or decreasing. When a¢ > 0, the pair correlation
function for long times asymptotically converges to the con-

stant

sixy) - 22 24)

N (7))

which means that fluctuations will be equally distributed at
any spatial scale. The average population is exponentially
increasing at a rate ag, thus contributing to the mixing of
the individuals: for sufficiently large N one typically expects
the amplitude of the pair correlation function to be g <« 1,
and fluctuations to be safely neglected. However, it may still
happen that g > 1, when the number of initial particles is
N < Bvy/ay, i.e., basically for small perturbations around crit-
icality, with a9 =~ 0. This can be understood as a competition
between the growth time constant 1/qy of the average popu-
lation and the extinction time 7g = N/(Bv,): if @y is rather
small, strong correlations may have enough time to develop,
despite the smoothing effect induced by the appearance of an
increasing number of new particles. When @y < 0, the pair
correlation function at long times grows unbounded exponen-
tially fast, as g,(X,y) ~ exp(—aygt): the average population is
rapidly decreasing, which enhances the relative importance of
fluctuations due to correlations.

VIII. THE EFFECTS OF POPULATION CONTROL

Multiplying systems are typically subject to physical
counter-reactions, such as the Doppler effect, which enforce
population control mechanisms on the neutron population [2].
The simplest way to model such requirement for an exactly
critical system is to impose that the total number N of neu-
trons is preserved, by correlating birth and death events [7]:
at each fission, a neutron disappears and is replaced by a
random number k > 1 of descendants, and k — 1 other neu-
trons are simultaneously removed from the collection in order
to ensure the conservation of total population. The quantity
Tr = N/(v»p) for a constrained system represents the time over
which the system has undergone a full population renewal, and
all the individuals descend from a single common ancestor.

Fig. 4. Monte Carlo simulation of the evolution of branching
Brownian motions in a two-dimensional box with reflecting
boundaries, subject to population control. At ¢ = 0, particles
obey a uniform spatial distribution. In case a), the ratio ¢ is
close to unit and clustering phenomena dominate over diffu-
sion (however, since the total particle number is preserved, the
population can not go to extinction). In case b), the ratio ¢ is
ten times smaller and spatial fluctuations are much milder.

The pair correlation function A (x,y) in the presence of
population control can be explicitly computed [13]. The prob-
ability for a chosen pair of particles at time ¢ not to have had a

. bry . .
common ancestor is U(f) = e~ ~1!, The correlated contribution
h{ reads then

K(x,y) = [df [dX P 1, 0G1-v (X X)Gr-r (¥:X') (25)

where
Prx, 1, 1) = Pvahy (X)U(t — 1) (26)

is the average rate of appearance of particle pairs at position
x and time # when the system is observed at time ¢, under
the aforementioned constraint on the total population [13].
Imposing a uniform source g = 1/V therefore yields

!
hi(x,y) = pvatho f dr'U(t)Gor (X;y). 27
0
The correlation function can thus be written as

h = et (WU @) + Y ()5(x — y) + B, (28)
and we finally get &6 = h¢ + HE(x,y), where

1— ~(2lend+ 52 )e
Hi(x.Y) = Bradi ) —5———a0el ) (29)

it 2l

is a bounded function for large ¢ [13]. The diverging term in
h; has been thus suppressed by population control, which is
coherent with the findings in [2] concerning the stabilizing
effect induced by counter-reactions on neutron fluctuations.
The rescaled pair correlation function g;(x,y) has two
distinct regimes when population control is enforced, as il-
lustrated in Fig. 3. Immediately after the initial time, g{(x,y)
displays a peak at short distances x =~ y, which is the signature
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of spatial clustering. The amplitude and the width of the peak
have the same behaviour as for the function g,(x,y) detailed
above. Nonetheless, since the number of particles is preserved,
the positive correlations at the center of the box imply nega-
tive correlations close to the boundaries. The amplitude of the
peak grows and its width increases for times shorter than the
mixing time 7p, analogously as in the previous case. However,
global spatial fluctuations are intrinsically suppressed by N
being fixed due to population control. For times larger than
Tp, H (X, y) converges to an asymptotic tent-like shape

o (X)L (y)
HL(x,y) = lim Hi(x,y) = fragro ) 5o—— . (30)
o ko v+ 2lond
In this regime, the spatial fluctuations are bounded by
c id d
WGPl < A7 L+ 281 (€29}

In order for the fluctuations to be small and prevent the emer-
gence of spatial clustering, we must therefore have 7p < 7p,
which occurs when the typical spatial separation between par-
ticles is thoroughly explored within a single generation (see
Fig. 4). In a critical system with population control, spatial
clustering can be quenched by simply imposing that N is
sufficiently large, for arbitrary values of the other physical
parameters.

IX. SPATIAL CLUSTER DISTRIBUTIONS

The spatial shape of the particle clusters can be character-
ized in terms of several moments, namely, the square center

of mass 5
1
5 L0

i

G OE <

> , (32)

the mean square displacement

1
2\() — 2
rH@) = i % (1), (33)
and the mean square distance between pairs of particles
1
2N(p) — 2
AORS vy E,-,- (I —rj0F), (34

where r;(¢) denotes the position of the i-th particle in the pop-
ulation. By construction, these three quantities are related to
each other by an elegant formula [8]:

N

o)+ 5

-1
(ro)() = (P)@).

N (35)

The spatial moments can be formally expressed in terms of the
average particle density ¢,(x) and of the correlation function
hi(x,y). In particular, for the mean square displacement we
have

1
()0 = ¥ f IxI*,(X)dx. (36)

0 20 40 60 80 100

Fig. 5. The average square distance between particles (rﬁ)(t)
for a one-dimensional model with N = 10? initial neutrons,
B=1/2,D = 1072, v, = 1 and L = 2. Blue solid curve: no
population control. At long times, (rlz))(t) asymptotically con-
verges to (rf,),-d = (1/6)L? for a spatially uniform population,
displayed as a blue dashed line. Magenta solid line: popula-
tion control. At long times, (rf,)c(t) asymptotically converges
to (rﬁ)ﬁ" given in Eq. (40), displayed as a magenta dashed line.

For a critical system with g = 1/V, (#2)(¢) yields
1 d
2\ 0 _ 2 50 _ 2
(roe = Iz flxl dx = 12L . (37)

As for the mean square distance between pairs of particles,
we have
[dx [ dylx - yPh(x,y)
[ax [ dyh(x.y)

An uncorrelated population uniformly distributed in the box
would give

1 d
(rp)ia = 737 f dx f dy-yP =2l (39

Deviations of (r2)(t) from the ideal behaviour (r7);s allow
quantifying the impact of spatial clustering [8, 13, 5]. The
behaviour of the average square distance between particles for
a critical reactor is illustrated in Fig. 5. At time ¢t = 0, the
population is uniformly distributed and (rf,)(O) = (r*);q. For
a system without population control, (r,z,)(t) at first decreases
due to spatial clustering; then, for times longer than 7p, global
correlations dominate: (rf,)(t) increases and asymptotically
saturates again to the ideal average square distance. This can
by understood by observing that 4, becomes spatially flat for
t > 71g (see Eq. (19)). When on the contrary population
control is enforced, (r12, Ye(1) at first decreases due to the com-
petition between diffusion and birth-death; for times ¢ > 7p,
(rf,)(t) eventually converges to an asymptotic value that can
be computed exactly based on Egs. (29) and (38):

8 £
1—-\/;}anh[ g)}- (40)

20 =

(38)

L2
2\oo _
) = 4d
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Fig. 6. The effects of perturbing the initial configuration ¢ for a
one-dimensional system with N = 10? neutrons, 8 = 1/2, D =
1072, and L = 2 (tp =~ 40). Population control is enforced.
At t = 0, the neutrons are uniformly distributed in the left
half-domain [—1, 0]. We display the time evolution of the pair
correlation function g{(x,y = 0). Monte Carlo simulations
with 103 realizations corresponding to the perturbed source
are displayed as symbols: blue squares, r = 10; red circles,
t = 40; green triangles, t = 70. Solid lines correspond to the
analytical solutions of g¢ starting from g = 1/V, taken at the
same times. For ¢ > 7p the perturbation will be reabsorbed.

When spatial correlations are weak (¢ — 0, which is obtained
for a very large number of particles N — oo or a vanishing
fission rate S — 0), from Eq. (40) we have

d
() = gL = (i (41)

and we recover the ideal case corresponding to uncorrelated
trajectories. In this case, the center of mass of the population
obeys

IN-1 1
(Feomdia =) = 5 ——(rpdia = P (4D)

which basically means that for a collection of independent
particles the mean square displacement of the center of mass
is equal to the mean square displacement of a single particle
of the collection, divided by the number of particles.

When the fission rate 8 > 0, we can expand Eq. (40) for a
large but finite number of particles N > 1, which yields

2\c0 _ 7.2 f
D = |1 = 5. 43)
This result implies in particular that (rf,)oo will be smaller
than in the uncorrelated case because of the effects of spatial
clustering. As for the center of mass, we finally get

<r(2tom>go = <rzom>id I+ é +-- ] . (44)

20

Then, (r2,,)> will be larger than that of an uncorrelated sys-
tem.

X. PERTURBING THE INITIAL CONFIGURATION

So far, we have always assumed that the reactor was ini-
tially prepared on a spatial distribution proportional to the
fundamental eigen-mode, i.e., ¢ = 1/V, which was a conve-
nient choice in view of more easily grasping the underlying
physical mechanisms. Actually, Eq. (3) for the particle density
and Eqgs. (6) and (25) for the pair correlation function will
hold true for arbitrary initial distributions g(xp). Instead of
considering the full evolution of ¢, and 4, starting from a given
source g(Xy), it is more instructive to address the relaxation
to equilibrium starting from a given perturbed configuration,
for an exactly critical system. Intuitively, the longest-lived
perturbation will be obtained when the spatial distribution is
proportional to the first excited eigen-mode ¢;. Let us then
assume that the perturbed source is written as

1
q"(Xo) = v [1+ €p1(x0)], (45)

where € is the amplitude of the perturbation, taken so that
g" > 0. Normalization is trivially satisfied.

Let us now denote the perturbation of the average particle
density by 6i,(x) = ¥} (x) — ¢;*(x), where §; corresponds to
the perturbed source g*, and ¢, corresponds to the equilibrium
source ¢ = 1/V. From Eq. (3), by resorting to the eigen-mode
expansion in Eq. (15) and using orthogonality

f dxpr(X)gf, (X) = Sk, (46)

we get
SY(x) = egopr(x)e™! (47

where for a critical reactor —a; = 1/7p. This means that
the perturbation oy, is reabsorbed exponentially fast, with a
characteristic time scale equal to the mixing time 7p: for times
t > 7p, the average density asymptotically attains ¢} — y/7.

As for the pair correlation function, let us similarly denote
6h, = hi —h;?. For a critical system without population control,
from Eq. (3), by resorting to the eigen-mode expansion in
Eq. (15) and using the orthogonality we get

Oh(X,y) = tho [68(X) + 6, (y)] (1 + é) (48)

by neglecting terms converging faster. The perturbation 6%; is
thus also reabsorbed exponentially fast, with a characteristic
time scale 7p. The linear correction is the signature of the
diverging term induced by the critical catastrophe. For times
t > 1p, the correlation function asymptotically attains h; —
h{?. When population control in enforced, from Eq. (25) we
would get

Oh; (X, y) = o [00:(X) + Y (y)] . (49)

up to terms converging faster. The rate of convergence is the
same as for the previous case, but the linear correction has
disappeared. This behaviour is illustrated in Fig. 6 for a critical
one-dimensional reactor.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,

Jeju, Korea, April 16-20, 2017, on USB (2017)

XI. COARSE-GRAINING AND ENTROPY

So far, we have assessed the behaviour of the average par-
ticle density and of the pair correlation function by assuming
that these quantities can be measured at any point X within the
box. However, some coarse-graining procedure is introduced
by the measurement techniques, which are typically performed
over a finite-size detector volume [10, 11]. Suppose then that
the d-dimensional box is partitioned into a regular Cartesian
grid having M meshes, and denote by k; the number of individ-
uals found within a given mesh of indexi = 1,--- , M. In the
absence of branching (8 = 0), the particle trajectories are inde-
pendent: starting from a source ¢ = 1/V with N individuals,
we would have

N
(ki) = fv ,- dxy(x) = - (50)

and

ot = [ ax [ ayhifoxy) - o = S s
v, Jv M

for any index i, where we have used V/V; = M. When M > 1,
0[k;] = N/M: independently diffusing particles lead to Pois-
son fluctuations, as expected. The variance-to-mean ratio
Y; = o2[k]/{k;) = 1 would not depend on the number of
meshes used for coarse-graining [1, 2]. These results could
have been equivalently obtained by remarking that at equilib-
rium the probability of finding k independently diffusing parti-
cles within any given mesh would be given by the Maxwell-

Boltzmann distribution 2, namely,
N\ (M — DN *
Pprg(kIN, M) = _— 52
ma(kIN, M) ( k) Y (52)
whence the average number of particles per cell
N
ky= > kPmgkIN,M) = — 53
<>§k]MB<|,>M, (53)
and the variance
NM - 1)
Ikl = ) R PuskIN, M) — (kY = == 5= (54)
k

In the presence of clustering (8 > 0), the result for the
average number of particles would be left unchanged, whereas
for the variance there would be position-dependent corrections
due to spatial correlations [1, 2]. For the case of an exactly
critical reactor without population control, we have

= T W J o
olkil = == ki + (ki)™= + VidX v,-dy%(X’Y)’

whence an asymptotic variance-to-mean ratio
M - B2

d dyHo(x,
n= Yol Jy, ax [, dyHe(x.y)
M (ki)

(55

2In the limit of large N and M, with finite u = N/M, P 54 can be approxi-
mated by a Poisson distribution with parameter .

Fig. 7. The variance-to-mean ratio ¥; when population control
is enforced: N = 10? particles evolve in a one-dimensional
domain with size L = 2 and are observed at time ¢ = 70,
starting from g = 1/V. The physical parameters are 8 = 1/2
and D = 0.01, and 7 =~ 40. Symbols represent Monte Carlo
simulations with 10° realizations: blue squares for M = 20
meshes, red circles for M = 40 meshes, and green triangles
for M = 100 meshes. Solid lines: exact formula (57). Dashed
line: the limit case of pure diffusion, ¥; = 1.

for long times t > 7p. Since H(X,y) is bounded, the
variance-to-mean ratio will eventually diverge linearly in time
and will be rather insensitive to the index i. When population
control is enforced, we obtain

20kl = MLy + f dx f dyH )., (56)
M v, v,

whence a bounded asymptotic variance-to-mean ratio

CoM—1 Jydx [, dyHExy)
Yi = + — ‘ (57)
’ M (ki)
with a non-trivial spatial structure, depending on the position
of the mesh V; within the box [10, 11]. Because of reflec-
tive boundary conditions, Y; will be higher for meshes close
to the boundaries, and lower for meshes close to the cen-
ter of the box [12]. These findings are in agreement with
the results discussed in [16] concerning the impact of reflec-
tlve boundaries on correlations. Simple arguments show that
f dyH:,(x,y) ~ 1/M?, which implies that the correc-
tlons to Y‘ due to correlations scale as

Jax [, dyHExy)

(ki) M

with respect to the number of meshes. A numerical example
for a one-dimensional critical system is illustrated in Fig. 7.

In this context, a relevant question concerns the number of

empty cells in the mesh. For a box with reflective boundaries

partitioned into M meshes, in the absence of clustering it can

be shown that the probability R(s|N, M) of having exactly s

empty cells for N diffusing particles asymptotically yields

R,-d(sw,M)—( )&(N M- (s9)

(58)
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Fig. 8. The probability R(s|N, M) of having s empty cells in the
mesh, when population control is enforced: N = 107 particles
evolve in a one-dimensional domain with size L = 2 and are
observed at time ¢ = 70, starting from g = 1/V. The physical
parameters D = 0.01 and 7p =~ 40. The number of meshes
is M = 50. Symbols represent Monte Carlo simulations with
10* realizations: blue squares for 8 = 5 x 107> and red circles
for B = 1/2. The dashed line is the distribution R;;(s|N, M)
corresponding to pure diffusion, as given by Eq. (59).

where S»(n,i) = Zj.zo(—l)f(;.)(i — j)" are the Stirling num-
bers of the second kind. This result stems from the particles
obeying a Maxwell-Boltzmann distribution for times 7 > 7p
when 8 = 0. In the limit of large N and M, with finite
¢ = Me™M (which basically means that the number of parti-
cles must be larger than the number of meshes, i.e., N > M),
the exact distribution in Eq. (59) can be approximated by a
Poisson distribution of parameter . In the presence of fission-
induced spatial correlations in a critical reactor, we expect s to
increase with respect to the case of pure diffusion, because of
clustering. Without population control, the number of empty
cells will eventually saturate to s — M for times ¢ > 7g,
so that the asymptotic distribution will be trivial. When pop-
ulation control is enforced, the distribution R(s|N, M) will
convergence to some asymptotic shape at times ¢ > 7p, with
(s) larger than (s);; ~ { obtained for diffusion. Monte Carlo
simulations are displayed in Fig. 8 for a one-dimensional sys-
tem.

A closely related physical observable is the ensemble-
averaged Shannon entropy

(Sy=-E

u ki ki
Zl ~ logs (ﬁ)] (60)

where we have assumed that the probability of occupation
of a cell of index i is estimated by k;/N, since all the cells
are equally accessible by diffusion. The entropy function (S)
is supposed to provide a measure of the phase space explo-
ration [5]. By construction, 0 < (S) < log,(M), where the
upper limit would correspond to an ideal repartition of parti-
cles uniformly within the box, in the limit of large N. For a
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Fig. 9. The entropy (S )(¢) as a function of time #, for M =
100 meshes: N = 10? particles evolve in a one-dimensional
domain with size L = 2, starting from g = 1/V. The physical
parameters D = 0.01 and 7p ~ 40. Symbols represent Monte
Carlo simulations with 10* realizations: blue squares with
population control; red circles without population control.
Black dashed line: the ideal case of pure diffusion, Eq. (61).

purely diffusive system, from Eq. (52) we would obtain

M N
(Sia = logy(N) - = Z Pps(kIN, M)klog, (k). (61)
k=0

When N is large, Ppg(k|N, M) will be peaked around (k) =
N/M, and (S )iz — log,(M). In the presence of spatial corre-
lations, the entropy function will be lower than (S );; because
of clustering, as illustrated in Fig. 9. Monte Carlo simulations
show that the behaviour of (S ), when population control is
enforced closely follows that of (r?)c: for t > 1p, (S). will
saturate to some asymptotic value (S )" < (S );s. Furthermore,
we have a scaling ((S)ia — (S )e)/(S )ia ~ M [5].

XII. CONCLUSIONS

We have illustrated the physical mechanisms that are re-
sponsible for neutron clustering in multiplying systems oper-
ated at and close to the critical point. The evolution of the
spatial correlations dramatically depends on whether popula-
tion control is enforced. To illustrate this point, exact formulas
have been derived for a simple model of nuclear reactor and
have been compared to Monte Carlo simulations.
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APPENDIX: THE BACKWARD EQUATIONS

Consider a single walker starting from xg at 7y = 0. Let
n(x, t|xp) be the number of particles found in dx close to x
when the process is observed at ¢ > fy. It is convenient to
introduce the associated two-volume probability generating
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function
W, (u, vxo) = B[l yny.ixo)], (A.1)

It can be shown that W;(u, v|X) satisfies the backward equation

W, = DVLW, =+ AW, + 7+ GIW),
where G[z] = 3 piz* is the probability generating function
associated to p; [12], in the absence of delayed neutrons.

Delayed neutron emission can be included by resorting
to multi-type branching processes [1, 2]. The probability
generating functions W}'(u, v[Xo) for a single neutron starting
from xo at #p = 0 and Wy (u, v|X¢) for a single precursor starting
from Xy at 7y = 0 satisfy the coupled system

8 n n n n n (o
EW’ = DViOWt —(y +BW; +y + BG"[W]IG[Wf]
0
(9_th =AW} — AWy,
where G"[z] and G¢[z] are the probability generating functions
for the number of (prompt) neutrons and precursors at fission
events, respectively.

Let us now consider a collection of N individuals initially

located at X}, X3, X5, - -, X)) with density Q(x;, X7, -+ ,x})) at
time #p = 0. Assuming that particles evolve independently of

each other, the probability generating function satisfies

(A2)

(A.3)

N
W, vixg, %5, -+, x)) = [ | Wta, vixf). (A4)
k=1
Suppose that the initial positions are independently and
identically distributed and obey the factorized density
Q(x),x2, -+ ,x)) = TI;_, g(x€). The corresponding proba-

bility generating function W,(u, v|Q) satisfies then [12]

N
Wi Q) = [ fv dxoq(x0)Wi(u, v|xO>] .

The m-th (factorial) moments of n(x) and n(y) can be obtained
by derivation of W;(u, v|Q) with respect to u and v, respectively.
In particular, the average particle number reads

(A.5)

0
Eln(x, 0] = == Wiu, V@)lu=1,0=1- (A.6)

u
For the two-volume correlations we take the mixed derivative,
namely,

2

0
E[n(x, Hn(y, )] = mwz(% VIQ)|u=1,v=1-

In many practical applications, the initial number of particles is
itself a random quantity K, with distribution Z(K). Assuming
again independent and identically distributed coordinates Xg,
k=1,2,---,K, Eq. (A.5) can be then generalized as

(A7)

K
W)=Y Z® | | fv dxGa(xEWi(u, VIxG).  (A.8)
K k=1

Often, the initial configuration is a Poisson point process [1].
In this case, the Campbell’s theorem yields [1]

Wt(u,VIZ)=eXp(Ndeo [Wi(u, vixo) — 11q(x0) |, (A.9)

where we have set N = E[K] for the average number of source
particles.
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