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Abstract - Particle transport in random media obeying a given mixing statistics is key in several applications in
nuclear reactor physics and more generally in diffusion phenomena emerging in physics and life sciences. Exact
solutions for the ensemble-averaged physical observables are hardly available, and several effective models
have been thus developed, providing a compromise between the accurate treatment of the disorder-induced
spatial correlations and the computational time. In order to validate these models, it is mandatory to resort to
reference solutions. We extend the pioneering work by Adams, Larsen and Pomraning [1] (recently revisited by
Brantley [2]) by considering a series of benchmark configurations for mono-energetic and isotropic transport
through Markov binary mixtures in dimension d. The stochastic media are generated by resorting to Poisson
random tessellations in 1d slab, 2d extruded, and full 3d geometry. For each realization, particle transport
is performed by resorting to Monte Carlo simulation. The distributions of the transmission and reflection
coefficients on the free surfaces of the geometry are subsequently estimated, and the average values over the
ensemble of realizations are computed. Reference solutions for the benchmark have never been provided before
for two- and three-dimensional Poisson tessellations, and the results presented in this paper might thus be
useful in order to validate fast but approximated models for particle transport in Markov stochastic media,
such as the celebrated Chord Length Sampling algorithm.

I. INTRODUCTION

Linear transport through heterogeneous and disordered
media emerges in several applications in nuclear science and
engineering. Examples are widespread and concern for in-
stance neutron diffusion in pebble-bed reactors or randomly
mixed immiscible materials [3, 4], and inertial confinement fu-
sion [5]. The key goal of particle transport theory in stochastic
media consists in deriving a formalism for the description of
the ensemble-averaged angular particle flux 〈ϕ(r,ω)〉, where
ϕ(r,ω) solves the linear (single-speed) Boltzmann equation

ω · ∇ϕ + Σ(r)ϕ =

∫
Σs(ω′ → ω, r)ϕ(r,ω′)dω′ + S , (1)

r and ω denoting the position and direction variables, respec-
tively, Σ(r) being the total cross section, Σs(ω′ → ω, r) the dif-
ferential scattering cross section, and S = S (r,ω) the source
term. For isotropic scattering, the differential scattering cross
section simplifies to Σs(ω′ → ω, r) = Σs(r)/Ωd, where Ωd
is the surface area of the unit sphere in dimension d. The
stochastic nature of particle transport stems from the materials
composing the traversed medium being randomly distributed
according to some statistical law. Hence, the quantities Σ(r),
Σs(ω′ → ω, r) and S (r,ω) are in principle random variables.
A widely adopted model of random media is the so-called bi-
nary stochastic mixing, where only two immiscible materials
(say α and β) are present [3]. Then, by averaging Eq. (1) over
realizations having material α at r, we obtain the following
equation for 〈ϕα(r,ω)〉

[ω · ∇ + Σα] pα〈ϕα〉 =
pαΣs,α

Ωd

∫
〈ϕα(r,ω′)〉dω′ + pαS α

+pβ,α〈ϕβ,α〉 − pα,β〈ϕα,β〉 (2)

where pi(r) is the probability of finding the material of index
i at position r. Here pi, j = pi, j(r,ω) denotes the probability

per unit length of crossing the interface from material i to
material j for a particle located at r and travelling in direction
ω, and 〈ϕi, j〉 denoting the angular flux averaged over those
realizations where there is a transition from material i to mate-
rial j for a particle located at r and travelling in direction ω.
The cross sections Σα and Σs,α are those of material α. The
equation for 〈ϕβ(r,ω)〉 is immediately obtained from Eq. (2)
by permuting the indexes α and β.

The set of equations in Eq. (2) can be shown to form an
infinite hierarchy [3, 4]. Generally speaking, it is therefore nec-
essary to introduce a closure formula, depending on the under-
lying mixing statistics. The celebrated Levermore-Pomraning
model assumes for instance 〈ϕα,β〉 = 〈ϕα〉 for homogeneous
Markov mixing statistics [3], which is defined by

pi, j(r,ω) =
pi

Λi(ω)
, (3)

depending on the starting position alone, where Λi(ω) is the
mean chord length for trajectories crossing material i in direc-
tion ω. Several generalisations of this model have been later
proposed, including higher-order closure schemes [3]. In par-
allel, Monte Carlo algorithms such as the Chord Length Sam-
pling have been conceived in order to address the Levermore-
Pomraning model, and have been further extended so as to
include partial memory effects due to correlations for particles
crossing back and forth the same materials [5]. Their com-
mon feature is that they allow a simpler, albeit approximate,
treatment of transport in stochastic mixtures, which might be
convenient in practical applications.

In order to assess the accuracy of the various approximate
models it is therefore mandatory to compute reference solu-
tions for the exact Eqs. (2). Such solutions can be obtained
in the following way: first, a realization of the medium is
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sampled from the underlying mixing statistics; then, the linear
transport equations corresponding to this realization are solved
by either deterministic or Monte Carlo methods, and the phys-
ical observables of interest are determined; this procedure is
repeated many times so as to create a sufficiently large collec-
tion of realizations, and ensemble averages are finally taken
for the physical observables. For this purpose, a number of
benchmark problems for Markov mixing have been proposed
in the literature so far [1, 4, 2], with focus exclusively on 1d
geometries, either of the rod or slab type.

In this work we will revisit the classical benchmark prob-
lem proposed by Adams, Larsen and Pomraning for transport
in stochastic media [1]. We will present reference solutions
obtained by Monte Carlo particle transport simulation through
1d slab, 2d extruded and 3d tessellations of a finite-size box
with Markov mixing. We will compute the particle flux 〈ϕ〉,
the transmission coefficient 〈T 〉 and the reflection coefficient
〈R〉 by taking ensemble averages over the realizations; the
dispersion of the physical observables around their average
values will be assessed by evaluating their full distributions.
Benchmark solutions for transport in 2d extruded and 3d tes-
sellations have never been addressed before.

II. BENCHMARK SPECIFICATIONS

The benchmark specifications for our work are essen-
tially taken from those originally proposed in [1, 4], and
later extended in [2]. We consider single-speed linear par-
ticle transport through a stochastic binary medium with ho-
mogeneous Markov mixing. The medium is non-multiplying,
with isotropic scattering. The geometry consists of a cubic
box of side L = 10, with reflective boundary conditions on
all sides of the box except two opposite faces (say those per-
pendicular to the x axis), where leakage boundary conditions
are imposed: particles that leave the domain through these
faces can not re-enter. Lengths are expressed in arbitrary units.
In [1] and [4], system sizes L = 0.1 and L = 1 were also
considered, but in this work we will focus on the case L = 10,
which leads to more physically relevant configurations. Two
kinds of non-stochastic sources have been considered in [2],
namely, an imposed normalized incident angular flux on the
leakage surface at x = 0 (with zero interior sources), or a
distributed homogeneous and isotropic normalized interior
source (with zero incident angular flux on the leakage sur-
faces). The benchmark configurations pertaining to the former
kind of source have been conventionally called suite I, whereas
those pertaining to the latter have been called suite II [2]. In
this work, we will present the simulation results for suite I,
and we refer the reader to a companion work [?] for those of
suite II. The material properties for the Markov mixing are
entirely defined by assigning the average chord length for each
material i = α, β, namely Λi, which in turn allows deriving
the homogeneous probability pi of finding material i at an
arbitrary location within the box, namely, pi = Λi/(Λi + Λ j).
The material probability pi defines the volume fraction for ma-
terial i. The cross sections for each material will be denoted as
customary Σi for the total cross section and Σs,i for the scatter-
ing cross section. The average number of particles surviving
a collision in material i will be denoted by ci = Σs,i/Σi ≤ 1.

The physical parameters for the benchmark configurations are
recalled in Tabs. I and II: three cases (numbered 1, 2 and 3)
are considered, each containing three sub-cases (noted a, b
and c). The case numbers correspond to varying the materials,
whereas the sub-cases represents varying ratios of ci for each
material.

Case Σα Λα Σβ Λβ

1 10/99 99/100 100/11 11/100
2 10/99 99/10 100/11 11/10
3 2/101 101/20 200/101 101/20

TABLE I. Material parameters for the three cases of the bench-
mark configurations.

Sub-case a b c

cα 0 1 0.9
cβ 1 0 0.9

TABLE II. Material parameters for the three sub-cases of the
benchmark configurations.

The physical observables of interest for the proposed
benchmark will be the ensemble-averaged outgoing parti-
cle currents 〈J〉 on the two surfaces with leakage boundary
conditions, and the ensemble-averaged scalar particle flux

〈ϕ(x)〉 = 〈
∫ ∫ ∫

ϕ(r,ω)dωdydz〉 along 0 ≤ x ≤ L. For
the suite I configurations, the outgoing particle current on
the side opposite to the imposed current source will repre-
sent the ensemble-averaged transmission coefficient, namely,
〈T 〉 = 〈Jx=L〉, whereas the outgoing particle current on the side
of the current source will represent the ensemble-averaged re-
flection coefficient, namely, 〈R〉 = 〈Jx=0〉.

III. POISSON GEOMETRIES

Poisson geometries form a prototype process of isotropic
stochastic tessellations: a portion of a d-dimensional space
is partitioned by randomly generated (d − 1)-dimensional
hyper-planes drawn from an underlying Poisson process [6].
An explicit construction amenable to Monte Carlo realiza-
tions for two-dimensional homogeneous and isotropic Pois-
son geometries of finite size has been established in [7]. A
generalization of this algorithm to three-dimensional (and
in principle d-dimensional) domains has recently been pro-
posed [8], based on a spatial tessellation of the d-hypersphere
of radius R centered at the origin by a random number m
of (d − 1)-hyperplanes with random orientation and posi-
tion. The number m of (d − 1)-hyperplanes is sampled
from a Poisson distribution with parameter ρRAd(1)/Vd−1(1).
Here Ad(1) = 2πd/2/Γ(d/2) denotes the surface of the d-
dimensional unit sphere (Γ(a) being the Gamma function),
Vd(1) = πd/2/Γ(1 + d/2) denotes the volume of the d-
dimensional unit sphere, and ρ is the arbitrary density of the
tessellation, carrying the units of an inverse length.

The algorithm for the 1d slab tessellations is recalled
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Case 1, d = 1

Case 1, d = 2

Case 1, d = 3

Fig. 1. Examples of realizations of Poisson geometries cor-
responding to the benchmark specifications for the 1d slab
tessellations (top), 2d extruded tessellations (middle) and 3d
tessellations (bottom), before (left) and after (right) attributing
the material label. Red denotes label α and blue denotes label
β. For case 1, pα = 0.9.

in [1], based on the Poisson process on the line. For the 2d ex-
truded tessellations, we begin by creating an isotropic Poisson
tessellation of a square of side L, according to the algorithm
detailed in [9]. By construction, the polygons defined by the
intersection of random lines drawn according to this method
are convex. Once the square has been tessellated, the full
geometrical description for the cube is simply achieved by
extruding the random polyhedra (which lie on the x − y plane)
along the orthogonal z axis (see Fig. 1).

Let us now focus on 3d tessellations [10]. We denote by R
the radius of the sphere circumscribed to the cube, and suppose
that the cube is centered in the origin O. We start again by
sampling a random number of points m from a Poisson distribu-
tion of parameter 4ρR, where we have usedA3(1)/V2(1) = 4.
Then we generate the planes that will cut the cube. We choose
a radius r uniformly in the interval [0,R] and then sample two
additional parameters, namely, ξ1 and ξ2, from two indepen-
dent uniform distributions in the interval [0, 1]. A unit vector
n = (n1, n2, n3)T is generated, with components n1 = 1 − 2ξ1,
n2 =

√
1 − n2

1 cos (2πξ2), and n3 =

√
1 − n2

1 sin (2πξ2). Let
now M be the point such that OM = rn. The random plane

will finally obey n1x + n2y + n3z = r, passing trough M and
having normal vector n. The procedure is iterated until m
random planes have been generated. The polyhedra defined by
the intersection of such random planes are convex (see Fig. 1).

Poisson geometries satisfy a Markov property: for do-
mains of infinite size, arbitrary drawn lines will be cut by
the (d − 1)-surfaces of the d-polyhedra into segments whose
lengths ` are exponentially distributed, i.e., P(`) = ρe−ρ`, with
average 〈`〉 =

∫
`P(`)d` = 1/ρ [6]. The quantity Λ = 1/ρ

intuitively defines the correlation length of the Poisson geom-
etry, i.e, the typical linear size of a volume composing the
random tessellation.

Binary Markov mixtures required for the benchmark spec-
ifications are obtained as follows: first, a d-dimensional Pois-
son tessellation is constructed as described above. Then, each
polyhedron of the geometry is assigned a material composition
by formally attributing a distinct ‘label’ (also called ‘color’),
say ‘α’ or ‘β’, with associated complementary probabilities pα
and pβ = 1 − pα. Adjacent polyhedra sharing the same label
are finally merged. This gives rise to (generally) non-convex α
and β clusters, each composed of a random number of convex
polyhedra. The statistical features of Poisson binary mixtures,
including percolation probabilities and exponents, have been
previously addressed in [9] for 2d geometries and in [10] for
3d geometries. It can be shown that the average chord length
Λα through clusters with composition α is related to the corre-
lation length Λ of the geometry via Λ = (1−pα)Λα, and for Λβ

we similarly have Λ = pαΛβ. This yields 1/Λα + 1/Λβ = 1/Λ,
and we recover

pα =
Λ

Λβ
=

Λα

Λα + Λβ
. (4)

Thus, based on the formulas above, and using ρ = 1/Λ, the
parameters of the colored Poisson geometries corresponding
to the benchmark specifications provided in Tab. I are easily
derived. For the purpose of illustration, examples of realiza-
tions of Poisson geometries for the case 1 of the benchmark
are displayed in Fig. 1 for the 1d slab tessellations, the 2d
extruded tessellations and the 3d tessellations.

IV. SIMULATION PARAMETERS

The reference solutions for the ensemble-averaged scalar
particle flux 〈ϕ(x)〉 and the currents 〈R〉 and 〈T 〉 have been
computed as follows. For each benchmark case and sub-case,
a large number M of geometries has been generated, and the
material properties have been attributed to each volume as
described above. Then, for each realization k of the ensemble,
linear particle transport has been simulated by resorting to
the production Monte Carlo code Tripoli-4 R©, developed at
CEA [11]. The number of simulated particle histories per
configuration is 106. For a given physical observable O, the
benchmark solution is obtained as the ensemble average

〈O〉 =
1
M

M∑
k=1

Ok (5)

where Ok is the Monte Carlo estimate for the observable O
obtained for the k-th realization. Depending on the correla-
tion lengths and on the volumetric fractions, the physical ob-
servables might display a larger or smaller dispersion around
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their average values. For 1d slab tessellations, we have taken
M = 104; for the 2d extruded tessellations, we have taken
M = 4 × 103; finally, for the 3d tessellations we have taken
M = 103. As a general remark, increasing the dimension
implies an increasing computational burden (each realization
takes longer both for generation and for Monte Carlo trans-
port), but also a better statistical mixing (a single realization is
more representative of the average behaviour). For reference,
we have also computed transport results in configurations
obeying the atomic mix approximation [3]: the findings corre-
sponding to Poisson tessellations will be contrasted to those
coming from the atomic mix model.

1. Computational time

For the simulations discussed here we have largely ben-
efited from a feature that has been recently implemented in
the code Tripoli-4 R©, namely the possibility of reading pre-
computed connectivity maps for the volumes composing the
geometry. During the generation of the Poisson tessellations,
care has been taken so as to store the indexes of the neighbour-
ing volumes for each realization, which means that during the
geometrical tracking a particle will have to find the following
crossed volume in a list that might be considerably smaller
than the total number of random volumes composing the box
(depending on the features of the random geometry). To pro-
vide an example, a typical realization of a 3d geometry for
case 1 will be composed of ∼ 105 volumes, whereas the typi-
cal number of neighbours for each volume will of the order of
∼ 10. When fed to the transport code, such connectivity maps
allow thus for considerable speed-ups for the most fragmented
geometries, up to one hundred.

Transport calculations have been run on a cluster based
at CEA, with Xeon E5-2680 V2 2.8 GHz processors. An
overview of the average computer time 〈t〉 for each benchmark
configuration is provided in Tab. III. Dispersions σ[t] are
also given. While an increasing trend for 〈t〉 as a function of
dimension is clearly apparent, subtle effects due to correlation
lengths and volume fractions for the material compositions
come also into play, and strongly influence the average com-
puter time. For some configurations, the dispersion σ[t] may
become very large, and even be comparable to the average 〈t〉.
Atomic mixing simulations are based on a single homogenized
realization, and the dispersion is thus trivially zero.

V. ANALYSIS OF MONTE CARLO SIMULATION RE-
SULTS

1. Transmission, reflection and integral flux

The simulation results for the ensemble-averaged trans-
mission coefficient 〈T 〉, the reflection coefficient 〈R〉 and the
integral flux 〈ϕ〉 = 〈

∫ ∫
ϕ(r,ω)dωdr〉 are provided in Tabs. IV

to VI for all the benchmark configurations of suite I. Atomic
mix results have been also given for reference. For each Monte
Carlo transport simulation, the error on the estimated observ-
able was significantly lower than 1%.

The computed values for the 1d slab configurations and
the atomic mix approximation are in excellent agreement (typ-

ically to two or three digits) with those previously reported
in [1, 2, 4], and allow concluding that our choice for the bench-
mark specifications is coherent. For all examined cases, the
atomic mix approximation generally yields poor results as
compared with the benchmark solutions, and in some cases
the discrepancy can add up to several orders of magnitude.
In addition, the atomic mix solutions for several cases are
strictly identical, since the ensemble-averaged total and scat-
tering cross sections are identical by design. Concerning the
benchmark solutions in dimension d = 1, 2 and 3, the impact
of dimension on the transmission and reflection coefficient
is stronger between d = 1 and d = 2 than between d = 2
and d = 3, as expected on physical grounds, and has a large
variability between cases. The reflection coefficient 〈R〉 in
d = 1 is always larger than those in d = 2, 3. The transmission
coefficient 〈T 〉 is also generally larger, apart from cases 1a, 1c,
and 3a, where it is smaller.

2. Distributions of transmission and reflection coefficients

In order to better assess the variability of the transmis-
sion and reflection coefficients around their average values,
we have also computed their full distributions based on the
available realizations in the generated ensembles. The result-
ing normalized histograms are illustrated in Figs. 2 to 4. As
a general consideration, the dispersion of the observables de-
creases with increasing dimension: the mixing is increasingly
efficient and the distribution is more peaked around the aver-
age, which is expected on physical grounds. However, even
for d = 3 it is apparent that several configurations display
highly non-symmetrical shapes, and possible cut-offs due to
finite-size effects. Especially in d = 1, bi-modality may also
arise for cases 2 and 3, which is due to the aforementioned
effect of random geometries being entirely filled with either
material α or β: the peaks observed in the distributions corre-
spond to the values of the transmission or reflection coefficient
associated to a fully red or fully blue realization. (The data
sets of the distributions are available from the authors upon
request.) For the 1d slab tessellations, the variances of the
transmission and reflection coefficient have been numerically
computed in [1]: the values obtained in our simulations are in
excellent agreement with those previously reported.

VI. CONCLUSIONS

The key goal of this work was to compute reference so-
lutions for linear transport in stochastic geometries. In order
to establish a proper and easily reproducible framework, we
have built our specifications upon the benchmark originally
proposed by Adams, Larsen and Pomraning, and recently re-
visited by Brantley. We have thus considered a box of fixed
side, with two free surfaces on opposite sides, and reflecting
boundary conditions everywhere else. As a prototype exam-
ple of stochastic media, we have adopted Markov geometries
with binary mixing: such geometries have been numerically
implemented by resorting to the algorithm for colored Poisson
geometries.

Three kinds of Poisson tessellations of the box have been
tested: 1d slab tessellations, 2d extruded tessellations, and full
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Case: 1a 1b 1c 2a 2b 2c 3a 3b 3c

Atomic mixing 〈t〉 122 41 65 67 40 66 117 39 66

d = 1 〈t〉 155 63 117 94 62 75 138 45 69
σ[t] 48 16 25 61 14 7 53 6 6

d = 2 〈t〉 168 77 186 91 62 82 152 46 72
σ[t] 9 4 50 26 7 8 54 4 5

d = 3 〈t〉 3962 1711 3582 119 63 87 144 46 75
σ[t] 889 364 862 36 4 4 35 3 4

TABLE III. Simulation times t for the benchmark configurations, expressed in seconds. The cases of suite I.

3d tessellations. To the best of our knowledge, benchmark
solutions for 2d and 3d tessellations with Markov mixing
have never been studied before. Material compositions and
correlation lengths, as well as source and boundary conditions,
have been assigned based on the benchmark specifications. A
large number of random geometries and material compositions
have been realized. For each realization, mono-energetic linear
transport with isotropic scattering and absorption has been
simulated by Monte Carlo method. The code Tripoli-4 R©

developed at CEA has been used for this purpose.
The physical observables that have been examined in

this work are the reflection and transmission coefficients, and
the scalar particle flux, averaged over the ensemble of avail-
able realizations. The full distributions of the reflection and
transmission coefficients have been also examined, in order
to evaluate the impact of correlation lengths and volumetric
fractions on the dispersion of these observables around their
average values.
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Configuration Observable Atomic mixing 1d 2d 3d

〈R〉 0.4919 ± 0.0004 0.435 ± 0.002 0.4031 ± 0.0006 0.4065 ± 0.0004
1a 〈T 〉 0.00484 ± 7 × 10−5 0.0147 ± 0.0002 0.0173 ± 0.0001 0.0162 ± 0.0001

〈ϕ〉 5.499 ± 0.007 6.09 ± 0.01 6.356 ± 0.008 6.318 ± 0.008

〈R〉 0.0193 ± 0.0001 0.0841 ± 0.0007 0.0453 ± 0.0002 0.0376 ± 0.0002
1b 〈T 〉 8 × 10−6 ± 3 × 10−6 0.0017 ± 0.0001 0.00108 ± 3 × 10−5 0.00085 ± 3 × 10−5

〈ϕ〉 1.077 ± 0.001 2.89 ± 0.02 2.165 ± 0.005 1.920 ± 0.003

〈R〉 0.4747 ± 0.0004 0.4743 ± 0.0004 0.4059 ± 0.0004 0.4036 ± 0.0004
1c 〈T 〉 0.00384 ± 6 × 10−5 0.0159 ± 0.0003 0.0179 ± 0.0001 0.0164 ± 0.0001

〈ϕ〉 5.172 ± 0.0007 6.95 ± 0.03 6.52 ± 0.01 6.296 ± 0.0008

TABLE IV. Ensemble-averaged observables for the benchmark configurations: suite I - case 1.

Configuration Observable Atomic mixing 1d 2d 3d

〈R〉 0.4919 ± 0.0004 0.235 ± 0.003 0.226 ± 0.002 0.223 ± 0.002
2a 〈T 〉 0.00484 ± 7 × 10−5 0.0975 ± 0.0009 0.0955 ± 0.0007 0.0935 ± 0.0008

〈ϕ〉 5.499 ± 0.007 7.63 ± 0.02 7.57 ± 0.01 7.55 ± 0.02

〈R〉 0.0193 ± 0.0001 0.285 ± 0.0002 0.196 ± 0.001 0.161 ± 0.002
2b 〈T 〉 8 × 10−6 ± 3 × 10−6 0.193 ± 0.003 0.143 ± 0.002 0.119 ± 0.002

〈ϕ〉 1.077 ± 0.001 11.65 ± 0.08 9.00 ± 0.06 7.76 ± 0.07

〈R〉 0.4747 ± 0.0004 0.4304 ± 0.0008 0.3669 ± 0.0006 0.3438 ± 0.0006
2c 〈T 〉 0.00384 ± 6 × 10−5 0.185 ± 0.002 0.176 ± 0.002 0.165 ± 0.0002

〈ϕ〉 5.172 ± 0.007 12.50 ± 0.06 11.39 ± 0.05 10.76 ± 0.06

TABLE V. Ensemble-averaged observables for the benchmark configurations: suite I - case 2.

Configuration Observable Atomic mixing 1d 2d 3d

〈R〉 0.7820 ± 0.0004 0.693 ± 0.003 0.672 ± 0.003 0.670 ± 0.004
3a 〈T 〉 0.0667 ± 0.0003 0.161 ± 0.002 0.170 ± 0.002 0.169 ± 0.003

〈ϕ〉 14.83 ± 0.02 16.35 ± 0.05 16.46 ± 0.05 16.35 ± 0.08

〈R〉 0.00202 ± 4 × 10−5 0.0349 ± 0.0004 0.0221 ± 0.0004 0.0167 ± 0.0006
3b 〈T 〉 9 × 10−6 ± 3 × 10−6 0.0740 ± 0.002 0.061 ± 0.002 0.045 ± 0.003

〈ϕ〉 1.004 ± 0.001 5.01 ± 0.06 4.08 ± 0.06 3.49 ± 0.08

〈R〉 0.4747 ± 0.0004 0.443 ± 0.001 0.406 ± 0.001 0.395 ± 0.001
3c 〈T 〉 0.00384 ± 6 × 10−5 0.101 ± 0.002 0.098 ± 0.002 0.085 ± 0.003

〈ϕ〉 5.172 ± 0.007 8.80 ± 0.07 8.34 ± 0.07 7.9 ± 0.1

TABLE VI. Ensemble-averaged observables for the benchmark configurations: suite I - Case 3.
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Fig. 2. Left column: normalized distributions Π(R) of the reflection coefficients R; right column: normalized distributions Π(T )
of the transmission coefficients T . Suite I configurations, case 1. Blue squares represent the 1d slab tessellations, red circles the
2d extruded tessellations, and green diamonds the 3d tessellations.
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Fig. 3. Left column: normalized distributions Π(R) of the reflection coefficients R; right column: normalized distributions Π(T )
of the transmission coefficients T . Suite I configurations, case 2. Blue squares represent the 1d slab tessellations, red circles the
2d extruded tessellations, and green diamonds the 3d tessellations.
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Fig. 4. Left column: normalized distributions Π(R) of the reflection coefficients R; right column: normalized distributions Π(T )
of the transmission coefficients T . Suite I configurations, case 3. Blue squares represent the 1d slab tessellations, red circles the
2d extruded tessellations, and green diamonds the 3d tessellations.


