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ABSTRACT 

 
SFR are a solution for the future of nuclear energy. The safety constraints brought by nowa-
days standards, especially about Sodium void reactivity effect, require core designs which 
are highly heterogeneous axially and rather flat. These features require an in depth analysis  
of spatial effects which involves appropriate methodologies. This paper presents a compari-
son of results obtained with first order perturbation, flux harmonics and coupled-core theo-
ries. This last one presents some advantages compared to the other ones for understanding 
the spatial effects of large SFR cores, and for propagating nuclear data uncertainties. 
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1. INTRODUCTION AND THE STUDIED GEOMETRY 

 
In nuclear reactors, the in-core power distribution continuously changes due to the control rod 
movement, the reactivity feedback effects and fuel burn-up. The modal expansion is a very conven-

ient method to characterize these changes. However, recent works show that hundreds of flux har-
monics may be needed to properly describe the spatial dependence [1]. Even if the harmonics may 

give valuable information on the reactor sensitivities, they are insufficient for quantitative purposes. 
Nevertheless, the EigenValue Separation (EVS) is a crucial parameter which strongly influences the 
responses of the model. The EVS appears naturally when deriving the first-order theory [2]. It is 

also an indicator of coupling effects in a core. To show this relation, the definition of K. Kobayashi 
[3] is chosen due to its simplicity and physical meaning. 

 
The studied case is a 1D slab model treated with the diffusion assumption. 1D geometry was chosen 
in a demonstration purpose, but the method may be applied with 3D-transport codes without any 

major development. Figure 1 presents the model studied, based on an inner core sub-assembly of 
the CFV (low void effect core) design [4]. This evolutionary core design combines various types of 

geometrical options, each of them favorable to the sodium void effect reduction like internal blanket 
zone, upper Na plenum, upper absorbing zone, small core height… 
 

 

 
 

Figure 1. 1D Slab Model representing a inner core sub-assembly of the CFV design. 

0 90 120 145 165 190 197,5 237,5 320

VEI FCAI FCAMC1_Inf C1_Sup VES PLN-Na PNS

(cm)

mailto:maxence.maillot.@cea.fr


 

 

 

 

During the irradiation, the fertile zones become fissile ones, due to the U-238 capture reaction and 
the Pu weight proportion in each zone changes. Several isotopic concentrations are used to match 

various operating conditions. This isotopic change directly affects the neutron properties of the sys-
tem, and therefore its sodium void effect. The sodium void worth is defined by the reactivity change 

between the sodium voided and nominal states. 
 
In order to check the validity domain of the first-order perturbation theory, we are both interested in 

total void effect, but also in the sodium density effect. That is why we consider three vo id intensities. 
The remaining sodium density is respectively 0%, 50% and 90%. In this work, three voiding sce-

narios are specified. The 1st one deals with the absorption component by voiding the fissile and fer-
tile regions, and is positive. In the 2nd one, we are interested in the leakage component (negative): 
all regions above the upper fuel zone are voided. The 3rd scenario is the combination of the two oth-

ers. 
 

Results from direct computations with modified cross-section depending on the sodium density are 
given in section 2. They are the reference, and some integral indicators are proposed to compare the 
voiding scenarios. Section 3 recalls the formalism of the standard perturbation theory based on flux 

harmonics expansion. Section 4 is devoted to the coupled core theory and its application to match 
any kind of perturbation. Finally, the performance of both approaches is discussed in the final sec-

tion, which also gives some possible applications of the new coupled core perturbation theory, es-
pecially for uncertainty analysis on the power shape distribution. 
 

 
 2. RESULTS FROM DIRECT COMPUTATIONS 

 
The Sodium void effects are characterized by a reactivity variation and a power distribution change. 
In order to compare the void worths, we use the concept of associate critical reactor. This concept 

consists in dividing all production cross-sections by the multiplication coefficient 0k , so that the 

nominal state becomes critical for all isotopic conditions. Then, to describe the flux changes, we 
chose an indicator based on the fission source vector. The fission sources are scalar information, 

integrated over the energy, and the directions (because emission of neutrons by fission is isotropic). 
For a given flux, this vector provides the number of neutrons emitted by fission in the reactor. The 
sources are then defined over fissile and fertile regions where fission may occur. We normalize this 

vector respect to equation (1). Figure 2 gives the shapes of the reference fission sources depending 
on the isotopic concentrations of the model. For fresh subassemblies, without Pu in the fertile re-

gions, the axial tilt is more significant than for spent sub-assemblies, which leads to higher void 
effects (see Table 1). 
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A perturbation in the Sodium density will change these fission sources. After normalization of this 
perturbed vector, we define the difference value between modified and nominal states. The integral 

(or algebraic sum) of this difference vector between two normalized vectors is null. But we can 
consider two parameters defined by equation (2): 



 

 

 
 

 
 

- the S  norm counts the number of fission chains which are changed in the perturbed case 

compared to the reference. It is an integral measure of the flux distortion due to the perturbation.  

- the 
NormS  normalized vector is the expression of the local changes in the reactor. It is local 

information about the power distribution change in the reactor. 
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Figure 2. Results of direct reference calculations: the reference normalized fission sources. Plenum 
is on the right side of all pictures, out of the printed region. BOL : Beginning Of Life ; MOL : Mid-
dle Of Life ; EOL : End Of Life. 

 

Table 1. Results of the direct computations (integral parameters). EVS: EigenValue Separation (3). 

 

 

Residual 

Fraction of 

Na (%) 

Voided Fuel Voided Plenum Total Void Effect 

  S    S    S  

BOL 0 1554 0.04259 -4452 0.16913 -3027 0.20304 

k0 = 1.09028 

EVS = 4.75 

50 687 0.02078 -1588 0.05701 -914 0.07514 

90 131 0.00414 -265 0.00939 -134 0.01308 

MOL 0 2021 0.01696 -2774 0.14261 -949 0.15210 

k0 =1.05730 

EVS = 4.44 

50 923 0.00829 -1002 0.05026 -102 0.05654 

90 178 0.00166 -168 0.00838 10 0.00982 

EOL 0 2287 0.01072 -1866 0.11190 210 0.11234 

k0 =1.03569 

EVS = 3.99  

50 1054 0.00501 -666 0.0400 361 0.04046 

90 204 0.00096 -111 0.00671 92 0.00688 
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Table 1 gives the results of direct computations (with modified cross-sections). It shows that for a 
small reactivity change, there can be a rather significant change of the power distribution (see MOL, 

50% Na void). The flux is reduced in some regions and increased in other ones with equivalent im-
portance, so that the reactivity of the system is almost unchanged. Sodium void effect is typical of 

such behavior due to the compensation between the positive absorption component and the negative 

leakage component. In table 1, we notice that the fuel region void leads to small S  values, 

compared to the plenum void perturbation. In other words, the absorption component is a spectral 

perturbation while the leakage component has higher spatial effect.  

 

The shapes of the normalized vectors NormS  were compared. It is remarkable that, for a given 

configuration, these vectors are almost identical for a small void perturbation and the full void one. 

Of course, the perturbed flux is different, due to the weight S  to be given on that normalized 

form. Finally, based on the results of direct calculations, it may be noticed that an “equivalent” per-
turbation has significantly different consequences on the system. It appears here that the EOL co n-
figuration is the less deformable core. The question here is: can we predict the response of the mod-

el in terms of reactivity variation and power distribution change? 
 

 
3. THE MODAL ANALYSIS APPROACH 

 

Modal analysis approach aims at expanding any perturbed flux over base reference functions (the 
flux harmonics). These functions are the eigen-modes of the neutron transport equation, where the 

eigenvalue k is added to balance production and disappearing terms. The transport equation has an 
adjoint formulation, and forward and adjoint harmonics share bi-orthogonality properties. 
First-order perturbation theory takes benefit from this characteristic, and provides both reactivity 

variation and expression for the expansion coefficient due to a given perturbation  FA  ,  of the 

leakage (and absorption) and production operators.   
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The EVS defined by equation (3) appears naturally in this theory. Equation (3) shows that the EVS 
can be physically interpreted as an indicator of the stability of the system. The highest will be the 
EVS, the highest will be the deformation of the flux for “a same amount of perturbation”, as seen in 

Table 1. This result is well known in the spatial effects studies: A. Sargeni shows the influence of 
the EVS on the power distribution sensitivity based on the first-order formulation [2]. Another work 

is G. Rimpault’s one, which links the power tilt change per unit of reactivity change when a control 
rod is introduced in an optimized RZ cylindrical model [5]. 
 

Thanks to (3), we are able to reconstruct any kind of perturbed flux, provided that many harmonics 
are known. If too few eigen-functions are used in the expansion, oscillations may arise (even with 



 

 

 
 

 
 

13 harmonics used, see Figure 3). To reduce these oscillations inherent to the method, the only 
way is to increase the number of available flux harmonics. But the traditional technique based on 

the power iteration method and a filtering technique is not efficient to compute a large number of 
harmonics.  Moreover, to study the leakage component of the sodium void effect in the CFV con-

cept, axial harmonics are required. They usually are higher-order than the radial ones, which com-
plicates considerably their computation. In practice, getting by the filtering technique several axial 
harmonics is impracticable in 3D full model. Some other tools might do better, such as the one 

based on coupled-core theory presented here after. 
 

 
4. THEORETICAL BACKGROUND OF THE COUPLED-CORE THEORY 

 

4.1. The Formalism of K. Kobayashi 

 

Here are recalled the main results of the theory derived by K. Kobayashi [3]. For a given partition 

of the fissile regions,  


N

m mVV
1

, the multi-point equation (4) links the partial sources together. 

It uses region-wise importance functions ),,( 
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ErGm . In (5), )(rm


  is the characteristic function 

of volume mV . These importance functions defined everywhere in the reactor count the number of 

neutrons produced at first generation of fission in a particular region m due to a primary neutron 

born at a given position. mnk expresses the number of neutrons produced in the region mV due to a 

fission neutron produced in a region nV .  
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We must notice that in opposition to the flux harmonics, the computation of mG  does not present 

any convergence difficulty. Moreover, the medium is assumed not multiplicative, so that no outer 

iteration is required (provided that down-scattering and up-scattering are done in specific loops). 
Finally, all regions may be solved individually on parallel processors. 

 
4.2. Relation with the Eigenvalues of the Flux Harmonics  
 

Equation (4) allows tracking the population of neutrons produced by fission generation after gener-
ation. Between two successive fission generations, if the shape of the fission source is unchanged, 

but its amplitude is multiplied by the scalar ik , it means that an eigenfunction is reached. Finally, 

looking for the eigenvalues of the matrix K is similar than solving the neutron transport eigenvalue 
problem. This technique allows the computation of N harmonics (where N is the size of the fissile 
partition). An example is provided in [6].  



 

 

 

 

The fundamental mode is used to weight the coefficient mnk  in (5). That is why 0k  is always an 

eigenvalue of the coupling matrix K. The high-order eigenvalues may be quite different than with 
the power iteration method (filtering technique), because of this weighting function. Nevertheless, 

for accurate partitions (small regions), a relatively good estimation of the first harmonic is provided. 
When the coupling matrix is defined on the same spatial mesh as those used for the power iteration 

method, the coefficient mnk  is no longer dependent on the fundamental mode. In this case, K is 

named the fission matrix. The eigenvalues are then equal to the ones of the traditional filtering 
technique. Finally, coupling coefficients give similar information than the EVS. 

 

 

5. PERTURBATION ANALYSIS TROUGH THE COUPLING THEORY 

 

5.1. How it Helps for Perturbation Analysis 

 

A perturbation modifies the fission source: specific fission chains are added (reactivity insertion) or 
removed (reactivity loss) compared to the reference case. Equation (6) gives the definition of modi-

fied fission chains at “first generation” (vector 0P


). It can be seen that this vector may be obtained 

using the traditional tools of neutronic codes systems such as ERANOS [7], with the first-order 
perturbation theory assumption. These fission chains will then spread in the system until equilibr i-

um. The scalar value 0w  is the norm of the final vector. The sequence of vectors )( nU


 converges 

to 0. 
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This initial vector 0P


 and its descendants change the reference source. We assume that the pertur-

bation fulfills the following criteria. Firstly, the perturbation has only effect on the projection of the 

fission source over the fundamental mode. Secondly, the perturbation has no effect on the coupling 

matrix which is unchanged. Under these assumptions, can we find a coupled  PertPert Sk


;  in such 

a way that from one generation to the next one : PertPertPert SkS


 ? 

 

We propose the relation : 
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The demonstration of this expression (under the previous assumptions) is provided in appendix A. It 



 

 

 
 

 
 

proves also that the sum converges provided that condition (8) is satisfied. The perturbed multipli-
cation coefficient must stay higher than the first harmonic of the reference system. Otherwise, the 

power iteration method, which converges towards the highest eigenvalue, could fail. 
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5.2. Results provided by the coupled-core theory 

 

Two fissile partitions are studied. The first one has 13 regions, corresponding to the axial mesh used 

for burnup computations in the 3D geometry. In this case, the coupling matrix is a 13x13 square 

matrix, and 13 importance functions mG are computed and saved (to define the initial vector 0P


).   

The second one is identical to the spatial mesh used in the power iteration method. It means that we 

are here able to compute all harmonics of the discretized model. 
 

Table 2. Results of the coupled core theory for the BOL configuration (45 coupling regions). 

 
 Voided Fuel Voided Plenum 

Residual Na (%) 0 50 90 0 50 90 

  Coupled-Core 1365 653 130 -2849 -1310 -256 

Bias (pcm) -189 -34 -1 -1603 -278 -9 

S  Coupled-Core 0.03931 0.02008 0.00411 0.10930 0.04815 0.00911 

Bias (%) -7.7 -3.4 -0.7 -35.4 -14.9 -3.0 

 

 
 

Figure 3. Results for the coupled-core approach for the NormS  vector. BOL configuration, total 

void perturbation. For the 13x13 coupling matrix, the information is only partial but matches well 

the reference computation, without oscillation phenomena observed for the expansion method. 
 

The results for the reactivity variations   and the flux distortion measures S  are very similar 

to those obtained by the first-order approach (Table 2). It can be demonstrated that the reactivity 
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variation inferred from equation (7) equals the first-order perturbation one, provided that the fissile 
partition is identical to the spatial mesh used to compute the fundamental mode. For large perturba-

tion, affecting significantly the power shape (leakage component for example), the first-order theory 

is insufficient for quantitative purposes, as shown in Table 2. However, the shape of the 
NormS  

vector, representing the power redistribution in the reactor, is well reproduced (see figure 3). 

 
5.3. How it helps for Uncertainties Analysis 

 

Since the coupled-core theory allows propagating a given perturbation through the fission genera-
tions, we use this approach for uncertainty analysis. We call a parameter p the variation of a given 

cross-section for a given isotope on a given energetic group. Thanks to (6), an initial 0P


is defined. 

Then the perturbed normalized fission source are computed with (7), which allows the computation 
of power shape sensitivities for this given parameter p. Then we use the usual tools to propagate the 
nuclear data uncertainties on the power shape distribution [8]. Figure 4 gives the relative uncertain-

ties (in %) for the ratio of the local fission rate normalized to the full fission rate. 
 

For the BOL case, the major component to the total uncertainty is the inelastic U-238 reaction, 
which may lead to a tilt in the power shape. Moreover, the BOL configuration is “more uncertain” 
that the EOL one, as expected respect to the relative EVS. This profile of uncertainty was verified 

using the usual generalized perturbation theory. Results are obtained using the COMAC V1 vari-
ance covariance matrix [9]. Uncertainties presented here are those of the indirect term of the gener-

alized perturbation theory. 
  
 

 
 

Figure 4. Profiles of total relative uncertainty (in %) due to nuclear data for the normalized fission 
source distribution, and major component for the BOL configuration 
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6. CONCLUSION: COMMENTS AND PERSPECTIVES 

 

In the paper, we chose two parameters to study a given perturbation. Firstly, the reactivity varia-

tion may be computed using the fundamental mode (forward and adjoint flux) and the first-order 
perturbation theory. Bias may arise for large perturbations, or at least for the ones changing signifi-
cantly the shape of the flux. High-order formulations could do better, but is out the scope of this 

document. We are more interested in quantifying the power distribution deformability. Are we 
able to predict any change of the flux shape based on the variations of the cross-sections?  

 
In that purpose, the limits of the standard perturbation theory based on the expansion method on the 
flux harmonics to describe properly flux shapes changes have been illustrated. The eigen-values 

may give valuable qualitative information on the reactor stability: a high EVS comes along with 
high sensitivities. But many flux harmonics are required to match a perturbed power distribution. 

Oscillations inherent to the expansion approach occur if too few eigen-functions are known and 
available for the expansion. However, the traditional power iteration method is inefficient to co m-
pute a large number of harmonics.  

 
Another approach based on the coupled-core theory explains the discrepancies between the per-

turbed fission source and the reference one, by the descendants of specific fission chains. This 
method presents many advantages for the computation point of view, since most of the operations 
may be parallelized, and done simultaneously. Moreover, no convergence difficulty is to be treated. 

The performances of this method are similar to those obtained by the first-order theory for the reac-
tivity variation. Significant biases arise for large perturbations out of the validity domain of the 

first-order formulation. Nevertheless, the deformability of the power distribution is well-reproduced. 
Moreover, this information is identical for small sodium densities effect, and for full void perturba-
tion. It opens the door to experimental validation. Another application of this theory, in the 

first-order domain, is about the propagation of nuclear data uncertainties on the power distribution. 
For a tiny perturbation in nuclear cross-sections, we are able to provide the reactivity variations 

(first-order formulation) and the flux changes (on a given fissile partition), which allows uncertain-
ties analysis of the power shape distribution. 
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APPENDIX A. DEMONSTRATION OF THE PERTURBED SOURCE EXPRESSION 

 
We remember in equations the notations. The application of the perturbed coupling matrix from one 

generation to the next one respects the following rules: 
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To prove that this summation converges, we use the diagonal form of the coupling matrix K. Using 

this form, and recalling that the highest eigenvalue equals to 0k  and that the series )( nU


 converge 

towards 0, the demonstration is straight forward. 


