

#### Frittage de carbure de bore nano-,microstructure par Spark Plasma sintering influence des matieres premieres sur le frittage et les proprietes mecaniques

L. Roumiguier, M. Stubner, N. Pradeilles, A. Jankowiak, G. Antou, A. Maitre

#### ► To cite this version:

L. Roumiguier, M. Stubner, N. Pradeilles, A. Jankowiak, G. Antou, et al.. Frittage de carbure de bore nano-,microstructure par Spark Plasma sintering influence des matieres premieres sur le frittage et les proprietes mecaniques. Journees Annuelles du Groupe Francais de la Ceramique (GFC - 2017), Mar 2017, Rennes, France. cea-02434034

#### HAL Id: cea-02434034 https://cea.hal.science/cea-02434034

Submitted on 9 Jan 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

#### DE LA RECHERCHE À L'INDUSTRIE



## FRITTAGE DE CARBURE DE BORE NANO-,MICROSTRUCTURÉ PAR SPARK PLASMA SINTERING

INFLUENCE DES MATIÈRES PREMIÈRES SUR LE FRITTAGE ET LES PROPRIÉTÉS MÉCANIQUES



Léna ROUMIGUIER<sup>1,2</sup>, Mathilde STÜBNER<sup>1</sup>, Nicolas PRADEILLES<sup>2</sup>, Aurélien JANKOWIAK<sup>1</sup>, Guy ANTOU<sup>2</sup>, Alexandre MAITRE<sup>2</sup>

<sup>1</sup> DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

<sup>2</sup> Laboratoire Science des Procédés Céramiques et de Traitements de Surface -SPCTS, UMR CNRS 7315, LIMOGES, France

GFC Rennes | Léna Roumiguier







XX MARS 2017

www.cea.fr

# ea introduction

### Contexte

Carbure de bore : céramique incontournable en réacteur (RNR)

→ propriété d'absorption de l'isotope 10 du bore



Schéma du réacteur d'ASTRID<sup>[1]</sup>



Coupe d'un crayon absorbant irradié dans le réacteur Phénix <sup>[2]</sup>

Auparavant :

- Frittée par hot pressing à partir de poudre micrométrique
- Contraintes (rétention d'hélium sous irradiation et fort gradient en température)

**Besoin** : améliorer le comportement thermomécanique des pastilles sous **gradient thermique** et sous **irradiation** dans le temps

# 

### Objectif

Réalisation de pièces de forme avec :

- Propriétés thermomécaniques améliorées
- Dimensions représentatives pour réacteurs de 4ème génération (pastille cylindrique avec rapport hauteur/diamètre ≥ 1,2)

### Axes de recherche

- Choix de la poudre de carbure de bore :
  - trois poudres nanométriques disponibles industriellement
  - une poudre sub-micrométrique
    - → Caractérisations physico-chimiques
- Consolidation des pastilles : comportement au frittage Spark Plasma Sintering
  - → Caractérisation de la microstructure
  - → Caractérisations mécaniques









### Caractérisation des poudres disponibles industriellement

| Caractérisations structurales   | P.06 |
|---------------------------------|------|
| Caractérisations morphologiques | P.08 |
| Analyse chimique                | P.09 |

### Densification et caractérisation de massifs

| Frittage SPS des poudres pré-sélectionnées | P.11 |
|--------------------------------------------|------|
| Propriétés mécaniques des massifs frittés  | P.12 |

### Bilan

Conclusions et perspectives

P.15



# CARACTÉRISATION DES POUDRES DISPONIBLES INDUSTRIELLEMENT

# **CARACTÉRISATIONS STRUCTURALES**

### Analyses par diffraction des rayons X



> H.C. Starck et Tekna : carbure de bore à l'état cristallisé

> Plasmachem et lolitec : peu de carbure de bore, phases secondaires

cea

# **CARACTÉRISATIONS STRUCTURALES**

### Analyses Raman



| Nom   | Déplacement des atomes [2]                                                                |
|-------|-------------------------------------------------------------------------------------------|
| lco5  | Libration X et Y de l'icosaèdre                                                           |
| lco7  | Translation selon X et Y des liaisons inter-<br>icosaèdres (pseudo-rotation de la chaîne) |
| Ico9  | Translation selon Z des triangles équatoriaux en antiphase                                |
| lco20 | Étirement en phase des liaisons intra-<br>icosaèdres                                      |
| lco23 | Élongation antisymétrique inter-icosaèdres<br>polaire-polaire                             |
| Ch5   | Allongement symétrique de la chaîne selon<br>l'axe Z                                      |

- Poudres nanométriques : écrasement des pics dû au fort taux de carbone libre
- Élimination des poudres lolitec et Plasmachem au vu de leur composition chimique

[1] Stübner, M., 2016. Élaboration et caractérisation de B4C fritté par SPS à partir de poudres nanométriques disponibles industriellement. Stage de master au CEA Saclay

[2] Jay, A., 2015, Conception in silico d'une nouvelle phase de carbure de bore. Thèse à l'École Polytechnique, Université Paris-Saclay.





### Granulométrie et observations microscopiques

| Poudre             | Gr                                                              | anulomét<br>(en nm) | rie   | Observations microscopiques           |  |
|--------------------|-----------------------------------------------------------------|---------------------|-------|---------------------------------------|--|
|                    | D[90]                                                           | D[50]               | D[10] |                                       |  |
| H.C. Starck        | 5000                                                            | 800                 | 260   | Formes différentes, grains angulaires |  |
|                    | Particules sphériques                                           |                     |       | Particules sphériques                 |  |
| Tekna 334 170 96,7 | La plupart < 50 nm, quelques grains plus gros<br>jusqu'à 170 nm |                     |       |                                       |  |



Poudre H. C. Starck



Poudre Tekna GFC Rennes | XX MARS 2017 | PAGE 8



### **ANALYSE CHIMIQUE**



| Poudre       | mç    | % O     | m% N  |         | m% H  |         | m% C |    |
|--------------|-------|---------|-------|---------|-------|---------|------|----|
| H. C. Starck | 2,514 | ± 0,066 | 0,232 | ± 0,011 | 0,190 | ± 0,004 | XX   | XX |
| Tekna        | 6,020 | ± 0,163 | 0,226 | ± 0,010 | 0,346 | ± 0,008 | XX   | xx |

Incertitudes de mesure :

Appareils de mesure :

- %O:0,071

- O, N, H :

- C:

- %N:0,076
- %H:0,043
- %C : XXX
  - Conclusion sur le taux de C
  - > Poudre Tekna très oxydée (pot accidentellement ouvert à l'air)



## DENSIFICATION ET CARACTÉRISATION DE MASSIFS

# FRITTAGE DES POUDRES SÉLECTIONNÉES

#### Frittage par Spark Plasma Sintering



→ Limitation du grossissement des grains dans des conditions optimisées

#### Poudre H.C. Starck (m $\simeq$ 4 g) - 1650 °C, 5 min, 75 MPa

- Initiation du frittage  $T_1$ : 1360 °C
- Frittage optimal T<sub>2</sub> : 1580 °C
- Porosité relative > 99%

#### Poudre Tekna (m $\simeq$ 2,8 g) - 1500 °C, 5 min, 75 MPa

- Initiation du frittage T<sub>1</sub> : 1200 °C
- Frittage optimal T<sub>2</sub> : 1420 °C
- Porosité relative à déterminer



SPC

# PROPRIÉTÉS MÉCANIQUES DES MASSIFS



Photo MEB microstructure

| Caractérisations                                | H. C. Starck | Tekna |
|-------------------------------------------------|--------------|-------|
| Nano-indentation                                |              |       |
| Microdureté                                     |              |       |
| Constante d'élasticité dans le plan de pressage |              |       |
| Taille des grains                               |              |       |

> Conclusions

DE LA RECHERCHE À L'INDUSTRI

C02

GFC Rennes | XX MARS 2017 | PAGE 12

SPC





- Discussion propriétés mécaniques : faire un lien entre les différentes caractérisations, les différences, ce qu'on attend, contextualiser
- Discussion par rapport à la bibliographie : Répartition de l'hélium dans le matériau, comment se fracture la pastille



Publication Zuppiroli à citer

GFC Rennes | XX MARS 2017 | PAGE 13



## **CONCLUSIONS ET PERSPECTIVES**



### Conclusions

- Sélection de deux poudres au vu de leur composition chimique Tekna (nanométrique) et H. C. Starck (sub-micrométrique)
- Essais de frittage SPS
  - Détermination des températures optimales de frittage
  - Conclusions sur les propriétés mécaniques des frittés

### Perspectives

- Essais de frittage SPS
  - Évolution de la taille des grains en fonction du temps de palier
  - Détermination des paramètres de densification
- Simulation numérique du procédé SPS
  - Confrontation avec les données expérimentales
  - Intégration des processus de densification/grossissement granulaire du B<sub>4</sub>C

#### lena.roumiguier@unilim.fr

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 34 28 | F. +33 (0)1 69 08 82 52

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

Direction : DEN Département : DMN Service : SRMA