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ABSTRACT

The attainment of strong pharmacological effects
with oligonucleotides is hampered by inefficient
access of these molecules to their sites of action
in the cytosol or nucleus. Attempts to address this
problem with lipid or polymeric delivery systems
have been only partially successful. Here, we
describe a novel alternative approach involving the
use of a non-toxic small molecule to enhance
the pharmacological effects of oligonucleotides.
The compound Retro-1 was discovered in a screen
for small molecules that reduce the actions of bac-
terial toxins and has been shown to block the retro-
grade trafficking pathway. We demonstrate that
Retro-1 can also substantially enhance the effect-
iveness of antisense and splice switching oligo-
nucleotides in cell culture. This effect occurs at
the level of intracellular trafficking or processing
and is correlated with increased oligonucleotide
accumulation in the nucleus but does not involve
the perturbation of lysosomal compartments. We
also show that Retro-1 can alter the effectiveness
of splice switching oligonucleotides in the in vivo
setting. These observations indicate that it
is possible to enhance the pharmacological
actions of oligonucleotides using non-toxic and
non-lysosomotropic small molecule adjuncts.

INTRODUCTION

The manipulation of gene expression through use of chem-
ically synthesized oligonucleotides has had a dramatic
impact on basic biomedical research and also offers the
promise of powerful new approaches for treatment of
human disease. Currently, four broad categories of oligo-
nucleotides have evinced significant therapeutic potential
including siRNA, miRNA, ‘classic’ antisense oligonucleo-
tides (ASOs) and splice-switching oligonucleotides (SSOs).
Interference by double-stranded RNA is a key endogen-
ous mechanism of gene regulation involving mRNA deg-
radation and/or sequestration, translation arrest and
effects on chromatin (1,2). Although siRNA-‘slicing’
activity mediated by the Ago2/RISC complex in the
cytosol requires full complementarity, short dsRNAs can
also display miRNA activity against partially complemen-
tary sequences, leading to translation arrest, sequestration
in P-bodies and degradation. The primary mode of action
of ‘classic’ single strand ASOs is RNase H-mediated deg-
radation of complementary pre-mRNA in the nucleus (3).
However, chemically modified ASOs that do not support
RNase H activity can alter nuclear pre-mRNA splicing
by blocking interactions with splicesosomes, thus acting
as SSOs (4).
There are multiple ongoing clinical trials involving

various types of oligonucleotides including siRNA,
ASOs and SSOs, testifying to the immense interest in
this broad therapeutic approach (3–8). Nonetheless,
oligonucleotide-based therapies face a key problem
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regarding the inefficient access of these large, highly polar
molecules to their sites of action in the nucleus or cytosol
of tissue cells (9,10). Chemical modification of oligo-
nucleotides to improve stability and efficacy (8,11) as
well as the use of various nanotechnology-based delivery
approaches (12–17) have been very helpful in this regard.
Other important delivery approaches include the chemical
conjugation or complexation of oligonucleotides with cell-
penetrating peptides designed to promote endsomal
escape (18–20), as well as conjugation of oligonucleotides
with ligands intended to promote receptor-selective cell
uptake (21–24). Despite these various approaches,
however, the access problem remains challenging. For
example, restricted biodistribution (10), as well as
toxicities ascribed to cationic constituents (25), have
been problematic for the use of lipid or polymer
nanoparticles in oligonucleotide therapeutics. Therefore,
it is clear that the discovery of alternative strategies to
enhance the access of oligonucleotides to their intracellu-
lar targets will have substantial value for oligonucleotide-
based pharmacology and therapeutics.
Oligonucleotides are usually internalized via endo-

cytosis and then traffic through various membrane-
circumscribed vesicular compartments (9,26,27). Cells
use multiple distinct endocytotic uptake mechanisms
including the clathrin pit pathway, the caveolar
pathway, one or more caveolin and clathrin-independent
pathways and macropinocytosis. Initial uptake is followed
by trafficking into a variety of endomembrane compart-
ments including early/sorting endosomes, late endosomes/
multi-vesicular bodies, lysosomes and the trans-Golgi
network (TGN) (28,29). Most of the oligonucleotide
accumulated in cells remains sequestered in various
endomembrane vesicles and is pharmacologically inert,
but a small fraction escapes to the cytosol and nucleus
to permit activity (26,30). Recently, there has been sub-
stantial interest in understanding the intracellular traffick-
ing of oligonucleotides and their delivery modalities
(31–34). In particular we, and others, have found that
the pathway of uptake and intracellular trafficking can
have a strong effect on the pharmacological activity of
an oligonucleotide; there are productive and less-product-
ive pathways (35–39). These observations suggest that
if it was possible to influence the intracellular trafficking
of oligonucleotides, and their release from endomembrane
compartments, one might be able to substantially enhance
their pharmacological effects.
Although molecular biological tools for manipulating

vesicular trafficking exist (40), there has been a paucity
of chemical tools available for this purpose. Recently,
however, a group of compounds that profoundly and se-
lectively affect intracellular traffic have been described
(41). These molecules, termed ‘Retro’ compounds, came
from a high throughput screen for small molecules that
reduce the harmful actions of bacterial and plant toxins.
The Retro compounds block the retrograde trafficking
pathway (42) used by many toxins by interfering with
shuttling between endosomes and the TGN. Although
the precise intracellular trafficking pathways used by
various types of oligonucleotides are not well defined at
this point, we nonetheless decided to test the possibility

that the Retro compounds might beneficially influence the
intracellular trafficking of oligonucleotides so as to
enhance their pharmacological effects.

MATERIALS AND METHODS

Reagents and cells

Splice switching 20-O-Me phosphorothioate oligonucleo-
tide 623 (50-GTTATTCTTTAGAATGGTGC-30), its
5-base mismatch (50-GTAATTATTTATAATCGT
CC-30), as well as 30-TAMRA fluorophore-labelled
versions were synthesized in our laboratory as described
(35) or custom synthesized by Girindus America
(Cincinnati, OH). The anti-MDR1 antisense oligonucleo-
tide (50-CCATCccgacctcgcGCTCC-30) (43) and its
scrambled control were synthesized by Integrated DNA
Technologies (Coralville, IA), as were an anti-Bcl-x oligo-
nucleotide (50-CTACGctttccacgcACAGT-30) and its mis-
matched control (50-CGACAcgtacctctcGCATT-30) (44).
These several oligomers were phosphorothioate gapmers
with 20-O-Me modifications at the capitalized positions. A
previously described MDR1 siRNA (45) was prepared by
Dharmacon Inc (Lafayette, CO). A SSO (50-TGGTTCTT
ACCCAGCCGCCG-30) that causes redirection of Bcl-x
pre-mRNA splicing from Bcl-xL to –xS has been previ-
ously described (46). A fluorescein isothiocyanate-tagged
monoclonal antibody to P-glycoprotein (Pgp) was from
BD-Pharmingen (San Jose, CA). LysoTracker Green
lysosomotropic dye, Lipofectamine 2000 and baculovirus
expression systems (Organelle LightsTM) were obtained
from Invitrogen (Carlsbad, CA, USA). Plasmids coding
for green fluorescent protein (GFP) chimeras of Rab 5,
Rab 9 and Rab 11 were kindly provided by Prof. Bo
van Deurs (University of Copenhagen, Denmark) and
Dr. S. Pfeffer (Stanford University, USA). A375Luc705
is a human melanoma cell line containing a firefly
luciferase coding sequence interrupted by an abnormal
intron (35). HeLaEGFP654 is a human cell line containing
an enhanced GFP reporter interrupted by an abnormal
intron; HeLaLuc705 contains a similarly structured
luciferase reporter (both obtained from R. Kole, AVI
Biopharma). In each of these cell lines, correct splicing
and reporter expression can be restored by delivery of
the 623 SSO to the nucleus. NIH-3T3-MDR is a mouse
fibroblast cell line stably transfected with a complemen-
tary DNA (cDNA) coding for the human Pgp and was
obtained from M. Gottesmann (National Cancer
Institute). PC3 human prostate tumour cells were
obtained from the UNC Lineberger Cancer Center.
Retro-1 was synthesized and characterized as previously
described (41). The ClogP value of Retro-1 was calculated
using ChemBioDraw Ultra 12.0.

SSO-mediated induction assays

Typically, A375Luc705, HeLa Luc705 or HeLaEGFP654
cells were incubated with SSO 623 or control mismatch
oligonucleotide in serum-free OPTI-MEM I for 4 h
followed by addition of fetal bovine serum (FBS) to
1.5% for an additional 12 h. The oligonucleotides were
removed, and the cells rinsed in buffer; thereafter,
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medium plus 1.5% FBS was added followed by various
amounts of Retro-1 in dimethylsulfoxide (DMSO). The
Retro compound was removed after 2 h, and the cells
further incubated in medium plus 1.5% FBS for an add-
itional period. Deviations from this procedure are noted in
the figure legends. In some cases, cells were treated with
SSO 623 and Lipofectamine 2000 as a positive control.
Luciferase enzyme activity was determined as previously
described (39). Enhanced green fluorescent protein
(EGFP) expression was measured by flow cytometry
using an LSR II cell analyser (Becton-Dickenson, San
Jose, CA, USA) with a 488-nm laser coupled with a 525/
50 filter for EGFP.

Pgp assays

NIH-3T3-MDR cells were incubated with various concen-
trations of anti-MDR1 or mismatched antisense oligo-
nucleotide in Dulbecco’s modified Eagle’s medium-H
plus 2% FBS for 4 h. The oligonucleotides were
removed by rinsing, and medium+2% FBS was added
followed by the addition of Retro-1 at various concentra-
tions. After 4 h, the Retro compound was removed, and
incubation continued for 48 h. In some cases, cells were
treated with oligonucleotide and Lipofectamine 2000 as a
positive control. The same procedure was followed for
treatment of cells with MDR1-siRNA. Pgp expression
was measured essentially as previously described (47)
using fluorescein isothiocyanate-tagged anti-Pgp
antibody and flow cytometry. Pgp transport activity in
NIH-3T3-MDR cells was measured by cytometry using
accumulation of tetramethylrosamine, a fluorescent Pgp
substrate (48).

RNA isolation and analysis (Reverse transcriptase-
polymerase chain reaction)

Total RNA was isolated using TriReagent (Molecular
Research Center, Cincinnati, OH, USA). Total RNA
was converted into first-strand cDNA using Enhanced
Avian First Strand Synthesis Kit (Sigma). EGFP cDNA
was amplified by PCR using forward (50-CGTAAACGGC
CACAAGTTCAGCG-30) and reverse (50-GTGGTGCAG
ATGAACTTCAGGGTC-30) primers, whereas Luciferase
cDNA was amplified using forward (50-TTGATATGTG
GATTTCGAGTCGTC-30) and reverse (50-TGTCAATC
AGAGTGCTTTTGGCG-30) primers. Primers for Bcl-x
amplification were 50-CATGGCAGCAGTAAAGCA
AG-30 and 50-GCATTGTTCCCATAGAGTCC-30.
Primers for beta-actin amplification were 50-CTGGGAC
GACATGGAGAAAA-30 and 50-AAGGAAGGCTGGA
AGAGTGC-30. Cycles of PCR proceeded at 94�C for 30 s,
65�C for 30 s and 72�C for 60 s for 30 cycles. The PCR
products were separated on agarose gels, and bands were
visualized and quantitated using a Gel Doc imaging
system (Bio-Rad, Hercules, CA, USA).

Cytotoxicity

Cells were seeded in 96-well plates at 5000 cells/well. After
24 h, cells were exposed to different concentrations of
Retro-1 for 4 h. Drug-containing medium was replaced
with fresh medium, and cells were incubated for an

additional 24 h. An Alamar Blue assay (49) was used to
measure cytotoxicity. A lactate dehyrogenase release assay
for plasma membrane integrity was performed using a
commercial kit according to manufacturer’s specifications
(Clontec, Mt View, CA).

Confocal microscopy and co-localization with
endomembrane markers

Live cell confocal microscopy was performed to examine
the subcellular distribution of fluorescent oligonucleotide
or of certain markers for endomembrane compartments.
In some cases, cells (HeLa) were transfected with plasmids
encoding GFP chimeras of Rab 9 or 11. Alternatively,
the cells were transfected with baculovirus expression
vectors (Life Technologies, Organelle LightsTM) for GFP
chimeras of Rab 5, Rab 7, lysosome-associated membrane
glycoprotein 1 (LAMP-1) or for a Golgi marker. The day
following transfection cells were incubated with
carboxytetramethylrhodamine (TAMRA) conjugated
SSO 623 in OptiMEM media after which the cells were
washed and incubated in dulbecco’s modified Eagle’s
medium with 1% serum. Specific times and concentra-
tions are indicated in the figure legends. Cells were
imaged on an Olympus FV1000 MPE laser scanning
confocal microscope with environmental chamber to
maintain 37�C, 40% humidity and 5% CO2 ; 488 nm
(GFP) and 559 nm (TAMRA) were used as laser lines,
and images were collected with an 60� oil immersion
lens. Alternatively, a Zeiss 510 Meta laser scanning
confocal microscope was used. For kinetic studies,
images were captured every minute for 5 min before the
addition of Retro-1 (100 mM) and for 20min after.
Quantification was performed in FV10-ASW software.
Co-localization is represented as the Pearson Coefficient
(50) of GFP and TAMRA overlap within the cytoplasm
of the cell. Nuclear intensity is the ratio of nuclear and
whole cell means of TAMRA fluorescence.

In vivo experiments

Non-obese diabetic (NOD) scid mice (Jackson
Laboratories) received bilateral sub-cutaneous xenografts
of 2� 106 A375Luc705 human melanoma cells, and
tumours were allowed to grow to �0.5 cm. Thereafter,
on successive days, mice received intra-peritoneal injec-
tions of 200 ml of buffered saline or of SSO 623 in
buffered saline (20mg/kg 2�, 40mg/kg 1�). At 18 h
after the last injection, the mice were imaged for luciferase
activity. Immediately thereafter, a cohort of the mice
received a single 40 ml intra-venous injection of 2mg of
Retro-1 using DMSO/PEG400 (50/50) as a diluent. At
6 h after receiving the Retro-1, all animals were imaged
again. For quantitation of luciferase induction (51), the
mice were injected subcutaneously with luciferin and
imaged in a Xenogen IVISTM system with continuous
isoflurane anesthesia; luminescence was measured and
analysed using Living Image� software. At the termin-
ation of the experiment, the mice were euthanized using
AAALAC approved methods, and tumour and blood
samples were collected. Tumour samples were analysed
for splice correction of luciferase reporter RNA and
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luciferase enzyme activity. Blood samples were analysed
by the UNC Animal Clinical Chemistry Core facility.

RESULTS

We investigated the effects of the compound Retro-1 on
the intracellular processing and pharmacological effective-
ness of oligonucleotides primarily by making use of two
types of model systems. The first model tests effects of
SSOs in cultured cells stably transfected with a cassette
comprising the coding sequence of a reporter gene inter-
rupted by an abnormal intron (4,39). Delivery of an ap-
propriate SSO to the cell nucleus results in corrected
splicing and increased expression of the reporter. A
second type of model tests the ability of classic ASOs or
siRNA to reduce the expression of a target. In this case,
the principal chosen target is the MDR1 gene product Pgp
(ABCB1), a membrane transporter involved in cancer
drug resistance (52). Expression of Pgp in drug-resistant
cells is assayed using a monoclonal anti-Pgp antibody and
flow cytometry (47). In both models, cells were treated
with oligonucleotides in the absence of any transfection
agent, the oligonucleotides were rinsed away, and the
cells were then briefly treated with the Retro compound.
At intervals after removal of the Retro compound, the
pharmacological effects of the oligonucleotides were
measured. The structure of Retro-1 has been previously
described (41) and is depicted in Figure 1. Retro-1 has a
calculated log P of 3.33, and thus it should readily pass
across cell membranes by diffusion (53).

Retro-1 enhances the actions of SSOs

We found that increasing concentrations of Retro-1 pro-
gressively enhanced the actions of a SSO on a luciferase
reporter stably transfected into HeLa cells (Figure 2a).
For example, at 100 mM Retro-1, there was �10-fold
increase in the luciferase induction produced by 50 nM
SSO as compared with when no Retro compound was
added. We examined the kinetics of the process by har-
vesting the cells at various times after removal of Retro-1
and found that the luciferase signal peaked at �6 h
(Figure 2b). Thus, Retro-1 treatment caused a delayed
transient increase in luciferase activity.
We also tested the ability of Retro-1 to alter the action of

a SSO that targets an EGFP reporter stably transfected
into HeLa cells. As seen in Figure 2c, Retro-1 increased
the induction of EGFP by the SSO; the effect was not as
robust as that produced using a cationic lipid to deliver the
oligonucleotide, but nonetheless was substantial. The ob-
servations on the induction of EGFP at the protein level
were paralleled by correction of splicing of EGFP mRNA

(Figure 2d). As seen in Figure 2c, both cells treated with
SSO plus Retro-1 and those treated with with SSO plus
cationic lipid exhibited heterogeneous responses, with
only a fraction of the cells affected; it has been our experi-
ence that this is typical for experiments with various oligo-
nucleotides, no matter what delivery agent is used (33,47).

Retro-1 can also enhance the effects of SSOs that influ-
ence expression of endogenous genes. Thus, an SSO that
alters the splicing of Bcl-x pre-mRNA to increase produc-
tion of the pro-apoptotic Bcl-xS form showed increased
effectiveness in the presence of Retro-1 (Figure 3a
and b). The effect was not as robust as that attained
with delivery of the SSO using cationic lipid transfection
(�14% versus 60% splice switching), but nonetheless was
readily observable.

To further explore mechanisms, we used A375Luc705
human melanoma cells and found that the Retro
compound increased luciferase induction in the presence
of an active SSO but had no effect in the presence of a
mismatched control oligonucleotide, indicating that
Retro-1 does not cause a non-specific increase in splicing
activity (Figure 3c). We then examined the effect of
Retro-1 when the SSO was delivered by electroporation,
thus bypassing endocytosis and intracellular trafficking,
and found no enhancement of the SSO effect by the
Retro agent (Figure 3d). Therefore, it seems that
Retro-1 acts by altering the intracellular processing of
the SSO rather than directly on the splicing machinery.

We also examined the relationship between the kinetics
of cellular uptake of the SSO- and Retro-1-induced
luciferase expression. As seen in Supplementary
Figure S1a, there was gradual accumulation of TAMRA
fluorophore-labelled SSO in HeLaLuc705 cells at both low
(20 nM) and High (500 nM) concentrations. By using these
two very different SSO concentrations, we were able to
select points where the cells had accumulated approxi-
mately the same amount of oligonucleotide but had been
exposed to the oligonucleotide for different periods. As
seen in Supplementary Figure S1b, both the total amount
of oligonucleotide accumulated and the duration of
exposure affected Retro-1-induced luciferase expression,
especially at early times of uptake. This suggests that the
SSO needs time to move from early compartments, where it
accumulates immediately after uptake, to later stage endo-
membrane compartments that can be affected by Retro-1.
Thus, in summary, the set of experiments in Figures 2 and 3
and Supplementary Figure S1 demonstrates that Retro-1
can significantly enhance the actions of SSOs on the expres-
sion of reporter genes and endogenous genes in a concen-
tration and time-dependent manner.

Although we did not anticipate that there would be any
direct interaction between Retro-1 and oligonucleotides,
we sought to rule out this possibility using a spectroscopic
assay. Thus, Supplementary Figure S2 shows that there
were no changes in the optical spectra of the SSO or the
Retro-1 on mixing, indicating a lack of interaction.

Retro-1 enhances the actions of ASOs, but not siRNAs

We also examined the effects of the Retro compound on
the ability of a conventional ASO to reduce expression ofFigure 1. Structure of Retro-1.
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Figure 2. Retro-1 enhances the actions of SSOs. (a) Increased luciferase induction with Retro-1 treatment. HeLaLuc705 cells were incubated with
50 nM SSO 623 for 16 h. After removal of the oligonucleotide, the cells were treated (2 h) with various concentrations of Retro-1. After removal of
the Retro compound and 6 h further incubation, luciferase activity and cell protein were measured. Grey bars, SSO 623+Retro-1; open bar, SSO 623
alone. n=4. Means+standard error. (b) Time course of luciferase induction. HeLaLuc705 cells were incubated with SSO 623. After removal of the,
oligonucleotide the cells were treated (2 h) with 80 mM Retro-1. After removal of the Retro compound, the cells were incubated for various times
before harvesting and measurement of luciferase activity and cell protein. Grey bars, SSO 623+Retro-1 after various times of incubation; open bar,
SSO 623 alone after 6 h of incubation. n=4. Means+standard error. (c) Increased EGFP induction with Retro-1 treatment. HeLaEGFP654 cells
were incubated with SSO 623 with or without subsequent treatment with Retro-1. Additionally, a positive control group received SSO 623 delivered
using Lipofectamine 2000 (L2K/SSO). EGFP expression was measured by flow cytometry. Ordinate, cell counts; abcissa, log scale of fluorescence.
Blue profile, untreated HelaEGFP654 cells; Green profile,+SSO 623; Red profile,+SSO 623+100 mM Retro-1; Brown profile,+SSO
623+Lipofectamine 2000. The inset shows the percentage of cells in Window 1 (high EGFP expression). n=3. Means+standard error.
(d) Splice correction at the RNA level. The experiment described in (c) was also analysed by RT-PCR as described in ‘Materials and Methods’
section. The blue arrow indicates the incorrectly spliced RNA from the EGFP654 reporter, whereas the red arrows indicate the correctly spliced
mRNA. A, B=untreated controls; C, D=+SSO 623+Lipofectamine 2000; E, F=+SSO 623 only; G, H=+Retro-1 only; I, J=+SSO
623+Retro-1; K=EGFP expressing plasmid.
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its target. As seen in Figure 4a, treatment of multi-drug-
resistant NIH 3T3 cells with 100 nM of a 20-O-Me
phosphorothioate gapmer ASO alone had no effect on
expression of Pgp. However, when used in conjunction
with 100 mM Retro-1, the antisense oligomer caused a

distinct left shift of the flow cytometry profile indicating
reduced Pgp expression. As shown in Figure 4b, there was a
dose-response relationship, with increasing concentrations
of Retro-1 contributing to progressive reductions in Pgp
expression. At the highest concentration of Retro-1 tested,

Figure 3. Retro-1 effects on the splicing of an endogenous RNA and exploration of mechanisms. (a) Retro-1 enhances SSO effects on an endogenous
message. PC3 cells were treated for 16 h with 250 nM of an SSO that shifts the splicing of Bcl-x pre-mRNA to the Bcl-xS form. Cells were
subsequently treated with 100 mM Retro-1 for 2 h or maintained as controls. Cells treated with the SSO complexed with Lipofectamine 2000
provided a positive control. RNA was extracted and analysed by RT-PCR as described in ‘Materials and Methods’ section. Upper band, Bcl-xL
product; lower band, Bcl-xS product. Lanes 1,2 untreated control (no SSO); Lanes 3,4 SSO+Lipofectamine 2000; Lanes 5,6 SSO only; Lanes 7,8
Retro-1 only; Lanes 9,10 SSO+Retro-1. (b) Dose-response for Bcl-x splicing modification. In an experiment similar to that of Figure 3a, various
concentrations of Retro-1 were tested. Band intensities were quantitated with a gel scanner as described in ‘Materials and Methods’ section. The
ordinate shows the ratio of the Bcl-xS (lower) band to the total (upper plus lower) band intensity expressed as a percentage. Bars show mean values,
individual values shown as black squares. n=2. (c) Retro-1 treatment does not cause non-specific increases in splicing activity. A375Luc705 cells
were incubated with 50 nM SSO 623 or its mismatch control. After removal of the oligonucleotide, the cells were treated (2 h) with various
concentrations of Retro-1. After removal of the Retro compound and further incubation, luciferase activity and cell protein were measured. Grey
bars, SSO 623; open bar, mismatch oligonucleotide. n=6. Mean+standard error. (d) Retro-1 does not affect the action of oligonucleotides delivered
by electroporation. SSO 623 or its mismatch control (SSO-MM) (100 pmoles) were directly delivered to the cytosol of A375Luc705 cells by Amaxa �

electroporation. Thereafter, the cells were treated for 2 h with Retro-1 (100 mM). After removal of the Retro compound, the cells were further
incubated and then assayed for luciferase activity and cell protein. Black bar,+Retro-1; white bar, - Retro-1; NT, not treated. n=3.
Mean+standard error.
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the reduction in Pgp expression was about one half of that
obtained using an optimal amount of cationic lipid (�25%
versus 45% reduction); thus, the Retro-1 effect is reason-
ably robust. The combination of antisense andRetro-1 also
caused functional changes in terms of decreased ability
of the drug-resistant cells to export a fluorescent Pgp sub-
strate (Figure 4c). We also used the Pgp assay to evaluate
the relationship between antisense concentration and
Retro compound effects. As seen in Figure 4d, increasing
concentrations of the ASO alone had little effect on Pgp,
but the presence of the Retro compound allowed a progres-
sive ASO concentration-dependent reduction of Pgp
expression.

Using the same model, we evaluated the ability of
Retro-1 to influence the pharmacological action of a
siRNA (Supplementary Figure S3 and Supplementary
Table S1). Thus, multi-drug resistant NIH 3T3 cells were
treated with MDR1 siRNA or ASO with or without sub-
sequent treatment with Retro-1. Additionally, complexes
of ASO or siRNA with cationic lipids were tested. As seen
in the supplementary data, there was a major reduction of
Pgp expression when 100 nM of either ASO or siRNAwere
delivered using cationic lipid. There was also a distinct re-
duction in Pgp expression when a combination of 100 nM
ASO and Retro-1 was used. However, treatment with
1000 nM siRNA plus Retro-1 failed to reduce Pgp

Figure 4. Retro-1 enhances the actions of antisense oligonucleotides. (a) Reduction of Pgp expression. NIH-3T3-MDR cells were incubated with
100 nM anti-MDR1 antisense oligonucleotide (ASO). After removal of the ASO, the cells were incubated for 2 h with or without 100mM Retro-1.
After removal of the Retro compound, the cells were further incubated for 48 h and then assayed for cell surface expression of Pgp using a
monoclonal antibody and flow cytometry. Reduced Pgp expression is indicated by a left shift of the cytometry profile into window 1. Ordinate,
cell counts; abcissa, log scale of fluorescence. Blue profile, untreated MDR cells; Green profile,+ASO; Red profile,+ASO+Retro-1. (b) Retro-1
concentration versus response for Pgp reduction. Cells were treated with 100 nM antisense (AS) and with various amounts of Retro-1. Treatment
with 100 nM AS and Lipofectamine 2000 (L2K) served as a positive control, whereas treatment with 100 nM mismatched oligonucleotide (AS-MM)
and 100 uM Retro-1 served as a negative control. Pgp expression was assayed as in Figure 4a. The ordinate indicates the percentage of the cell
population in Window 1. Grey bars, treatment with AS plus Retro-1; White bar, treatment with AS-MM plus 100mM Retro-1; Black bar, AS plus
L2K. n=4. Mean+standard error. (c) Increased accumulation of a Pgp substrate. Cells were incubated with 100 nM antisense followed by treatment
with 100mM Retro-1 as in (a), or with 100 nM antisense and Lipofectamine 2000(L2K). After 48 h, cells were exposed to the Pgp substrate
tetramethylrosamine for 1 h; dye accumulation was analysed by flow cytometry. Blue profile, control cells; Green profile,+ASO; Red
profile,+ASO+Retro-1; Brown profile,+ASO+Lipofectamine 2000. Inset: Mean value of tetramethylrosamine fluorescence as percentage of un-
treated control. n=4. Mean+standard error. (d) Antisense Concentration-Response for Pgp reduction. NIH-3T3-MDR cells were incubated with
various concentrations of anti-MDR1 oligonucleotide. After removal of the ASO, some of the samples were incubated with 100 mM Retro-1 for 2 h
followed by removal of the Retro compound and further incubation. Pgp expression was measured by immunostaining and flow cytometry. Ordinate,
percentage of total cells in the low Pgp window; abcissa, concentration of antisense oligonucleotide. n=3. Mean+standard error.
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expression. Thus, Retro-1 failed to enhance siRNA effects
when the siRNA was used at pharmacologically meaning-
ful (sub-micromolar) concentrations. One possible explan-
ation of these results is that that siRNAs may traffic
differently than ASOs, using pathways not affected by
Retro-1. An alternative explanation of this negative
result is that the initial cellular uptake of conventional
siRNA is much lower than that of phosphorothioate-
modified ASO and SSO oligonucleotides. For example, in
comparing uptake of an siRNA and an SSO, both labelled
with the same fluorophore, we found that uptake of the
siRNA was <5% that of the SSO (data not shown).
Additionally, conventional siRNAs are less stable to
cellular nucleases than are phosphorothioate SSOs and
ASOs, and this may contribute to the lack of effect.
To make sure that the effects of Retro-1 on antisense

actions are not confined to a single sequence, we examined
a second target, namely the apototic regulator Bcl-XL.
These experiments made use of a published anti Bcl-XL

sequence and control mismatch sequence (44). As seen in
Supplementary Figure S4, the use of Retro-1 augmented
the antisense-mediated reduction of message. In this case,
Retro plus antisense treatment resulted in �40% reduc-
tion in message levels, whereas use of a cationic lipid
resulted in �90% reduction, both as compared with anti-
sense alone. The control mismatch sequence was inactive
even when delivered using cationic lipid transfection.
The concentrations of Retro-1 used in the experiments

described in Figures 2–4 had little effect on viability of
HeLa or A375 cells. Nor did they affect the integrity of
the plasma membrane as determined using a lactate de-
hydrogenase release assay (54) (see Supplementary
Figure S5a and b). Thus, the observed effects on splice
correction and antisense activity cannot be ascribed to
toxicity or overall loss of membrane integrity.

Retro-1 selectively alters the intracellular distribution of
oligonucleotides

The pharmacological actions of antisense and SSOs are
usually correlated with delivery to the nucleus (26,55).
Thus, we examined the effect of Retro-1 on nuclear local-
ization of a fluorophore-labelled SSO. As seen in
Figure 5a, in the control situation, oligonucleotide fluor-
escence was confined to cytoplasmic vesicles with no
evidence of nuclear accumulation. However, in the cells
treated with Retro-1, in addition to the vesicular fluores-
cence, there was clearly evident nuclear fluorescence. As
single-stranded oligonucleotides can readily move from
the cytosol to the nucleus (56), the increased nuclear fluor-
escence observed in the presence of the Retro agent is
likely due to partial release of the oligonucleotide from
vesicular compartments to the cytosol.
To further pursue this issue, we have used chimeras of

GFP with marker proteins for specific endomembrane
compartments to visualize the subcellular distribution of
oligonucleotides in live cells and to quantify changes
caused by Retro-1. For example, as seen in Figure 5b,
just before the addition of Retro-1, there was considerable
co-localization of fluorescent oligonucleotide with Rab 9,
a late endosome marker protein that is thought to be

involved in endosome to TGN trafficking (40). In
contrast, at this point in the oligonucleotide uptake
process, there was little co-localization of fluorescent
oligonucleotide with Rab 5 or Rab 11, markers for early
and recycling endosomes, respectively (57), nor with
N-acetylgalactosaminyltransferase 2, a marker for the
Golgi (58) (Figure 5c).

We then examined the kinetics of changes in the
co-localization of a fluor-labelled oligonucleotide with
protein markers of key endomembrane compartments
upon exposure to Retro-1. As seen in Figure 6, the
addition of Retro-1 resulted in a rapid decrease in
co-localization of the fluorescent oligonucleotide with the
late endosomal markers Rab 7 and Rab 9. This was
accompanied by a rapid increase in the accumulation of
oligonucleotide in the nucleus. In contrast, although
there was considerable initial co-localization of oligo-
nucleotide with the lysosomal marker LAMP-1 (59), little
change in co-localization was observed on addition of
Retro-1. We interpret these observations as indicating
release of oligonucleotide from Rab 7/9 positive compart-
ments, but not from LAMP-1 positive lysosomes. The ob-
servation that Retro-1 caused a rapid redistribition of
oligonucleotide from endomembrane compartments to
the nucleus prompted us to more closely examine the
kinetics of Retro effects on splice modification. Thus, as
seen in Supplementary Figure S6, even a very brief (5min)
treatment with Retro-1 caused a substantial increase in
splicing modification as detected by luciferase induction,
whereas the effect increased progressively up to 90-min
exposure. This is very consistent with the kinetics of oligo-
nucleotide relocalization seen in Figure 6. These observa-
tions suggest that exposure of cells to Retro-1 results in a
rapid partial destabilization of a subset of endomembrane
compartments, particularly late endosomes, with conse-
quent release of entrapped oligonucleotide to the cytosol
and nucleus.

To confirm that there were negligible effects of Retro-1
on lysosomes, we examined the cellular accumulation of
the lysosomotropic dye LysoTracker Green� in cells
treated with Retro-1, or with chloroquine, a drug that
increases the pH of lysosomes and causes release of lyso-
somal contents to the cytosol (30,60). As seen in Figure 7a,
chloroquine treatment markedly reduced cellular accumu-
lation of LysoTracker Green�, whereas a pharmacologic-
ally effective concentration of Retro-1 had little effect,
indicating a lack of lysosomotropic action. We further
pursued this issue by examining changes in co-localization
of a fluorescent oligonucleotide with the lysosomal marker
protein LAMP-1 subsequent to treatment with Retro-1 or
chloroquine. As seen in Figure 7b, chloroquine, but not
Retro-1, resulted in reduced colocalization of the oligo-
nucleotide and the lysosomal marker. In Figure 7c, indi-
vidual images are presented further illustrating that
Retro-1 affects colocalization of fluorescent oligonucleo-
tide with the late endosomal marker Rab 7, but not the
lysosomal marker LAMP-1.

Thus, as indicated by the original observations on toxin
trafficking (41), Retro-1 is selective and affects only
a restricted subset of endomembrane compartments.
Our observations suggest that Retro-1 causes partial
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destabilization of Rab 7/9 positive compartments, thus
allowing release of entrapped oligonucleotide to the
cytosol and thence the nucleus. However, unlike
lysosomotropic agents, Retro-1 does not cause destabiliza-
tion of lysosomes.

Retro-1 enhances the actions of SSOs in vivo

We have performed an initial evaluation of the in vivo ef-
fects of Retro-1 on the pharmacological actions of SSOs.

We used xenografts of the A375Luc705 human melanoma
cells aforementioned. These cells were implanted intoNOD
scid mice and allowed to form tumours. The tumour-
bearing mice were treated by intraperitoneal injection
with SSO 623 or with phosphate buffered saline (PBS),
and a cohort was subsequently treated intravenously with
Retro-1. The mice were imaged for luciferase induction
at several points in this process. As seen in Figure 8a,
unlike the situation in cell culture, there was a high

Figure 5. Retro-1 causes subcellular redistribution of oligonucleotides. (a) Increased nuclear accumulation of oligonucleotide. HeLa cells on cover
glasses were incubated with 200 nM 30-TAMRA conjugated SSO 623 for 24 h with or without subsequent treatment with 100 mM Retro-1 for 2 h.
Live cells were observed by confocal microscopy. Blue arrows indicate typical ‘empty’ nuclei. Yellow arrows indicate typical nuclei containing
oligonucleotide. (b) Co-localization of oligonucleotide with Rab 9. HeLa cells were transfected with a plasmid encoding a GFP chimera of Rab 9.
The transfection agent was removed by rinsing with serum, and the cells maintained in growth medium for 24 h. Thereafter, cells were incubated with
200 nM 30-TAMRA conjugated SSO 623 for 24 h. Live cells were observed by confocal microscopy. Green image, GFP fluorescence. Red image,
TAMRA fluorescence. White arrows indicate typical distinct subcellular structures that show co-localization of Rab 9 and oligonucleotide. (c) Lack
of co-localization with early endosome or Golgi markers. HeLa cells were transfected with GFP chimeras that serve as markers for several
endomembrane compartments (Rab 5, early endosomes; Rab 11, recycling endosomes; N-acetylgalactosaminyltransferase 2, TGN). Thereafter,
cells were incubated with 200 nM 30-TAMRA conjugated SSO 623 for 24 h. Live cells were observed by confocal microscopy. Green image, GFP
fluorescence. Red image, TAMRA fluorescence.
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background level of spontaneous splice correction and
luciferase induction in the tumours. Before Retro-1 admin-
istration, the animals receiving the SSO 623 displayed
luciferase levels no different from the PBS controls.
However, subsequent to Retro-1 administration, the SSO
623+Retro-1 cohort displayed an increase in luminescence
as compared with PBS controls or the cohort treated with
SSO623 alone. Analysis of splice correction in the tumours
by reverse transcriptase-polymerase chain reaction
(RT-PCR) is shown in Figure 8b and c and confirms the
results obtained by imaging, namely that there is a small,
but distinct, splice correction seen in the SSO+Retro-1
treated samples. Biochemical measurement of luciferase
activity in tumour samples also gave similar results
(Figure 8d). Thus, three different assays indicated a

modest (�2-fold), but distinct, in vivo effect of Retro-1
treatment.

As part of these studies, we used blood samples to
examine clinical chemistry parameters that might reflect
possible toxicities. As seen in Supplementary Figure S7,
the toxicities displayed by SSO 623 and Retro-1 were
limited. Thus, the only significant difference was a
moderate elevation in plasma alanine aminotransferase
levels in the SSO 623 treated mice possibly reflecting
some liver toxicity. These results agree well with
previous observations indicating the Retro-1 has little
in vivo toxicity (41).

An issue with these in vivo studies is that, at present, we
have no information about the pharmacokinetics and
biodistribution of Retro-1. Thus, it is difficult to match
the well-known pharmacokinetic and biodistribution
behaviour of the oligonucleotides with that of Retro-1 so
as to optimize effectiveness of the combination. Retro-1 is
very poorly water soluble; thus, for in vivo studies, we ad-
ministered it in a mixture of DMSO/PEG400. In view of its
poor solubility, it is possible some of the drug became in-
soluble after injection, and that only very low concentra-
tions were attained in the tumours, and thus luciferase
induction was correspondingly poor. However, although
the magnitude of the effects observed thus far are modest,
it is clear that Retro-1 can enhance in vivo actions of SSOs
to some extent.

DISCUSSION

The development of non-toxic small molecules with the
ability to significantly enhance the pharmacological
actions of oligonucleotides would clearly have important
therapeutic ramifications. The studies presented here are
essentially a proof of principle for that possibility. Thus,
we have shown that the novel compound Retro-1 can
increase the effects of SSOs and ASOs in the cell culture
context. We have also demonstrated that Retro-1 can
modestly improve the actions of a SSO in vivo. The mag-
nitude of the enhancement attained in cell culture with
Retro-1 is less than that which can be attained by
delivery of oligonucleotides using cationic lipid complexes,
but nonetheless is substantial. Although neither the oligo-
nucleotides used in this study nor Retro-1 are entirely free
of toxic effects, the observed toxicities seem relatively mild
at both the cellular and whole animal levels. As Retro-1
is effective in enhancing oligonucleotide actions only at
micromolar concentrations and is also poorly water
soluble, it may not be useful in the therapeutic context
itself. However, our experience with this compound,
whose effects on oligonucleotides were discovered in a ser-
endipitous manner, strongly suggests that it should be
possible to systematically develop more potent non-
lysosomotropic, non-toxic small molecules capable of
enhancing oligonucleotide actions by affecting their intra-
cellular processing.

Retro-1 was first identified as an agent that interferes
with the intracellular trafficking of toxins (41). We
became interested in this molecule because studies from
our laboratory and others have shown that the pathway

Figure 6. Retro-1 selectively affects distinct endomembrane compart-
ments. Kinetics of Retro-1 effects on the subcellular localization of
oligonucleotide. HeLa cells were transfected with plasmid or baculo-
virus expression vectors for GFP chimeras of the late endosomal
markers Rab 9, Rab 7 or the lysosomal marker LAMP-1. After
removal of the vectors and 24 h additional culture, cells were exposed
to 200 nM 30-TAMRA conjugated SSO 623 for 6 h and then rinsed to
remove excess oligonucleotide. Live cells were observed and analysed
using confocal fluorescence microscopy as described in ‘Materials and
Methods’ section. Upper panel: Colocalization of GFP and
TAMRA-SSO over timed intervals before and after the addition of
Retro-1, quantitated as described in ‘Materials and Methods’ section.
Lower panel: the ratio of nuclear to cytosolic TAMRA-SSO
quantitated over timed intervals before and after the addition of
Retro-1. Results shown: means±standard errors. N ranges from
7 to 31 individual observations.
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of uptake and trafficking of oligonucleotides can influence
their pharmacological effectiveness (26,36,37). However,
unlike lysosomotropic agents, or cationic lipids or
polymers, the effects of Retro-1 on sub-cellular organiza-
tion and intracellular trafficking are subtle (41). Treatment
with Retro-1 does not disrupt the overall organization of
the endosome-lysosome system, nor the endoplasmic re-
ticulum or the Golgi apparatus. Moreover, although
toxin trafficking is blocked, other intracellular trafficking
processes remain intact. The exact molecular targets of
Retro-1 are not yet known, but in terms of toxin trafficking,
it seems to act at the functional interface between
endosomes and the TGN, most probably at the retromer
level. At this point, it is not clear whether the effects of
Retro-1 on toxin trafficking and on oligonucleotide redis-
tribution share the same fundamental mechanism

or whether the oligonucleotide effects involve a distinct
molecular target.
Our studies add a new aspect to the functions of Retro-1.

This molecule clearly causes a rapid partial release of oligo-
nucleotides from a subset of endomembrane compartments
where they have accumulated but are pharmacologically
inert, and allows oligonucleotides to gain entry into the
cytosol and then the nucleus. As it requires some time for
oligonucleotides to reach the cellular site where they are
influenced byRetro-1, this suggests that a ‘deep’ endosomal
compartment is involved. The effects of Retro compounds
on the morphology of subcellular organelles are subtle;
thus, it has been challenging to definitively identify the
endomembrane compartment(s) from which the oligo-
nucleotides are released. However, our results strongly
suggest that Rab 7 - and Rab 9-positive endosomes are an

Figure 7. Retro-1 does not affect lysosomes. (a). Retro-1 does not affect accumulation of a lysosomotropic dye. A375 cells were treated with 100mM
Retro-1 or 100 mM chloroquine for 2 h. Thereafter, 100 nM LysoTracker Green was added. After 30m, uptake of the dye was monitored by flow
cytometry with a 488-nm laser coupled with a 525/50 filter. The ordinate is cell counts; the abcissa is Lysotracker fluorescence. Blue profile, control
cells; Green profile, chloroquine-treated cells; Red profile, Retro-1-treated cells. Inset: mean fluorescence as percentage of untreated control. n=3.
Means+standard error. (b) Chloroquine, but not Retro-1, affects co-localization of oligonucleotide with a lysosomal marker protein. HeLa cells were
transfected with a baculovirus expression vector for a GFP chimera of LAMP-1 a lysosomal marker protein. After 24 h culture, cells were exposed to
200 nM 30-TAMRA conjugated SSO 623 for 6 h and then rinsed to remove excess oligonucleotide. Cells were then treated with 100mM Retro-1 or
300 uM chloroquine. Live cells were observed using confocal fluorescence microscopy. The panel shows colocalization of GFP-Lamp-1 and
TAMRA-SSO over timed intervals before and after the addition of drug, quantitated as described in ‘Materials and Methods’ section. Means
and standard errors shown. n=7. (c) Images of cell treated with Retro-1 or chloroquine. Co-localization of TAMRA-SSO and GFP chimeras is
indicated by the yellow/orange signal. Cells expressing GFP-Rab7 before [1] or after [2] Retro-1 treatment, showing reduced co-localization. Cells
expressing GFP-LAMP1 before [3] or after [4] chloroquine treatment, showing reduced co-localization. Cells expressing GFP-LAMP1 before [5] or
after [6] Retro-1 treatment, showing persistence of co-localization. Nuclei showing increased accumulation of the SSO owing to Retro-1 treatment are
marked by yellow arrows.
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important source of pharmacologically active oligonucleo-
tide in Retro-1-treated cells. In contrast, Retro-1 does
not release oligonucleotides from lysosomes, thus dif-
ferentiating it from the class of small molecule lyso-
somotropic agents such as chloroquine, and from
polymeric nanocarriers that act by the ‘proton sponge’
effect (61). One might hypothesize that there would be

advantages to using compounds that can release oligo-
nucleotides from endomembrane compartments but that
do not cause release of lysosomal hydrolases to the
cytosol, and the toxicities of Retro-1 seem rather mild.
However, the relative toxicities of manipulating endosomal
verus lysosomal compartments remain unknown at this
point.

Figure 8. Retro-1 effects in vivo: xenograft experiments. NOD scid mice received bilateral sub-cutaneous xenografts of 2� 106 A375Luc705 human
melanoma cells. After tumour growth, mice received intra-peritoneal injections of PBS or of SSO623 in PBS. At 18 h after the last intraperitoneal
injection, the mice were imaged for luciferase activity. Immediately, thereafter a cohort of the PBS control mice and a cohort of the SSO623 mice
received a single 40 ml intra-venous injection of 2mg of Retro-1. The mice were re-imaged 6 h after that injection. (a) Quantitation of luminescence.
This displays the luminescence (total radiance) before and 6 h after the injection of Retro-1. The groups were as follows: PBS only; SSO623 only; PBS
followed by Retro-1; SSO623 followed by Retro-1. Means and standard deviations are shown. n=10. The 623 plus Retro group was the only one
where luminescence was significantly elevated from the PBS control group (P< 0.05). The slight increase in luminescence seen in all groups between
t=0 and t=6h is likely due to the persistence of small amounts of luciferin in the tissues from the t=0 imaging session (http://invivoimaging-
community.com/luciferin_protocol). (b) Analysis of splice correction. RT-PCR and gel analysis was performed to monitor the levels of correctly and
incorrectly spliced RNA produced by the Luc705 reporter. Correctly spliced Luc mRNA is marked by an arrow. (c) Quantitation of splice correction.
This shows the percentage of splice correction determined by measuring band intensities. n=3. Means+standard error. The SSO623+Retro-1
samples were significantly different from the PBS controls (P< 0.05). (d) Luciferase activity in xenografts. Tumour samples from the xenograft
experiment were homogenized and then analysed for luciferase activity and total protein as described in ‘Materials and Methods’ section. The
SSO623+Retro-1 samples were significantly different from the PBS controls (P< 0.05). n=4–7. Means+standard errors.
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As the actions of ASOs and SSOs are both influenced by
Retro-1, it seems likely that a portion of both types of
oligomers are accumulating in the key compartment(s)
that is affected by the drug. However, the intracellular
trafficking of oligonucleotides is likely to be complex
and influenced by characteristics such as oligomer size
and charge. For example, we do not know whether
our current findings would also extend to oligomers that
have uncharged backbones such as morpholino oligo-
nucleotides or peptide nucleic acids (6,62–64). Similarly,
our observation that Retro-1 failed to enhance the action
of a siRNA may be due to the use of alternative trafficking
pathways by single- and double-stranded oligonucleotides,
or may more simply be explained by the very low cellular
uptake of conventional siRNAs and their relative instabil-
ity in the cellular milieu. Thus, it would be interesting to
determine whether the newly described phosphorothioate
modified single-stranded siRNAs that chemically resemble
ASOs are affected by Retro-1 (65).

An important issue yet to be explored is whether Retro-1
affects ligand-conjugated oligonucleotides that can target
specific cell surface receptors (66). There has been great
progress recently in using peptides, aptamers and small
molecule conjugates to enhance both the specificity and
the magnitude of oligonucleotide delivery (21,24,39,66,67).
Our previous work has suggested that ligand conjugated
SSOs and unconjugated SSOs follow different uptake
pathways (36). Thus, it is unclear whether various types of
oligonucleotide conjugates will traffic through the
subcellular compartments affected by Retro-1. If that were
the case, however, it would set up a potentially powerful
synergy, with ligand conjugation providing specificity and
enhanced cellular uptake, and Retro-1 or similar small
molecule adjuncts providing improved release from non-
productive endomembrane compartments to the cytosol.

Our in vivo studies indicate that Retro-1 can modulate
oligonucleotide effects in tumours. The increased
luciferase induction in xenografts manifested by treatment
with Retro-1 plus the SSO was modest. There was a high
background luminescence in this situation, and the en-
hancement observed was about twice the level of the
buffer-treated controls. However, previous studies were
unable to attain any response whatsoever to SSOs in xeno-
grafts unless strong cationic transfection agents were used
(46,68). Thus, the ability of Retro-1 to evoke a response in
this challenging context is interesting. Our in vivo studies
also indicated that the toxicity of administering Retro-1
plus oligonucleotide was minimal with a moderate eleva-
tion of a liver enzyme being the only significant difference
from the controls. The effects of Retro-1 in vivo observed
thus far are probably too limited to be of therapeutic sig-
nificance. However, they suggest the merit of seeking
novel compounds with greater potency and efficacy.

Other studies have identified small molecules that influ-
ence the action of oligonucleotides. For example, recent
reports describe compounds that specifically affect liver
miR-122 (69) or that inhibit siRNA loading on to the
RISC complex (70). Another approach that is being
pursued is the design of non-coding RNAs that can be
regulated by small molecules (71). A recent study in
muscle cells and tissues showed that Dantrolene, an

antagonist of the sarcoplasmic reticulum calcium
channel, could directly enhance SSO-mediated splicing,
presumably by affecting nuclear calcium levels (72).
However, to our knowledge, the current report is the
first to describe the enhancement of oligonucleotide
action through modulation of intracellular trafficking or
processing by a non-lysosomotropic effect.
In summary, Retro-1 substantially enhanced the

pharmacologic actions of certain types of commonly
used oligonucleotides via a novel mechanism involving
release from selected endomembrane stores and redistri-
bution to sites of action in the nucleus. Our observations
provide an important proof of principle that non-toxic
small molecules can be used to enhance oligonucleotide
actions through highly selective modulation of intracellu-
lar processing. Because of its relatively low potency and
poor water solubility, Retro-1 itself may not be suitable
for use as a drug. However, it seems likely that new com-
pounds of greater potency could emerge either via high
throughput screening or by chemical optimization and
rational design. The development of such compounds
could have a transformative effect on the use of oligo-
nucleotides as therapeutic agents.

SUPPLEMENTARY DATA
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