

Corrosion behaviour of 9-12%Cr ferritic steels and 18-25%Cr austenitic steels in supercritical CO_2

F. Rouillard, T. Furukawa, B. Duprey, G. Moine, J. C. Ruiz, P. Venditti

► To cite this version:

F. Rouillard, T. Furukawa, B. Duprey, G. Moine, J. C. Ruiz, et al.. Corrosion behaviour of 9-12%Cr ferritic steels and 18-25%Cr austenitic steels in supercritical CO_2. TMS 2016, Feb 2016, Nashville, United States. cea-02431803

HAL Id: cea-02431803 https://cea.hal.science/cea-02431803v1

Submitted on 8 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

CORROSION BEHAVIOUR OF 9-12%CR AND 17-22%CR STEELS IN S-CO₂

F. ROUILLARD (CEA), T. FURUKAWA (JAEA)

B. DUPREY, G. MOINE CEA/DEN/DANS/DPC/SCCME/LECNA (SACLAY)

<u>JC RUIZ, P. VENDITTI</u>

CEA/DEN/ DTCD/SPDE/LPSD (MARCOULE)

www.cea.fr

DE LA RECHERCHE À L'INDUSTRI

Cea

CONTEXT : S-CO₂ BRAYTON CYCLE COUPLED TO SFR

Advantages of S-CO₂ Brayton cycle :

- •Avoids the Sodium-Water reaction
- •Increases the compactness of the cycle

•Increases the cycle efficiency

International collaboration on S-CO₂ cycle coupled to Sodium Fast Reactor: France, USA, South Korea, Japan

T : 400 - 550 °C P : 80 - 250 bar

CORROSION IN CO₂ ? FEEDBACKS FROM FORMER CO₂-COOLED NUCLEAR REACTORS (60-80'S)

T^{max}: strongly dependent on gas composition, steel composition, surface finish, ...

[D.R. Holmes, R.B. Hill, and L.M. Wyatt, Corrosion of steels in CO₂, British Nuclear Energy Society, Reading University (1974)]

9-12%Cr Ferritic/Martensitic steels

17-22%Cr Austenitic steels

9-12% Cr Ferritic/Martensitic steels : Physical Properties and Cost
 17-22% Cr Austenitic steels : Intrinsic Corrosion Behaviour

Objectives : Technical exchanges for comprehensive understanding of corrosion mechanisms in S-CO₂

In both labs :

- more than **350** corroded samples
- 11 steel grades (F/M and austenitic steels)
- 5 temperatures from 400 °C to 600 °C
- 4 CO₂ pressures : from 0.1 MPa to 25 MPa
- Up to 8000 h of exposure time
- Use of various experimental facilities (loop, autoclave, onethrough furnace) : study of their impact ...

STUDIED MATERIALS

	Weigth %	%Cr	%Ni	%C	%Si	Other	Feedback
F-M steels	T91 (CEA)	9	0.2	0.1	0.3	Mo : 1%	SG in Fossil Power Plants
	VM12 (CEA)	11	0.4	0.1	0.3	W : 2% Co : 2%	New generation of 9-12Cr steel
	P122 (JAEA)	11	0.4	0.1	0.3	W : 2% Cu : 1%	New generation of 9-12Cr steel
ustenitic steels							
	316L (CEA)	17	11	0.02	0.6	Mo : 2%	« classic » austenitic steel
	316FR (JAEA)	17	11	0.01	0.6	Mo : 2% N : 0.1%	 nuclear » grade austenitic steel
	253MA (CEA)	21	11	0.1	1.6	Ce: 0.04%	Steel optimized for HT corrosion
く							

DE LA RECHERCHE À L'INDUSTRI

CORROSION FACILITIES

High pressure S-CO₂

Atmospheric pressure CO₂

Metallic coupons (25*15*1 mm)

« Industrial » CO_2 purity in JAEA and CEA tests (99,995%) :

- H₂O < 200 vpm
- $O_2^- < 50 \text{ vpm}$

CORROSION OF 9-12CR F/M STEELS

TODAY : WHAT WE THINK TO KNOW WITH A GOOD CONFIDENCE F. ROUILLARD AND T. FURUKAWA, CORROSION SCIENCE JAN 2016

□The « short-term » corrosion kinetics of usual 9-12%Cr steels
✓ Oxidation rate = f(T, P)

✓ Carburisation rate = f(T, P)

Proposed corrosion model : « Available Space Model »

Influence of surface finish
 Influence of O₂ impurities in CO₂

PhD thesis of S. Bouhieda (2009-2012)

CORROSION KINETICS OF 9-12CR JAEA STEELS

Same corrosion kinetics for 9 and 12Cr steel (JAEA)

CORROSION KINETICS OF 9-12CR JAEA STEELS

□ What does happen to the samples ?

Mass gain = Oxidation AND Carburisation

What are the proportion of the mass gain induced by :

- Oxidation : Mechanism ? Driving Force ?
- Carbon transfer : Mechanism Driving Force ?

Oxidation mechanism of 9-12Cr steels in CO₂

2016 February 14-18, Nashville | PAGE 13

OXIDATION KINETICS

Parabolic oxidation rate = diffusion controlled

DE LA RECHERCHE À L'INDUSTR

Cea

OXIDE FEATURES

•**Duplex** oxide layer : Fe oxides (Fe₃O₄ + Fe₂O₃) and Fe/Cr oxide (Fe_{2.3}Cr_{0.7}O₄)

•The oxide/oxide interface = **original** metallic surface (gold markers)

•[Cr]_{spinel}(mol/cm³) ~ [Cr]_{substrate}(mol/cm³) Chromium does not diffuse and is oxidized in the substrate.

•<u>Carbon</u> enrichment at the O/M interface (GDOES analysis)

• $Fe_{2.3}Cr_{0.7}O_4$ grows at the metal/oxide interface and Fe_3O_4 at the oxide/gas interface (*Taylor et al. OxMet. 1980 : Tracers experiment*).

•Parabolic growth rate

OXIDATION F. ROUILLARD ET AL. OXIDATION OF METALS 77 N°1-2 (2012)

« Available Space Model » or « void-induced oxide growth »

- 1. Outwards diffusion of Fe cations
- ✓ Injection of vacancies at the O/M interface
- ✓ Formation of voids
- 2. CO₂ diffusion to the O/M interface

through high diffusion paths (nanochannels) in the oxide layer *Atkinson et al. Rev. Mod. Phys. 57 (1985)*

3. Filling of the voids by new oxide formation

DE LA RECHERCHE À L'INDUSTR

Cea

OXIDE KINETICS MODELING AND SIMULATION

DE LA RECHERCHE À L'INDUSTRII

OXIDE GROWTH MODELING AND SIMULATION

[1] : Topfer et al. Solid State Ionics 81 (1995)

DE LA RECHERCHE À L'INDUSTRI

EFFECT OF P_{CO2} **ON OXIDATION**

No detectable effect of P_{CO2} between 10 and 20 MPa

With higher P_{CO2} difference : 0.1 MPa and 25 MPa ?

2016 February 14-18, Nashville | PAGE 19

EFFECT OF P_{CO2} ON OXIDATION

The oxidation rate does not depend on P_{CO2} : the external driving force for oxide growth P_{O2}^{ext} is « buffered » by the presence of hematite

DE LA RECHERCHE À L'INDUSTR

FORMATION OF FE₂O₃ ?

The formation of Fe_2O_3 is controlled by the P_{CO2}/P_{CO} ratio in the gas phase :

$$CO_2(g) = CO(g) + 0.5O_2(g)$$

CO(g) in the gas phase is mainly formed from oxidation of the metallic substrate :

$$xM + yCO_2(g) = M_xO_y + yCO(g)$$

As a consequence, the driving force for oxidation P_{CO2}/P_{CO} is driven by any CO accumulation encoutered along the flow :

- Depends on the hydrodynamics encoutered in the channel or the tube
- Oxidation kinetics in static autoclave < Oxidation kinetics in tube furnace with gas flow</p>

Carburisation mechanism of 9-12Cr steels in CO₂

2016 February 14-18, Nashville | PAGE 22

What is the carburisation kinetics ? Is there any effect of P_{CO2} ?

Could we model the carburisation propagation into the steel ?

Why does the steel carburise ?

What are the driving force and the mechanism for carbon transfer ?

CARBURISATION MICROSTRUCTURE

CARBURISED ZONE :

On martensitic laths and old primary austenitic GB

9Cr CEA steel, 0.1 MPa, 550 °C, 1000 h

DE LA RECHERCHE À L'INDUSTRIE

CARBON PROFILE BY GDOES

9Cr CEA steel, 0.1 MPa, 550 °C, 1000 h

Strong carbon enrichment below the O/M interface
 No carbon in magnetite. Only small content in the spinel oxide layer

DE LA RECHERCHE À L'INDUSTRIE

NON STEADY STATE CARBURISATION

Carburisation depth kinetics = Parabolic …

I... even if increase of %C at the oxide/metal interface with time ?

□The carburisation depth kinetics is :

- Iower than expected by simple C diffusion in ferrite
- higher than expected by C diffusion in ferrite and reaction with all Cr atoms to form carbides (according to Wagner theory)

Similar results than observed by Young et al.

Non-steady state carburisation of martensitic 9–12%Cr steels in CO₂ rich gases at 550 °C, Young et al. Corrosion Science 88 (2014) Normal diffusion of solute carbon within the metal phase, coupled with rapid carbide precipitation and equilibrium partitioning of carbon between the metal and precipitate phases (Thermodynamic calculations)

□ Slow rate of carbon transfer :

$$v_c = \alpha(C^{eq} - C^s)$$

With *C^{eq}* the concentration of carbon in equilibrium with <u>the</u> <u>carbon activity of the gas phase</u>

There are still questions about the carbon transfer mechanism and its rate expression

CARBON TRANSFER

We believed that the carbon transfer is **<u>intrinsically</u>** induced by the way the steel oxidizes = the « Available Space Model » allows carbon reaching the O/M interface easily

DE LA RECHERCHE À L'INDUSTRI

CARBON TRANSFER

INFLUENCE OF P_{CO2} ON CARBON TRANSFER

□ No « detectable » influence of P_{CO2} between 10 and 20 MPa but higher carbon transfer rate detectable when increasing from 0.1 to 25 MPa

INFLUENCE OF P_{CO2} ON CARBON TRANSFER

INFLUENCE OF P_{CO2} ON CARBON TRANSFER

INFLUENCE OF CARBURISATION ON THE INNER OXIDE MICROSTRUCTURE

T91, **0.1 MPa**, 550 °C, 350 h

T91, **25 MPa**, 550 °C, 350 h

At high P_{CO2} : Carbide density is higher below the inner spinel oxide scale The void density in the inner spinel oxide scale is higher

Voids are formed around former carbide precipitates while oxide grows inwards ?

Inner oxide porosity may depend on carbide density

CAN « BREAKAWAY » OXIDATION BE POSSIBLE ON USUAL 9-12%CR STEELS ?

*D.R. Holmes, R.B. Hill, and L.M. Wyatt, Corrosion of steels in CO₂, British Nuclear Energy Society, Reading University (1974) What is the exact mechanism ? Influenced by the carburisation state of the substrate ?

22 INFLUENCE OF CO₂ PURITY ON THE SURFACE OXIDE COMPOSITION

« Industrial » CO_2 purity (with $O_2 \sim 100 \ \mu bar$)

Fast growing iron rich duplex oxide scale

Slow growing chromium rich oxide scale

High CO₂ purity (with O₂ ~ 1 μ bar)

%Cr oxide ~ 9 at%

%Cr oxide ~ 20 at%

Still protective after 5000 h

Conclusions of PhD thesis (S. Bouhieda 2012) :

- O₂ impurities (µbar) react first during the thermal ramp
- Its level in CO₂ impacts on the surface oxide composition (Cr enrichment)
- The surface finish (mainly roughness?) impacts on the critical O₂ partial pressure

CORROSION MECHANISM OF 17-21CR AUSTENITIC STEELS

MASS GAIN KINETICS OF 316 AUSTENITIC STEEL

Very low mass gain : mass gain (316FR) < 100*mass gain (9-12Cr)
 No detectable effect of total pressure
 Larger mass gain is detectable after 5000 h at T = 600°C

DE LA RECHERCHE À L'INDUSTRIE

OXIDE SCALE

	316L – 0.1 MPa – 550°C – 1000 h (CEA < 200 nm		
<u>COMP 20.0kV WD10mm</u> 10µm 316FR, 600 °C, 20 MPa, 4000 h	Formation of <u>thin « protective » Cr rich oxide</u> <u>scale</u> and thick <u>nodules</u> of duplex oxide scale (as on 9-12Cr steel but higher %Cr)		
	The « short-term » resistance of Cr rich austenitic steels is evaluated by its ability to form thin Cr rich oxide scale		
8 µm thick 316L, 550 °C, 25 MPa, 1000 h	CEA		

DE LA RECHERCHE À L'INDUSTR

DETAILS ON THE THIN CR RICH OXIDE SCALE

INFLUENCE OF STEEL GRADE ON CARBON TRANSFER

At%	%Cr	%Ni	Other
316L	19%	10%	/
253MA	22%	10%	Si : 3%, Ce

C content / O content ratio for two grades at any time

Cea INFLUENCE OF STEEL GRADE ON CARBON TRANSFER

| PAGE 42

CARBURIZATION PROCESS ?

Carburisation degree of austenitic steels :

Depends on the catalytic properties of the surface for CO dissociation ? ✓ increases with Cr content [Anghel et al. Applied Surface Science 233 (2004)]

 \checkmark with other elements ?

Influence on long-term corrosion behaviour ?

DE LA RECHERCHE À L'INDUSTRI

9Cr F/M Steels

Thick duplex oxide scale [Fe-oxides + Fe/Cr oxide] Fast parabolic growth rate Driving force = P₀₂^{eq} Fe₃O₄/Fe₂O₃

Strong Carburisation rate

[via Boudouard reaction ?] Carbon transfer rate increases with P_{CO2}

Is Breakaway Oxidation possible ?? One should look for it ...

17-25Cr Austenitic Steels

>Thin oxide scale

[Cr rich oxide] →Slow growth rate [exact mechanism to be determined]

Low Carburisation rate

[via CO dissociation ?] Increases with %at Cr ? Impact on long-term exposure ?

THANK YOU FOR YOUR ATTENTION