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Abstract - The alpha eigenvalue problem in multigroup neutron diffusion is studied with particular attention
to the theoretical analysis of the model. Contrary to previous literature results, the existence of eigenvalue
and eigenflux clustering is here investigated without the simplification of a unique fissile isotope or a single
emission spectrum. A discussion about the negative decay constants of the neutron precursors concentrations
as potential eigenvalues is provided. An in-hour equation is derived by a perturbation approach recurring to
the steady state adjoint and direct eigenvalue problems of the effective multiplication factor and is used to
suggest proper detection criteria of flux clustering. In spite of to prior work, the in-hour equation results for a
necessary and sufficient condition for the existence of the eigenvalue-eigenvector pair. A simplified asymptotic
analysis is used to predict bands of accumulation of eigenvalues close to the negative decay constants of the
precursors concentrations. The resolution of the problem in one-dimensional heterogeneous problems shows
numerical evidence of the predicted clustering occurrences and also confirms previous theoretical analysis and
numerical results.

keywords: neutron kinetics, alpha modes, clustering.

I. INTRODUCTION

The kinetic neutron equation with precursors is an effi-
cient tool for the analysis of the neutron time evolution and,
therefore, finds multiple applications in reactor control and
the study of accident scenarios. The time-dependent flux de-
pends on the initial conditions for neutrons and precursors,
the boundary condition for neutrons, the presence of external
sources and the time-dependent changes of the cross sections,
such as those produced by rod motion and changes of Boron
concentration or to small stochastic perturbation induced by
the coolant flow and, in the long time, by radioactive decay
and nuclide depletion and creation from fission.

However, if the cross sections and boundary conditions
remain constant in time and the sources vanish, then the state
of the system tends asymptotically in time to an exponential
behavior, which is independent of the earlier changes of the
system and, specially, of the initial conditions.[1]

The exponential behaviors that a given system can adopt
are the solutions of an eigenvalue equation and can be used to
describe the fast evolution of the system as well as to character-
ize the reactivity of the system. The solutions of this equation
are known as time-dependent modes or, more simply, alpha
modes, where “alpha” refers to the most frequently adopted
symbol for these eigenvalues.

Alpha modes have been applied to formally derive differ-
ent forms of the well-known in-hour equation, to obtain solu-
tions of the kinetic equations by expansion techniques,[2] to
develop numerical solution methods[3] and also as weighting
fluxes to homogenize the kinetic equation.[4] These applica-
tions as well as the theoretical interest of alpha modes have
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been the object of intense study. However, with the exception
of a few scattered mathematical results,[5, 6, 7] a detailed
description of these modes have not yet been given for the dif-
fusion equation. The purpose of this paper is to give a detailed
analysis of the alpha modes for a slab geometry using multi-
group diffusion theory. We give ample numerical evidence for
all the modes predicted from mathematical analysis as well as
from physical arguments.

General equations for the alpha eigenvalue problem are
discussed in Sec. II, including a perturbation expression in
terms of reactivity. In Sec. III we summarize our results and
observations for the multigroup one-dimensional slab. Some
numerical results are illustrated in Sec. IV, while in Sec. V
we compare with Asahi’s analytical results for the one-group
problem.[6] Conclusions follow in Sec. VI.

For simplicity we shall use a notation based on a contin-
uous formulation and let to the reader the change to a fully
discretized operator which is used in the numerical application.

II. THE ALPHA EIGENVALUE EQUATIONS

Our starting point are the time-dependent kinetic diffusion
equations coupled to the precursors equations in a heteroge-
neous domainD:

(
1
v
∂t + Bpr

)
ψ =

∑
p

χpλpCp,

(∂t + λp)Cp = Fpψ.

(1a)

(1b)

Here ψ(x, t) is the scalar flux, x = (r, E) stands for the phase
space variables, Cp(r, t) is the concentration for precursor p
and

Bpr = L − Ppr
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is the diffusion kinetic operator with prompt neutron produc-
tion

L = −∇ · D∇ + Σ −H , (2)

where D(x, t) is the diffusion coefficient, Σ(x, t) is the total
macroscopic cross section,H stands for the scattering operator
and Ppr =

∑
i χi(1 − βi)Fi is the prompt fission operator with

the sum in i over the fissile isotopes.
Also in Eqs. (1b) and (2), Fp =

∑
i βi→pFi and Fi are the

production operators for precursor p and neutrons from isotope
i, respectively. The latter is defined as Fiψ =

∫
νΣ f ,iψdE. We

note Np and Ni the number of precursors and fissile isotopes,
respectively, and take the prompt and delayed fission spectra,
χi and χp, to be normalized so that

∫
χdE = 1.

By introducing the reduced scalar product over the energy
E,

〈 f , g〉 =

∫
f gdE, (3)

where f denotes the complex conjugate of f , the two latter
formulas can be written as Fiψ = 〈νΣ f ,i, ψ〉 and 〈1, χ〉 = 1.
Finally, λp and βi→p are the decay constant for precursor p and
its fission yield from isotope i, respectively, and βi =

∑
p βi→p

is the total precursor yield for isotope i. We shall follow the
usual convention of ordering the λp in increasing values.

The kinetic equations in (1) are supplemented with initial
conditions for both ψ and Cp and with boundary conditions
for ψ. The cross sections, external source and boundary con-
ditions may change in time. But at any time t = t∗ one might
consider a new kinetic problem with the initial and boundary
conditions at time t∗ and such that for t > t∗ the cross sections
and boundary conditions remain constant and the external
source vanishes. This defines a kinetic problem with constant
cross sections and boundary conditions and with no external
source which will evolve in time according solely to its initial
conditions at t∗.

The alpha eigenvalue equations for this t∗-kinetic problem
are obtained by introducing an exponential time behavior in
(1),

ψ(x, t) ∼ eαtψα(x), Cp(r, t) ∼ eαtCp,α(r),

to obtain: 
(
α

v
+ Bpr

)
ψα =

∑
p

χpλpCp,α,

(α + λp)Cp,α = Fpψα.

(4a)

(4b)

Here ψα(x) and Cp,α(r) are respectively the scalar flux and
the concentration for precursor p of an α-mode, and all other
quantities and operators are like those defined for the time-
dependent kinetic equation but with the cross sections evalu-
ated at time t∗.

More generally, by introducing the vector function ~Ψα =

{ψα, ~Cα}, where ~Cα has components {Cp,α, α = 1,Np}, the set
of alpha equations can be written in the form of a classical
linear eigenvalue problem:

M~Ψα = α~Ψα, (5)

where the structure of matrix operatorM, not explicited here,
can be inferred from Eqs.(4).

When appropriate we shall use Hilbert spaces for a pre-
cise formulation of results. We note HX the Hilbert space
of complex-valued functions defined over phase space X and
satisfying the boundary conditions of problem (4). This space
is endowed with the scalar product

( f , g) =

∫
X

f (x)g(x)dx, (6)

where dx = drdE is the volume element in X. We also note
HD the Hilbert space of complex-valued functions defined
over the geometrical domainD with scalar product

( f , g)D =

∫
D

f (r)g(r)dr.

Thus, we consider problem (5) in the Hilbert space of complex-
valued functionsHX × (HD)Np with scalar product

((~Ψ, ~Ψ′)) = (ψ, ψ′) +
∑

p

(Cp,C′p)D.

An useful form of the alpha-equations can be obtained by
solving Eq. (4b) for the precursor concentrations:

Cp,α =
Fpψα

α + λp
, α ∈ C\Λ, (7)

where Λ = {−λp, p = 1,Np}. Next, replacing this result in
Eq. (4a) yields an expression for the alpha-eigenvalue problem
in terms of only the flux:(

α

v
+ B

)
ψα = −Kαψα, α ∈ C\Λ, (8)

where B = L − P,
P =

∑
i

χiFi (9)

is the production operator with the steady-state fission spec-
trum

χi = (1 − βi)χi +
∑

p

βi→pχp (10)

and
Kα =

∑
p

α

α + λp
χpFp (11)

comes from the delayed contribution to production. We con-
sider this problem inHX.

We note that Eq. (8) is a non linear eigenvalue problem for
(α, ψα). Moreover, as we discuss next, except for very patho-
logical cases, Λ is in the resolvent set of the linear operator in
Eq. (5) and therefore Eqs. (4) and (8) are equivalent.

Let us analyze in which conditions α = −λp can be in the
spectrum of Eqs. (4). If this is true, then one must have from
Eq. (4b)

Fpψα = 0. (12)

We note that one can write Fp = hπp where h(r) = (Fp1)(r)
and πp = h−1Fp is a projector πp : HX → HD . Equivalently,
constraint (12) can be written as

ψα ∈ ker(πp),
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where ker(πp) is the null space of πp. For the other precursors
one obtains

Cp′,α =
1

λp′ − λp
Fp′ψα, p′ , p, (13)

which yields a source equation for the flux:

B̂ψα = χpλpCp,α, (14)

where
B̂ = B −

λp

v
−

∑
p′,p

λp

λp′ − λp
χp′Fp′ .

Hence, a solution of Eq. (14) with the constraint in (12) is
a pair (ψα, Cp,α = B̂ψα/(χpλp))2 iff3 (i) 0 , ψα ∈ ker(πp),
(ii) B̂ψα ∈ Ep, where we have defined Ep = { f (x) =
χp(E)h(r); h(r) ∈ HD}. In other words −λp is an alpha-
eigenvalue iff B̂(ker(πp)/{0}) ∩ Ep , ∅. Although this iff
condition does not apparently require operator B̂ to have
an inverse, an equivalent formulation can be written as
B̂−1Ep ∩ (ker(πp)/{0}) , ∅. Thus, a solution might exists
if operator B̂ is degenerated or if it is invertible over Ep; the
former condition seems unrealistic but the second looks plau-
sible because v is large and Σ contains scattering, capture
and fission and therefore dominates H . However, in both
cases the solution of equation (14) must satisfy the orthogo-
nality condition (12), which most likely will not be feasible.
Therefore, with the exception of unrealistic cross sections, the
existence of an alpha eigenvalue equal to minus a precursor
decay constant can be excluded.

Clearly the precedent conclusion applies to the case of
the one-group diffusion equation. But we give here a counter
example for which −λp is an alpha eigenvalue. Consider the
case when the diffusion coefficient does not depend on the
energy, D = D(r), and take ψα(x) = f (E)h(r) with πp f =
0 and h(r) an eigenfunction of the Laplacian equation −∇ ·
D∇h = γh which satisfies the boundary conditions of the
alpha problem. Then B̂ψα = hB̂γ f , where B̂γ equals B̂ with
the replacement −∇ · D∇ → γ. Therefore, by setting χp =
B̂γ f /c, where c(r) =

∫
B̂γ f dE, the pair (ψα,Cp,α = (c/λp)h)

is a solution of the alpha eigenvalue problem for α = −λp.
A problem with the definition of χp is that it depends on
space, but this can be avoided by considering a homogeneous
problem. However, even then, one would have to “adjust”
the cross sections, perhaps with nonphysical values, so as to
ensure that χp remains positive.

1. Perturbation formulation

Reactivity is a measure of the disequilibrium of a system
and there are several ways to introduce a notion of reactivity
in neutron kinetics[8, 9], in particular that derived with the
help of the adjoint α equation.[10] In this work we define
a generalized reactivity as ρλ = 1 − 1/λ, where λ is any
eigenvalue of the quasi-static eigenvalue equation obtained by
setting α = 0 in Eqs. (8):

Bλϕλ = 0, (15)

2For simplicity, we assume that χpis strictly positive.
3if and only if

where
Bλ = L − (1/λ)P. (16)

Here λ ∈ σ(L−1P), where σ denotes the spectrum of the
operator, is an eigenvalue of the quasi-static diffusion operator
and P is the steady-state production operator in Eq. (9). The
boundary condition for Eq. (15) is that of the parent alpha
eigenvalue equations. We note Eλ and Nλ, respectively, the
subspace of eigenfunctions of eigenvalue λ and its dimension.
We recall that the eigenvalue λ = k with maximum absolute
value in σ(L−1P) is real, non degenerate and has a positive
eigenfunction ϕk (a physical flux).

In order to analyze the solutions of the alpha-eigenvalue
equation it is advantageous to write Eq. (8) in terms of the
quasi-static operator Bλ in (16) and cast the alpha-eigenvalue
equation as

Bλψα = Kλ,αψα, (17)

where λ ∈ σp(L−1P) and

Kλ,α = ρλP − (
α

v
+Kα). (18)

The appeal of formulation (17) is that (i) it offers a pertur-
bation expression for the alpha eigenvalue problem in terms
of the better known steady-state eigenvalue problem, and (ii)
the operator Bλ on the left of the equal sign is singular and
therefore the “source” term Kλ,αψα must satisfy a solvability
condition.

According to the Riesz-Schauder theory,[11] the solvabil-
ity condition requires the source term to be in the orthogonal
complement E⊥ of the eigenspace E†

λ
associated to the eigen-

value λ ∈ σ((PL−1)†) of the adjoint operator B
†

λ.
4 More

explicitly,
(ϕ†,Kλ,αψα) = 0 ∀ϕ† ∈ E†

λ
. (19)

Thus, the solvability condition results in a system of Nλ one-
point-like “kinetic” alpha equations. For each function ϕ† ∈
E†
λ

we have an inhour-type equation:

ρλ = α

Λ +
∑

p

Γp

α + λp

 , (20)

where

Λ =
(ϕ†, 1

vψα)

(ϕ†,Pψα)
, Γp =

(ϕ†, χpFpψα)

(ϕ†,Pψα)
. (21)

As an aside, we note that in Eqs. (21) one can
write Γp =

∑
i βi→pγi,p with the effectiveness factors[13]

γi,p =
∫
〈ϕ†k , χp〉〈νΣ f ,i, ψα〉dr/(ϕ†k ,Pψα) and (ϕ†k ,Pψα) =∑

i

∫
〈ϕ†k , χi〉〈νΣ f ,i, ψα〉dr, recovering thus the formula derived

for an infinite homogeneous medium in Ref. [14]. Also,
because of the projection by ϕ† the original eigenvalue α is
dispersed among the Np + 1 roots of Eq. (20).

4It is understood that the adjoint operator is provided with appropriate
“adjoint” boundary conditions [12].
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Under the solvability constraint (19), the general solution
of (17) is an arbitrary multiple of

ψα = ϕλ + ψ⊥, (22)

where ϕλ =
∑

n anϕn is written using an arbitrary basis {ϕn, n =
1,Nλ} in Eλ and ψ⊥ ∈ E⊥. The latter condition entails

an = (ϕ†n, ψα), (23)

where the {ϕ†n, n = 1,Nλ} is the dual basis in E†
λ
, i.e., such that

(ϕ†n, ϕn′ ) = δnn′ .
We end this section with a comment regarding the effect

of spatial symmetries on the structure of the in-hour equation.
Consider a problem with a spatial involution, that is a symme-
try s such that s2 = 1. Then ψα obeys the relation s2ψα = ψα
and, since operator s2 has eigenvalues 1 and −1, one can write
ψα as the sum of an even (+) and an odd (−) components
ψα,± = (s ± 1)ψα with the property that

∫
drψα,+(r)ψα,−(r)

vanishes. Because both the steady-state transport equation
and the alpha eigenvalue equation necessarily share the same
geometry one concludes that the in-hour equation does not
exist when ϕ† and ψα have opposite symmetries.

III. SUMMARY OF RESULTS

The spectrum of the alpha mode equations is conditioned
by the nature of these equations and by the degree of complex-
ity accepted in the delayed neutron term. In the continuous
case the eigenmodes, ~Ψα(x), belong to a functional space of
infinite dimensions, while in the discretized case they become
vectors in a finite-dimensional space. On the other hand, the
degree of complexity of the fission delayed contribution de-
pends on the number of fissile isotopes Ni and the number of
precursors Np. The operator in Eq. (11) can be written as a
sum of projectors with r-dependent coefficients:

Kα =
∑

p

α

α + λp
apπp, (24)

where ap(r) = Fpχp and πp = (1/ap)χpFp is a projector over
the subspace generated by the {χp, p = 1,Np}. Therefore, for
α < {0∪Λ},Kα is a finite linear combination of projectors with
finite range equal to the span of the functions {χp, p = 1,Np}.
Moreover the null space of Kα contains the set of all the
functions that are orthogonal to the finite set {νΣ f ,i, i = 1,Ni}.

Simplifications of the fission delayed contributions are
typically introduced to facilitate the theoretical analysis of the
alpha spectrum. A simplifying assumption can be applied to
the delayed fission spectra, to the fission production or to both.
The first consists of replacing all the delayed neutron spectra
with an averaged one, χp ∼ χ, which leads to the simplified
formKα = χFα, where Fα =

∑
p[α/(α+λp)]Fp. In the second

one replaces the fission production for all fissile isotopes with
a single one, νΣ f ,i ∼ wi(r)νΣ f , where by convenience we
assume

∑
i wi(r) = 1. This approximation yield the simplified

form Kα = χαF , where now χα =
∑

p[α/(α + λp)]βpχp with
βp(r) =

∑
i wi(r)βi→p. Note that these approximations are

automatically satisfied if one assumes one single precursor

(χ = χ1) or one single fissile isotope (w1 = 1 and βp =
β1→p). Finally, when both approximations are used one has
the simplified operator

Kα = fα(r)χF , (25)

where
fα(r) =

∑
p

α

α + λp
βp(r). (26)

Note that for a single fissile isotope βp(r) = βp, while for a
homogeneous medium βp =

∑
i wiβi→p. For both cases fα(r)

is independent of r and is an analytical function of α in C\Λ.
There is a sizable number of theoretical studies of the

alpha spectrum in transport theory but, to our knowledge,
there are only three communications pertaining to diffusion
theory. Porsching[5] used algebraic techniques to analyze the
spectrum of the alpha mode discretized diffusion equations in
a homogeneous medium with a single fissile isotope. However
his equations were based in a synthetic expression for the
time-dependent flux and, in regard to the present standard
alpha eigenvalue problem, Porsching’s results apply only to
the one-group diffusion equation. A generalization to the
multigroup diffusion equation was carried out by Devooght[7]
for the fully discretized diffusion equation in a heterogeneous
medium with no upscattering and with a single fissile isotope.
To simplify the delayed fission term, Devooght assumes that
all the fissile neutron spectra are identical, i.e., not only that
χp ∼ χ but also χ1 ∼ χ, which lead him to lump prompt and
delayed fission in a single term and work with the function
f (α) = 1 − fα, which is also analytical in C\Λ. This function
was used in the general study of the spectrum. The analysis of
the fast spectrum, based on a perturbation result for the case
of degenerated operators discussed in Kato,[15] was carried
out for the case with no precursors, while a technique early
introduced by Wings[1] was applied to the investigation of
the degeneracy of the delayed spectrum. The result of the
analysis is that the spectrum consists of Ng + Np clusters of
Nr eigenvalues each, where Ng and Nr are the number of
groups and the number of spatial components, respectively.
The delayed spectrum has Np clusters of real eigenvalues with
the p-th cluster confined to the open interval5

Ip = (−λp,−λp−1) (27)

with the convention that −λ0 = ∞. The only theoretical
result for the one-group continuous diffusion equation in
one-dimensional heterogeneous slab geometry was given by
Asahi[6] a few years earlier than Devooght’s paper but seem-
ingly unknown to the latter. Asahi demonstrated that for an
arbitrary geometry the eigenvalues were real and bounded and
that the −λp values were not in the spectrum. He gave also
a more detailed analysis for the case of the one-dimensional

5In reality, the result obtained by Devooght is that the −λp also belongs
to the p-th clusters and that, therefore, the precursor clusters contain Nr +

1 eigenvalues each. However, he recognized that this pathological result
occurred because he had artificially replaced the precursor concentrations
Cp(r) with the energy dependent functions C♣p(r, E) = χp(E)Cp(r) resulting
in the associated eigenvalue problem having NrNp(Ng − 1) more eigenvalues
than the original one
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slab, classifying the eigenfunctions by the number of nodes
and showing that there are a countable infinite number of
eigenvalues in each interval Ip which accumulate at −λp as
well as in the open interval

IL
Np

= (−∞,−λNp ). (28)

The rightmost eigenvalue in each interval has an eigen-
function with positive flux (zero nodes) and the number of
nodes of the eigenfunctions fluxes increases monotonously by
one for the other eigenvalues in the interval. Finally, as shown
in Appendix A, an analytical solution can be obtained for the
one-group homogeneous case which confirms the structure of
the prompt and delayed spectrum as well as the emergence
of flux clustering. This result leads to a new derivation of
Asahi’s results for the one-group homogeneous finite slab (see
Appendix B).

In the second part of this section we give general obser-
vations in the nature of the spectrum of the alpha eigenvalue
problem derived from robust arguments and from numerical
exploration of multigroup diffusion in a slab geometry. Our re-
sults match the known theoretical predictions in their restricted
domain of validity.[5, 6, 7] Our discretization was done for the
one-dimensional piecewise heterogeneous slab geometry by
writing the linear alpha eigenvalue equations (5) in its multi-
group form and by introducing a numerical discretization for
the spatial dependence of both ψ and ~C. We observe that the
number of degrees of freedom (DOF) of the discretized system
of equations is

NDOF = Nr(Ng + Np). (29)

A natural ordering is build in the kinetic equations. This
ordering stems from the observation that most of the neutrons
resulting from fission are prompt and that, therefore, the con-
tribution of delayed neutrons to the overall neutron production
in the kinetic equations can be considered as small. In addi-
tion, the frequencies of emission of delayed neutrons are also
much smaller than the neutron collision frequency. These two
conditions can be expressed as

βp � 1 and λp � vΣ.

In the following we shall assume that all cross sections are
O(1) and we shall define εβ = O(β) and εv = O(1/v). Physical
data tell us that εβ ∼ 10−3 − 10−4 and εv ∼ 10−5 − 10−9.

This ordering has direct implications in the distribution of
the alpha spectrum, which can be sorted out into two subsets:
delayed and prompt eigenvalues.

1. Delayed spectrum

These modes appear in the range |α| ∼ O(λp), in Np
clusters of Nr eigenvalues each, for a total of NrNp eigenvalues
(see Fig. 1). The eigenvalues in the p-th cluster gather on the
right of −λp:

−λp < αp,Nr < ... < αp,2 < αp < −λp−1,

where αp,i is the i-th eigenvalue of the cluster in the interval
Ip. Also, we have written αp,1 simply as αp to indicate the

special nature of the dominant mode in the cluster. While the
other eigenvalues in the cluster are very close to −λp and their
values do not change much with the reactivity, the value of the
dominant eigenvalue αp increases with the reactivity towards
−λp−1. The delayed eigenvalues are simple and real negative
with the exception of α1 which becomes positive for positive
reactivity. This latter eigenvalue admits a positive eigenvector
(both fluxes and concentrations are positive). The remaining
dominant eigenvalues (αp, p > 1) have positive fluxes but the
concentrations change of sign.

<(α)
−λNp

. . .
−λp −λp−1

. . .
−λ1 0 α1

••••••••• •

Nr Nr

αp,r, r = Nr, . . . , 2

αp

Fig. 1. Clusterings of eigenvalues approaching the negative
values of the precursor’s decay constants.

The p-th cluster can be analyzed using the expression

α + λp = εp (30)

and considering the eigenvalue problem for
∣∣∣εp

∣∣∣ → 0. The
analysis shows that there is a leading concentration for each
of the Np clusters which because of the special variation de-
generates into Nr independent distributions. Hence, this part
of the spectrum can also be named “precursor” spectrum. We
have also made the conjecture that the eigenmodes concentra-
tions in each cluster are linearly independent and this has been
supported by all our calculations.

In order to analyze the clustering results we resort to an
approach different from the ones adopted in the literature. We
recognize that the behavior of the delayed spectrum is directly
related to the changes undergone by the precursors concen-
trations and, therefore, replace Eq. (8) with an “equivalent”
equation for the concentrations. We use Eq. (7) to write the
delayed contribution in Eq. (8) in terms of the concentrations
and by expliciting the ψα in the resulting equation we write

ψα = −(α/v + B)−1α
∑

p

χpCp,α, α < σ(−vB). (31)

Next operating on this equation with (α + λp)−1Fp yields a
finite system of equations for the concentrations, which we
choose to write:

(α + λp)Cp,α(r) = −α
∑

p′
(Tpp′,αCp′,α)(r), α < σ(−vB), (32)

where Tpp′,α is an integral operator over E and r with kernel

tpp′,α(r′ → r) =

∫
dEνΣ f ,p(x)

∫
dE′χp′ (E′)gα(x′ → x),

(33)

where νΣ f ,p =
∑

i βi→p is the fission production term for pre-
cursor Cp, x = (E, r) and gα(x′ → x) is the Green’s function
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of operator (α/v + B)−1. We note that Eq. (32) is not equiva-
lent to Eq. (8) for the simple reason that the energy variable
does not appear in the former equation. This can be stated
more precisely for the discretized case where the number of
DOF for Eq. (32) is NrNp whereas Eq. (8) has NrNgNp DOF.
This shows that, except for the one-group case, the two equa-
tions are not equivalent. However, if α is an eigenvalue of
Eq. (32) with eigenvector ~Cα(r) and α < σ(−vB), then α is
also an eigenvalue of the full alpha problem in Eq. (8) with
the eigenvector given by Eq. (31).

Thus, we can safely use Eq. (32) to analyze the delayed
alpha spectrum. We introduce the assumption in Eq. (30) and
use asymptotic analysis to study the behavior of the spectrum
near −λp. A full analysis would consist of expanding the con-
centrations and the eigenvalue as a sum of increasing powers
of εp, but here we use a rough approximation and keep only
the leading terms in the equation. However, the discussion is
awkward when working with Eq. (32) and we shall, instead,
take a step back and work with Eqs. (7) and (8). We notice first
that, consistently with Eq. (7), we have Cp,α = Fpψα/εp ∼ ε

−1
p

and, for p′ , p, Cp′,α = Fp′ψα/(λp′ − λp + εp) ∼ O(1).
Hence, we can neglect the contribution from the p′ , p

precursors in the sum in the right-hand-side of Eq. (8). Fol-
lowing the derivation of Eq. (32), this implies that the system
of equations in (32) uncouples and, in particular, yields a sin-
gle equation for Cp,α. To simplify our notation we write this
equation as follows

εpCp,α(r) = λp(TαCp,α)(r), α < σ(−vB) (34)

with εp playing now the role of eigenvalue. Still, this last
equation is difficult to analyze and we should simplify the op-
erator by keeping only the leading contributions. Going back
to Eq. (8), we observe that because Fp ∼ εβ the order of the
right-hand term in this equation is ε−1 = εβ/εp instead of ε−1

p .
So, in order to have ε � 1, we have to assume εp � εβ. Hav-
ing made sure that the right-hand-side of Eq. (8) is ∼ ε−1, we
observe that on the left-hand-side (α/v + Σ −H −B)ψ ∼ O(1)
so we have α/v + B ∼ −∇ · D(E, r)∇. The spectrum of this
operator consists of a countable infinite number of real posi-
tive eigenvalues growing towards +∞; these eigenavlues have
finite multiplicity and the corresponding eigenfunctions form
a complete basis in L2.[16] It follows that he inverse of this
operator is compact and definite positive and its Green’s func-
tion is of the form gα(E, r′ → r), where E appears only as
a parameter. This implies that operator T is also compact,
and therefore it has real eigenvalues, but it is not necessar-
ily definite positive. However, it is easily verified that for a
homogeneous medium as well as in the one-group case T is
definite positive and therefore its eigenvalues are positive and
accumulate at zero. This proves that the eigenvalues that the
eigenvalues α which converge towards −λp do this from the
right (α > −λp).

2. Prompt spectrum

The remaining part of the spectrum lies on the complex
plane <(α) < −λNp and consists of simple eigenvalues that
are real or complex conjugated in the range |α| ∼ O(vΣ); the

exception is the first dominant eigenvalue αNp+1 which is real
and, with increasing reactivity tends to −λNp . The eigenvectors
have negligible concentration values and they are dominated
by energy modes.

To analyze these eigenvalues we use again an asymptotic
approach by assuming that α ∼ O(v). Hence, one can neglect
the contribution of the delayed neutrons and write the alpha
eigenvalue equation by keeping only the leading terms as

(
α

v
+ Bpr)ψα ∼ 0. (35)

This shows that the prompt spectrum is closely related to
the spectrum of the diffusion equation with prompt fission,
α ∈ σ(−vBpr).

3. Flux clustering

We use the expression flux clustering to refer to a set
of distinct eigenvalues which have very close fluxes. Flux
clustering for the alpha eigenvalue transport problem was
discussed earlier by Gozani[17] and by Henry.[10] Gozani
applied his analysis also to diffusion theory, but the most
interesting result was Henri’s analysis of the two-group P1
transport equation, which is closely related to diffusion; by
using the analytical solutions of this problem, Henri was able
to give a satisfactory argument, albeit non rigorous, in support
of flux clustering.

The flux components of the Np+1 dominant alpha modes
can be shown to cluster about the dominant mode of the quasi-
static equation ϕk. This includes the dominant modes in the
delayed spectrum (αp, p = 1,Np) plus the dominant mode
of the prompt spectrum (αNp+1). It can also expected that
non-dominant delayed modes can exhibit some form of flux
clustering, like sharing the the same number of spatial fluc-
tuations in the slab case, and that this type of flux clustering
might even apply to prompt modes. However, in our numeri-
cal calculations we have not observed yet any such clustering,
except for the fact that for each energy group one might be
able to identify Nr modes that are associated, in the sense that
they have a similar spatial behavior.

Our analysis of flux clustering is based on the perturbation
approach discussed in Sec. 1, whose main results are the in-
hour equation and the flux perturbation formula, Eqs. (20) and
Eq. (22), respectively. For simplicity, hereafter we shall only
consider the case when λ is the dominant eigenvalue of the
quasi-static diffusion operator, which we denote by k. This
eigenvalue is simple, real positive and its eigenvector ϕk is
the so-called fundamental flux. Hence, the system of in-hour
equations in (20) simplifies to a single equation which we
write as

ρk = ω

Λα +
∑

p

Γp,α

ω + λp

 , (36)

where, to stress the fact that the equation has Np + 1 roots
of which only one is the original alpha eigenvalue, we have
replaced α with ω and we have used the lower index α to indi-
cate that the coefficients Λ and Γp depend on the eigenvector
ψα.

The in-hour equation can have complex roots and we
refrain here from considering this case. But, as shown in
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Appendix C, if the coefficients Λα and the Γp,α in the in-hour
equation have the same sign, which we take to be positive, then
all the Np + 1 roots are real. Therefore, since the associated
steady-state adjoint flux ϕ†k is positive, we shall consider only
the case when the alpha eigenvector ψ is also positive. Note
that this implies that the eigenvalue α is real. This is in fact the
more clear-cut and best understood example of flux clustering.

A substantial argument in support of flux clustering can
be made by looking for alpha modes with fluxes close to the
fundamental static flux ϕk. We proceed by writing the flux
perturbation formula, Eq. (22), in the form

ψα = (1 + ε)ϕk + ψ⊥, (37)

where |ε| � 1 and where we have adopted the normalizations
‖ϕk‖ = ‖ψα‖. Next, we use this expression to compute the
coefficients in the in-hour equation Eq. (36) and observe that
to leading term in ε the coefficients depend only on the static
flux ϕk. The reason is that

∥∥∥ψ⊥∥∥∥ ∼ √ε. As an aside, we point
out that another reason for neglecting ψ⊥ is that the coefficients
depend on integrals of a product of a positive function times
ψα and that the impact of ψ⊥ in the value of the integrals is
further reduced because, as opposed to ϕk, ψ⊥ must necessarily
change of sign.

Hence, to leading order in ε, we might conclude that
Eq. (36) is independent of ψα and also of small variations in
ε. Since this equation has Np + 1 real roots we can safely
assume that each one of these roots corresponds, to order ε,
to an alpha eigenvalue. However, there are two conundrums
regarding the precedent conclusion. The first one is that if the
in-hour equation were to depend only on ϕk, then this flux will
be a solution of the equation, but the only case in which this
might happen is for k = 1 which entails, of course, α = 0. The
second problem arises from the fact that the in-hour equation
is only a necessary condition for (α, ψα) to be an eigenpair
of the alpha eigenvalue problem. Hence, the problem has to
resolved with a simultaneous consideration of both the in-hour
equation and the original alpha eigenvalue equation. For the
present approach this involves showing that solutions of the
form in Eq. (37) are truly solutions of the alpha eigenvalue
problem. This is what, in a limited way, Henry did for the
two-group P1 equation. For a more general approach may
consist perhaps of using a direct perturbation analysis between
the alpha eigenvalue equation and the equation satisfied by ϕk.

Finally, we observe that the leading eigenvalue α1 dom-
inates the alpha spectrum and consequently it has a positive
flux. It remains to show, however, that the fluxes of the other
Np dominant eigenvalues αp, p = 2,Np are also positive, a
fact that is confirmed by previous speculations and by all our
calculations. In view of formula (37), this could perhaps be
demonstrated by a dominance argument.

IV. NUMERICAL RESULTS

We have used finite differences to discretize the multi-
group diffusion alpha eigenvalue equation in 1D slab ge-
ometry as well as the eigenvalue equations for the quasi-
static equation and its adjoint, and implemented three dif-
ferent criteria, all based in the L2 norm

∥∥∥ψre f − ψα
∥∥∥

2 =

√∑
g,r(ψre f − ψα)2

g,r < εclus, to explore flux clustering about

alpha modes (ψre f = ψα′ , ∀α
′), about the modes of the quasi-

static equation (ψre f = ϕλ, ∀λ) and by using perturbation
analysis ‖ψ⊥‖2 , |1 − a| < εclus, where the latter formula has
been obtained from Eqs. (22) and (23) for the case of a non
degenerated eigenvalue (Nλ = 1). Calculations are performed
in double precision by a Python module (v.2.7), using the
numerical numpy library (v.1.11.0). The module solves the
multi-group, (SN), multi-region α and λ eigenvalue problems
with reflection, periodic and void boundary conditions; the
full set of eigenpairs is computed.

We have analyzed a large number of problems for the
infinite homogeneous case as well as for some finite cases
with 1, 8 and 281 energy groups and for increasing values of
Nr. Flux weighting was used to homogenize and collapse the
cross sections for a PWR fuel assembly at different conditions
(see Table I). Thus, the corresponding α-sets are close. The
calculations where done with 8 groups of precursors and 6
fissile isotopes (Np = 8 and Ni = 6). We present here a sample
of the results.

Case Tfuel Tmod Boron conc. ρ
nb. (◦C) (◦C) (PPM) (pcm)
1 286 286 0 +6880.6
2 286 286 400 +3405.6
3 286 286 600 +1690.3
4 286 286 800 −9.3
5 650 306 0 +4915.5
6 650 306 400 +1624.2
7 650 306 600 +0.1
8 650 306 800 −1611.3
9 1100 306 600 −1302.5

10 1800 306 600 −3037.1
TABLE I. Physical conditions of the cross section preparation
in the PWR fuel assembly.

For all cases in Table I, the neutron flux components of
the ψα corresponding to the dominant eigenvalues αp clustered
within εclus = 10−2. The dominant eigenvalues for cases 3 and
4 are reported in Tables. II and III, respectively.

α′s rel. diff. (%)
281G 8G 1G

+5.8029093620e+02 -25.514 +0.214
-1.2552000351e-02 -0.033 +0.002
-2.9640277111e-02 -0.235 -0.074
-4.3562900973e-02 -0.139 -0.005
-1.4048345489e-01 -0.282 -0.030
-3.2792305224e-01 -0.680 -0.118
-7.0546045788e-01 -0.379 -0.054
-1.7081304062e+00 -0.301 -0.041
-3.6271274472e+00 -0.139 -0.027

TABLE II. Comparisons of the fundamental and delayed re-
actor periods with 1, 8 and 281 energy groups for case 3
(k∞ = +1.017200).
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α′s rel. diff. (%)
281G 8G 1G

-1.4397459518e-03 +4.003 +2.054
-1.4020587820e-02 +0.056 +0.171
-3.7787664954e-02 -0.011 -0.133
-8.2605497512e-02 +0.023 -0.063
-2.0561160002e-01 -0.016 +0.056
-5.9302199351e-01 -0.019 -0.016
-1.4945472270e+00 -0.034 -0.011
-3.4222886970e+00 -0.017 +0.014
-2.6351110679e+02 -35.019 -0.972

TABLE III. Comparisons of the fundamental and delayed
reactor periods with 1, 8 and 281 energy groups for case 4
(k∞ = +0.999910).

By increasing the number of regions the delayed eigenval-
ues cluster very close to the negative decay constants and are
only clearly visible for the one-group calculation, as shown in
Table IV. The table also shows that the dominant eigenvalue
of the clustering, αp, does not change with the number of
regions.

As we show next, this follows from the fact that an infinite
homogeneous medium sustains an uniform flux solution, re-
gardless of the spatial discretization. The equation describing
the energy spectrum of the uniform solution results by setting
to zero spatial derivatives in Eq. (8):(

α

v
+ Σ −H − P

)
ψα = −Kαψα, α ∈ C\Λ,

This equation is independent of the spatial discretization, be
it continuous or not, and therefore its solutions are present
for any value of Nr. Moreover, according with the analysis in
Sec. III.3, these uniform solutions appear in a cluster which
contains all the Np + 1 leading modes.

Contrary to the few group cases, complex eigenvalues
appear with 281 groups in the infinite homogeneous problem
(i.e. one spatial cell and zero current at the boundary), and for
different reactivities, see Fig. 2. The distribution of the prompt
eigenvalues is in general weakly influenced by the reactivity.

V. COMPARISON WITH ASAHI’S RESULTS

Asahi applied a continuous space description to the one-
group, one precursor problem and computed results for a sym-
metric reflected critical slab reactor with a central core of half
width a = 10 cm surrounded by two reflectors of width b = 10
cm.[6] He computed the first 15 eigenvalues in the delayed
spectrum and the first 16 in the prompt spectrum by progres-
sively increasing the number of zeros of the associated fluxes.
Asahi presented his results with 6 and 3 digits, respectively,
for the delayed and prompt eigenvalues.

We have used our numerical approach to recalculate
Asahi’s reactor by subdividing each cm into M equal regions,
for a total of Nr = 40 × M spatial DOF, and by gradually
increasing M until convergence. For M = 32 the correspond-
ing delayed and prompt eigenvalues (15+16), out of a total
of NDOF = 2560 eigenvalues, converged to 6 digits and their

Nr = 1 Nr = 2 Nr = 4
-1.3821081-3 -1.3821081-3 -1.3821081-3

-1.2466691-2 -1.2466692-2
-1.2466698-2
-1.2466699-2

-1.4012729-2 -1.4012729-2 -1.4012729-2
-2.8291558-2 -2.8291579-2

-2.8291665-2
-2.8291679-2

-3.7791806-2 -3.7791806-2 -3.7791806-2
-4.2524306-2 -4.2524320-2

-4.2524377-2
-4.2524386-2

-8.2586186-2 -8.2586186-2 -8.2586186-2
-1.3304127-1 -1.3304138-1

-1.3304182-1
-1.3304189-1

-2.0564488-1 -2.0564488-1 -2.0564488-1
-2.9246435-1 -2.9246477-1

-2.9246649-1
-2.9246678-1

-5.9313437-1 -5.9313437-1 -5.9313437-1
-6.6648497-1 -6.6648537-1

-6.6648702-1
-6.6648730-1

-1.4950512+0 -1.4950512+0 -1.4950512+0
-1.6347760+0 -1.6347767+0

-1.6347797+0
-1.6347803+0

-3.4228559+0 -3.4228559+0 -3.4228559+0
-3.5545951+0 -3.5545958+0

-3.5545988+0
-3.5545993+0

-3.5578919+2 -3.5578919+2 -3.5578919+2
-1.1008588+7 -1.2897302+7

-4.4033287+7
-7.5169271+7

TABLE IV. Eigenvalue clustering in the delayed spectrum for
increasing number of spatial cells, one energy group, case 4
(α eigenvalues as x.xx+y are to be read as x.xxe+y).

associated fluxes exhibit the same number of zeros as those
from Asahi’s. Table V shows our 31 eigenvalues and the rel-
ative difference in % to the Asahi’s values. Note that there
are large differences in the prompt eigenvalues. We think that
some of Asahi’s values lacked precision. Our results prove
that, as the number of DOF increases, our numerical technique
approaches the more and more closely the full spectrum of the
operator.

VI. CONCLUSIONS

We have presented theoretical arguments about the alpha
eigenvalue problem in multigroup neutron diffusion, in support
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Fig. 2. Distribution on the complex plane of the prompt eigen-
values with 281 groups for the cases in Table I.

α1,(·) r.d. (%) α2,(·) r.d. (%)

-0.000009 - −6.593 × 101 +0.046
-0.095135 -3.307e-04 −1.340 × 103 +0.027
-0.098363 -2.959e-04 −3.957 × 103 -0.084
-0.099205 -4.805e-04 −8.107 × 103 -0.040
-0.099536 -2.496e-04 −1.382 × 104 +0.153
-0.099697 +3.656e-04 −2.098 × 104 -0.076
-0.099788 -3.637e-04 −2.790 × 104 +14.352
-0.099843 -2.955e-05 −2.961 × 104 +0.033
-0.099879 +2.620e-04 −3.205 × 104 -0.160
-0.099904 +3.194e-04 −4.114 × 104 +15.417
-0.099922 +3.322e-04 −5.168 × 104 -0.037
-0.099936 -2.921e-04 −5.736 × 104 -0.071
-0.099946 -9.027e-05 −6.038 × 104 +0.962
-0.099954 -1.342e-04 −6.950 × 104 -5.892
-0.099960 +1.894e-04 −8.366 × 104 -0.044

−9.781 × 104 +0.006

TABLE V. Eigenvalues with the relative difference (%) to
Asahi’s results: delayed spectrum (left), prompt spectrum
(right).

of the general behavior observed in our calculations including
the distribution of the prompt and delayed spectrum as well as
flux clustering. Our analysis and numerical results confirm the
few theoretical and numerical results found in the literature
regarding the diffusion problem.

We have used a perturbation formulation, based on the
steady state eigenvalue problem of the effective multiplication
factor, to derive a generalized form of the in-hour equation. As
opposed to previous derivations of the in-hour equation, which
have been derived by projection of the original alpha equation,
in our formulation this equation arises as a necessary and
sufficient condition for the existence of the alpha eigenvalue-
eigenvector pair.

We have also conducted many numerical simulations for

one-dimensional homogeneous and heterogeneous configura-
tions in multigroup diffusion theory. In all cases, our numerical
results supports the theoretical predictions.

The characterization of the alpha modes in multigroup
neutron transport is deferred to a future study.

APPENDIX A: ANALYSIS OF THE ONE-GROUP, HO-
MOGENEOUS CASE

The analysis for the one-group case is made especially
simple because χi = χ = 1 and one can add all fissile isotopes
into a single one with νΣ f =

∑
i νΣ f ,i. Moreover, for a homo-

geneous medium we can also define βp =
∑

i βi→pνΣ f ,i/νΣ f
and cast Eq. (8) into the simplified form

f (α)ψ = −Bψ, (38)

where
f (α) =

α

v
+

∑
p

βp
α

α + λp
νΣ f , (39)

and B is the diffusion operator with steady-state neutron fis-
sion spectrum (unity in the present case). Finally, using the
boundary conditions one can construct the eigenfunctions of
problem Bψζ = ζψζ and then any (α, ψζ), where α is a root of

f (α) = ζ (40)

is an alpha eigenpair.
Consider a homogeneous slab of thickness a. For the case

with zero flux boundary conditions one has the eigenfunctions
ψ(z) ∼ sin(Bnz) and the eigenvalues

ζn = νΣ f − Σa − DB2
n,

where Bn = (n + 1)π/a. Note also that

ζn = −ρnνΣ f ,

where ρn = 1 − 1/λn is the generalized reactivity associated to
the classical reactor eigenvalues λn.

There are Np + 1 roots of (40) and they split into Np + 1
different groups; new roots are added progressively to each
group as n increases. We show next that the higher Np groups
cluster on the right of each −λp, but for the group at the left of
−λNp , the eigenvalues decrease without bounds towards −∞.

We examine first the behavior of the α’s that are close
to −λp so that α + λp = ε with |ε| � 1 (this assumption
will be proved by the following analysis). For these α’s the
critical condition (40) can be written to leading order in ε
as −βpλpνΣ f ε

−1 = ζn, where now ε plays the role of the
eigenvalue α. The solution is

εn = −
βpλpνΣ f

ζn
→ αn = −λp

(
1 −

βpνΣ f

ζn

)
.

For increasing n, ζn becomes negative and increases as (n+1)2

so that the factor between parentheses remains positive but
diminishes very fast towards 1. Remember that we have as-
sumed εn to be small, which implies |ζn| � βpλpνΣ f . Clearly,
this can only happen if ζn < 0.
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Consider, finally, the case with α � −λNp Here we can
neglect precursor contributions and write α = vζ, which entails
that ζ is negative. Note that in this case the first ζ of this group
is the smallest root of (40) for n = 0, which we know that is
� −λNp . Here we have

αn − αn−1 = vD
(
π

a

)2
(2n + 1).

This implies that the distance between two successive eigenval-
ues in this group increases with n and that limn→∞ αn = −∞.
It follows that the eigenvalues in this group do not cluster.

APPENDIX B: ASAHI PROBLEM REVISITED

The simple technique in the previous Appendix can be
extended to a general analysis of a piecewise homogeneous
slab geometry. The basic idea is to use the Laplacian eigen-
functions in each homogeneous piece and impose interface
and boundary conditions in order to obtain a general solution
for the problem which is then replaced in Eq. (38). Unfortu-
nately, as we show next, this leads to a complicated system
of trigonometric equations for the determination of the alpha
spectrum.

As an example of this analytical approach we consider
the Asahi problem discussed in Sec. V. This problem contains
a central core of width 2a and a bilateral reflector of width b.
The domain is symmetric with respect to the middle plane. We
shall treat only the right half of the domain for z ∈ [0, a + b],
with vacuum boundary condition on the right at z = a + b
and either the current or the flux vanishing on the left at z =
0 . The latter conditions are necessary because the initial
problem is symmetric and therefore accepts even and odd
solutions. Given the boundary conditions, the solutions are
ψc(z) ∼ fc(Bcz) for z ∈ [0, a] and ψr(z) ∼ fr(Br(a + b − z))
for z ∈ [a, a + b]. The core function fc can be either a cosine
or a sine, depending on whether the alpha eigenfunction is
symmetric or antisymmetric, while fr is a sine. We impose
continuity of the flux and current at the core-reflector interface
z = a:

Ac fc(Bca) = Ar fr(Brb),
AcDcBc f ′c (Bca) = −ArDrBr f ′r (Brb),

where the A’s are two constants and f ′ is the derivative of f .
Dividing the second equation by the first we get the dispersion
relation:

DcBc f̂c(Bca) = BrDr f̂r(Brb). (41)

Here f̂r is the cotangent function while f̂c is the tangent func-
tion for the symmetric solution or minus the cotangent for the
antisymmetric one.

We have now a solution that satisfies boundary and inter-
face conditions with Bc and Br constrained by Eq. (41). Next,
we replace our solution in the alpha eigenvalue Eq. (38) to
obtain 

f (α) = νΣ f − Σa,c − DcB2
c ,

α

v
= −Σa,r − DrB2

r ,

(42a)

(42b)

where f (α) has been defined in (39).

Equation (41) and the two latter equations form a system
of nonlinear equations for the triplet (α, Bc, Br). We now
proceed to eliminate Bc and Br and obtain a final equation for
α. From the two equations in (42) we obtain:

B2
r = −

α + vΣa,r

vDr
,

B2
c = −

f (α) + v(Σa,c − νΣ f )
vDc

,

(43)

and use of these expressions in the dispersion relation results
in a nonlinear equation F(α) = 0 for α. In practice one might
proceed with a zero search for this nonlinear equation, where
given a value of α ∈ R, one evaluates Br and Bc via relations
(43) and, then calculates F(α) as the difference between the
left minus the right hand sides of Eq. (41).

Clearly, Br = 0 is a singular point at which the solution
vanishes in the reflector and in the core. Note that B2

r is nega-
tive for α > −vΣa,r, in which case the cotangent f̂r becomes
a hyperbolic cotangent and the reflector flux, which can be
taken as positive, decreases from the interface to vanish at
the boundary. This case, for which the dispersion relation is
easy to solve at least graphically, corresponds to the delayed
spectrum calculated by Asahi, whose eigenfunctions have no
zeros in the reflector. In the opposite case, with B > 0 or,
equivalently, with α < −vΣa,r, the flux in the reflector can
change of sign. This is the case of Asahi’s prompt spectrum.
The numerical analysis fo Asahi’s problem is further simpli-
fied because of the simple form of f (α) for the case of a single
precursor, but we do not pursue this development further here.

APPENDIX C: ROOTS OF THE GENERALIZED
NORDHEIM EQUATION

Equation (20) is the condition for the existence of the
eigenpair (α, ψα). We write this equation in the form ρ = ρ(ω):

ρ = ω

Λ +
∑

p

Γp

ω + λp

 ,
where the Λ(ψα) and Γp(ψα) are defined in Eq. (23). The above
equation can be written as a polynomial in ω of order Np + 1
and therefore has as many roots but not all necessarily real.
We assume that Λ and the Γp ’s are bounded and that Γp , Γp′

for p , p′. To simplify the analysis we shall assume that these
coefficients are real and positive. Under these assumption we
show that for any ρ ∈ R the equation has exactly Np + 1 real
distinct roots. As an aside, we recall that for ρ = ρλ one of the
roots must be ω = α.

Let R0 = R\Λ be the real line excluding the Np points
Λ = {−λp, p = 1,Np}. We note that ρ(ω) is C∞ over R0. It is
clear that every one of these points is a vertical asymptote. Let
ε > 0, then for ε → 0 we find that ρ(−λp ± ε) → ∓λpΓp/ε.
Therefore, ρ(ω) goes to −∞ at the right of the asymptote and
to∞ at its left. Moreover, the derivative

∂ωρ = Λ +
∑

p

λpΓp

(ω + λp)2
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shows that, ρ(ω) is a monotonously increasing function in
R0. The roots of ρ(ω) = 0 give the locations at which the
function changes of sign. Note that there is a single root in
each interval (−λp+1,−λp) for p = 1,Np − 1. Clearly ω = 0 is
another root and, since the function monotonously increases,
there are no roots for strictly positive ω. Next, we check the
behavior as ω → ±∞ to find that, for large ω, ρ(ω) → ωΛ.
Therefore there is a last root at some value smaller than −λNp .
The general aspect of the graph is depicted in Fig. 3.

−λ6 −λ5 −λ4 −λ3 −λ2 −λ1 0
α

ρ

Fig. 3. Sketch of generalized Nordheim in-hour equation for
Np = 6.

Let us discuss what happens when not all the coefficients
are positive. Assume that only one, say Λ, is negative. This
changes the behavior for ω → ±∞ and now we find that
ρ(ω) → ∓∞ for ω → ±∞. This agrees with the fact that
presently the derivative has two zeros. Hence, ρ(ω) has a
positive minimum ρmin > 0 for ω < −λNp and a positive
maximum ρmax < ρmin for ω > −λ1. The number of roots is
Np + 1 except for ρ ∈ (ρmax, ρmin) where it is Np − 1. Note that
for ρ = ρmax or ρ = ρmin there is a double real root.

Finally, we consider the case when the coefficient Γp is
negative for one intermediary p value, while all other coef-
ficients remain positive. Here a positive minimum ρmin > 0
appears in the interval (−λp+1,−λp) while a positive maximum
ρmax < ρmin appears in the interval (−λp,−λp−1). The discus-
sion is similar to the previous case. We left the analysis of
more complicated cases, where more than one coefficient is
negative, to the interested reader.
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