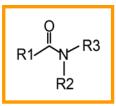
DE LA RECHERCHE À L'INDUSTRIE

Lab-scale implementation of a next-generation uranium and plutonium separation and purification process from spent nuclear fuel using monoamide solvent

<u>S. Costenoble</u>, M.-J. Bollesteros, F. Antegnard, C. Sorel, V. Vanel, M. Montuir, M. Miguirditchian, X. Heres, V. Boyer-Deslys and S. Grandjean

CEA, Nuclear Energy Division, Radiochemistry and Process Department, Marcoule Research Centre, BP17171, F-30207 Bagnols sur Cèze

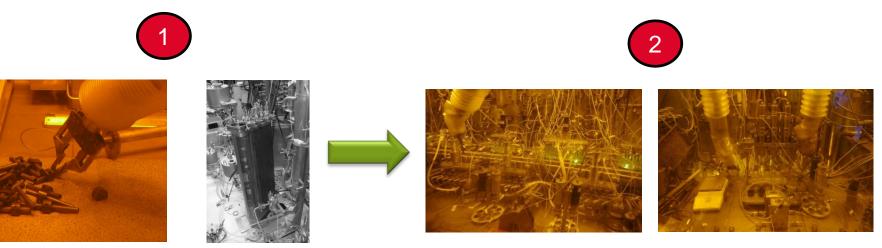
ISEC 2017 | Sylvain COSTENOBLE


7th NOVEMBER 2017

www.cea.fr

Study context

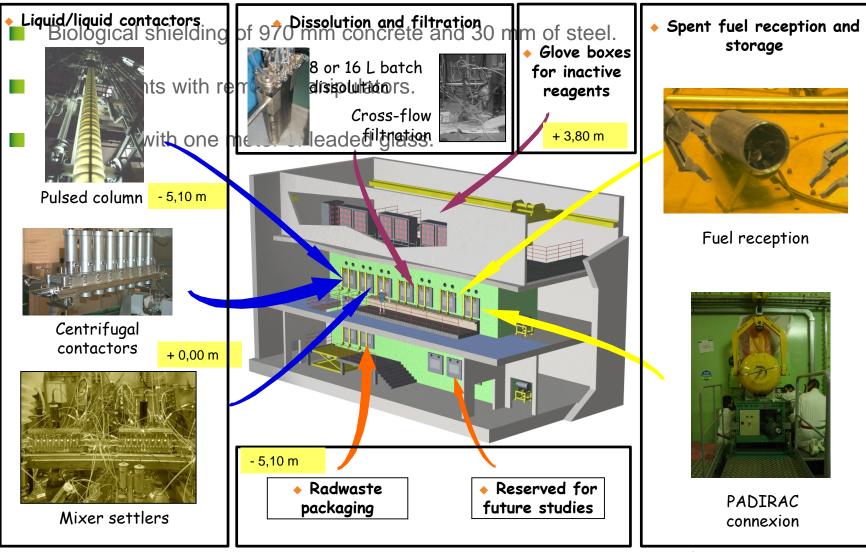
- In the back-end spent nuclear fuel cycle, the PUREX process is industrially implemented in the AREVA plant at La Hague for UOX spent fuel reprocessing and recycling.
- Uranium and plutonium are purified by this process thanks to several liquid/liquid extraction steps. TBP (tri-n-butyl phosphate) is the extractant and U/Pu separation is achieved by plutonium reduction which involves reductive reagents.
- In the framework of the development of Gen-IV reactors and the treatment of fuels with increasing Pu content, applying the same chemical process would mean:
 - Quite large increase of reductive reagent consumption,
 - More complex industrial separation workshops.
- New extraction systems such as <u>monoamide solvents</u> have been developed as they exhibit:
 - Good stability towards hydrolysis and radiolysis,
 - High selectivity with respect to fission products^[1-2].



Study context

In this work, a mixture of N-N-di-(2-ethyl-hexyl)-butanamide (<u>DEHBA - 0.5 mol/L</u>) and N-N-di-(2-ethyl-hexyl)-isobutyramide (<u>DEHiBA – 0.9 mol/L</u>) was tested.

See M. Miguirditchian slides in this session.


The aim of the experiment is to demonstrate uranium and plutonium separation and purification from a **genuine spent nuclear fuel** in HA conditions.

Liquid-liquid extraction experiments

Dissolution of spent nuclear fuel and filtration of the solution Cea

PRESENTATION OF THE PROCESS SHIELDED LINE CBP

DE LA RECHERCHE À L'INDUSTR

1st STEP: DISSOLUTION AND CLARIFICATION

Nature of the spent nuclear fuel

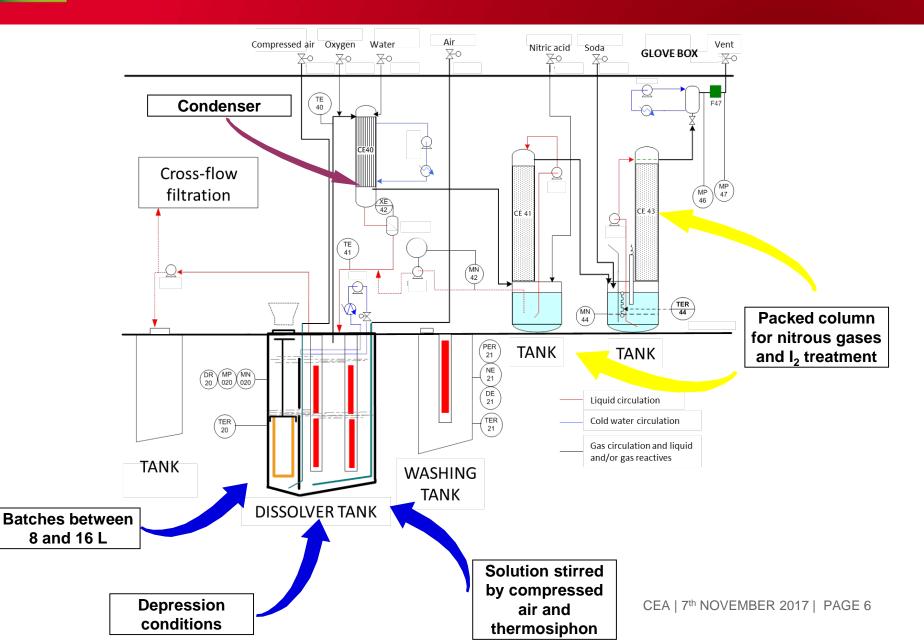
■ 1.8kg (U+Pu) coming from different reactors of EDF's French plant units.

- UOX3 fuels (75% mass):
 - Burnup = 65000 MWd/t.
 - Enrichment = $4.95\%^{235}$ U.
 - 4 years of cooling.
- UOX fuels (18% mass):
 - Burnup = 37000 MWd/t.
 - **Enrichment** = 4.95% ²³⁵U.
 - 7 years of cooling.
- MOX fuels (7% mass):
 - Burnup = 25000 MWd/t.
 - Pu enrichment in the range of 6 %.
 - 18 years of cooling.

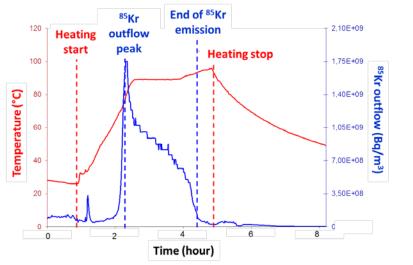
Operating conditions

Dissolution in boiled nitric acid media with the following reactions.

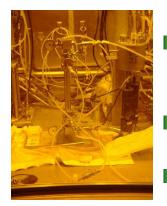
 $\begin{array}{l} \text{UO}_2 \left(s \right) + 3\text{HNO}_3 \left(l \right) \leftrightarrow \text{UO}_2 (\text{NO}_3)_2 \left(l \right) + 1/2\text{NO} \left(g \right) + 1/2\text{NO}_2 \left(g \right) + 3/2\text{H}_2\text{O} \\ \text{PuO}_2 \left(s \right) + 4\text{HNO}_3 \left(l \right) \leftrightarrow \text{Pu}(\text{NO}_3)_4 \left(l \right) + 2\text{H}_2\text{O} \\ \end{array}$



DE LA RECHERCHE À L'INDUSTRIE


1st STEP: DISSOLUTION AND CLARIFICATION

DE LA RECHERCHE À L'INDUSTRI

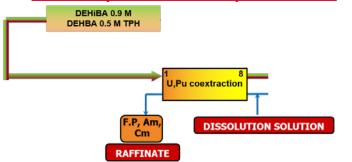

1st STEP: DISSOLUTION AND CLARIFICATION

Monitoring of the process: ⁸⁵Kr emission

- Kr is trapped into spent nuclear fuel.
- The ⁸⁵Kr release, measured after gas treatment devices, is controlled during the dissolution.
- The end of emission indicated the end of the reaction.

Clarification of the dissolution solutions

- Indispensable step prior to directing them to downstream operations (avoiding any risks of equipment plugging or solvent degradation).
- Performed by tangential filtration through membrane.
- Production of 10L of dissolution solution without fines.


Main properties of the clarified solution

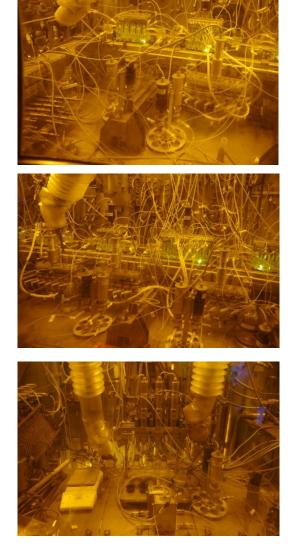
Element	Concentration (g/L)	Radioelement	Activity (Bq/L)
U	184	¹⁰⁶ Ru	1.35*10 ¹¹
Pu	2.85	¹³⁴ Cs	4.90*10 ¹¹
Тс	0.210	¹³⁷ Cs	1.23*10 ¹²
Np	0.125	¹⁴⁴ Ce	1.10*10 ¹¹
Zr	0.989	¹⁵⁴ Eu	1.68*10 ¹¹
Ru	0.524	¹⁵⁵ Eu	4.50*10 ¹⁰
Мо	0.939	²⁴¹ Am	9.90*10 ¹⁰
Pd	0.437		
Sr	0.255		

DE LA RECHERCHE À L'INDUSTRI

2nd STEP: LIQUID-LIQUID EXTRACTION EXPERIMENTS

Principle of the process

1-Coextraction of U(VI), Pu(IV) at relatively high nitric acidity.

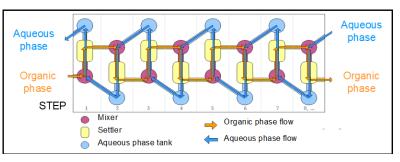

2-U/Pu purification vs fission products (<u>F.P. scrubbing</u>) at moderate acidity completed with a section at low acidity for U/Pu partitioning preparation.

3-<u>U/Pu partitioning at low acidity with U scrubbing step to adjust Pu/U ratio.</u>

4-Np, Tc scrubbing by reduction with U(IV).

5-<u>U stripping</u>.

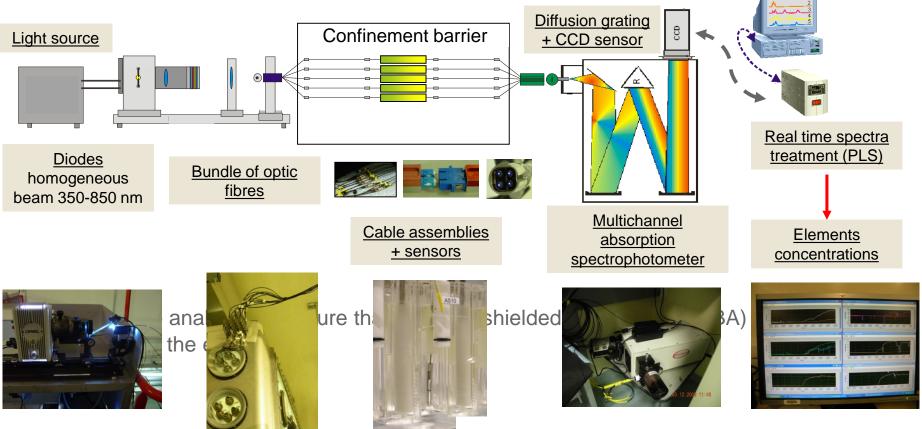
6-Solvent clean-up before recycling the organic phase.



Process devices

PMMA mixer-settler extractor batteries where the aqueous and the organic phases flow countercurrently.

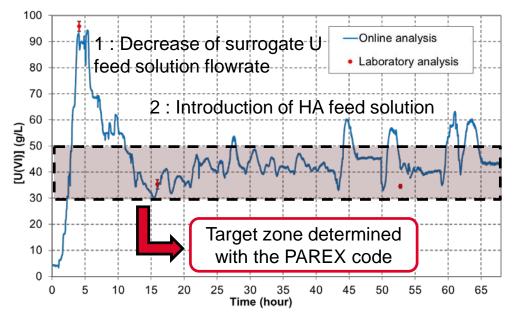
- Solutions mixed by stainless steel perforated paddle impellers (1700 to 3000 rpm).
- Interphases in settler compartments adjusted with titane slides.



- All reagents are introduced by rotary piston pumps located outside the confinement barrier.
- Flow rate measurements are performed thanks to Coriolis mass flowmeter and controlled by a specific supervision application.

Analytical measurements

On-line and *in situ* UV-visible spectrophotometric measurements implemented to follow elements (U, Pu, Am...) concentrations in organic and aqueous phases.


DE LA RECHERCHE À L'INDUSTRIE

2nd STEP: LIQUID-LIQUID EXTRACTION EXPERIMENTS

Successive steps of the trial

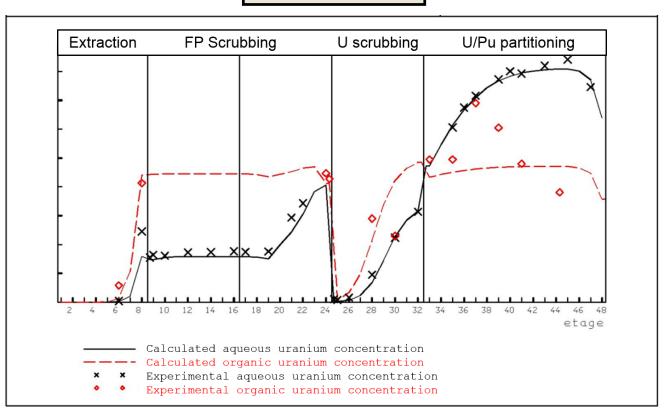
- Acid equilibria of the flowsheet (6 hours).
- Uranium equilibria (15 hours):
 - Acid feed solution replaced by a surrogate uranium feed solution.
 - Solvent saturation control with the help of online spectrometry completed with lab-analysis.
 - HA trials (50 hours):
 - Surrogate replaced by the dissolution solution.

Example of monitoring (aqueous scrub outlet)

1 – Decrease of surrogate feed flowrate

2 – Introduction of genuine feed solution

Main conclusions

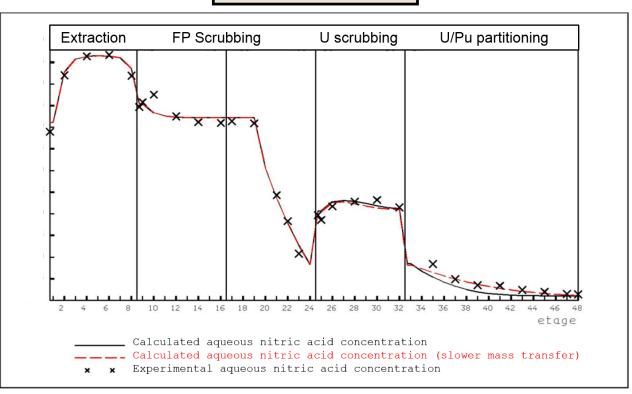

- Treatment of approximatively 5 litres of HA feed solution.
- Good hydrodynamic behaviour.
- Recovery yield > 99.99% for U and > 99.96% for Pu.
- Constant Pu/U ratio in the Pu outlet during the trial.
 - Good DF of U and Pu towards F.P.

	T0 + 52H	T0 + 62H	T0 + 69H
[U] (g/L)	(g/L) 1.23		1.79
[Pu] (g/L)	3.41	4.89	5.05
[U]/[Pu]	0.34	0.38	0.35

Element	Uranium		Plutonium		[3] ASTM C788-03(2015) [4] ASTM C757-90 (1996)e1
	Result	Target ^[3]	Result	Target ^[4]	
Pu (Bq/g)	1.5.10 ⁵	125	-	-	
Np (Bq/g)	17	125	Not separated		
Tc (μg/g)	5	5	609	6000	
¹⁰⁶ Ru (Mev/g)	1.9.10 ²	3.0.10 ²	1.3.10 ⁴	1.0.10 ⁵	
γ act. (Mev/g)	5.8.10 ²	3.0.10 ²	4.0.10 ⁴	1.0.10 ⁵	CEA 7 th NOVEMBER 2017 PAGE 13

Process simulation

At the end of the test, both aqueous and organic phases were sampled and analyzed to obtain data at the stationary state.

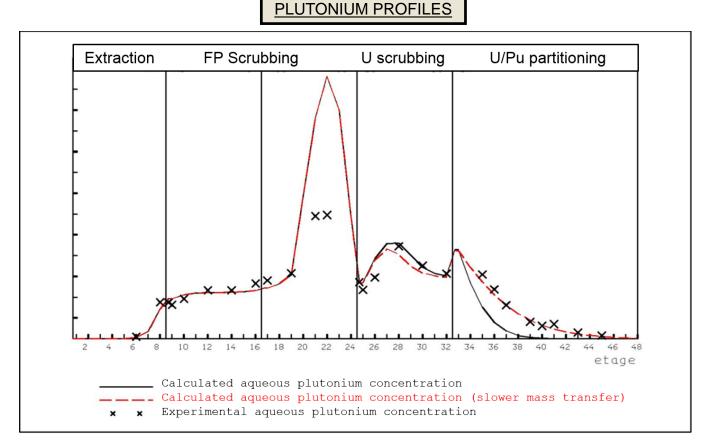


URANIUM PROFILES

Very good simulation of U behaviour in the different steps of the process.

Process simulation

At the end of the test, both aqueous and organic phases were sampled and analysed to obtain data at the stationary state.



NITRIC ACID PROFILES

Very good simulation of HNO₃ behaviour in the three first steps of the process. In the U/Pu partitioning part, a deviation is observed that can be simulated by taking into account a slower mass transfer kinetic.
CEA | 7th NOVEMBER 2017 | PAGE 15

Process simulation

At the end of the test, both aqueous and organic phases were sampled and analyzed to obtain data at the stationary state.

Like HNO₃ profiles, the Pu behaviour simulation can be improved by taking into account a slower mass kinetic transfer.

CONCLUSION AND PROSPECTS

Successful experimental demonstration in HA conditions of the use of monoamides as an alternative to TBP for spent nuclear fuel reprocessing

- Efficient recovery of U and Pu
- Good decontamination factors of U and Pu towards FP after one cycle
- No reducing agent for the U/Pu partitioning

Validation of the model developed to design the flowsheets

- Good representation of nitric acid and actinides concentration profiles
- Combination of online analysis with accurate estimation by the model was very powerful to monitor the process

Process optimizations

- Replacement of the mixture of monoamides by a single molecule with a less viscosity
- Improvement of Np management
- Decontamination of uranium towards technetium without any redox agents

Thank you for your attention

Acknowledgements

AREVA NC and EDF for financial support

ATALANTE analytical teams for performing all analyses

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Marcoule | 30207 Bagnols-sur-Cèze Cedex T. +33 (0)4 66 79 65 51 | F. +33 (0)4 66 79 66 51 Direction de l'énergie nucléaire Département de radiochimie des procédés Service d'études et d'analyses en haute activité

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019