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Radiation Patterns Control the Near‐Source Ground‐Motion Saturation Effect 

 

Abstract 

We investigate the feasibility of near‐fault ground‐motion predictions based on empirical Green’s 
functions (EGFs) in low‐to‐moderate seismicity areas (i.e., with few available EGFs), and we propose 
some adjustments to enhance the accuracy of this method. We conduct extended fault ground‐
motion simulations for a large set of azimuths, based on a kinematic model description according to 
the k−2 method combined with the use of numerical Green’s functions. We focus on saturation of the 
ground‐motion peak values observed in near‐field data for moderate‐to‐large earthquakes, and we 
seek to identify the physical mechanisms behind this phenomenon. Based on the simulation 
performed here for a specific magnitude and focal mechanism, we show that the radiation pattern 
has a major influence on the near‐source ground‐motion saturation effect, and that the saturation 
effect can be seen more strongly for some azimuths compared to others, due to the orientation of 
the source. We also show that the depth of the source has a role, as it defines the radiation pattern. 
Finally, we show that unlike previously thought, geometric and anelastic attenuation adjustments are 
weak, as are the time‐shift adjustments due travel‐time differences from the different parts of the 
fault, and these do not account for the near‐fault saturation effect. 

 

Introduction 

In moderate seismicity regions, seismic hazard assessment relies on a small amount of available data. 
In these regions, such as the metropolitan French territory, records of moderate to large earthquakes 
often do not exist, let alone near‐fields recordings of such events. Ground motion estimation is then 
performed through the use of Ground Motion Prediction Equations (GMPEs) established from data 
recorded in other regions or numerical simulations. 

One fundamental feature of moderate to large earthquakes is the finite fault dimensions which 
induces a saturation of the ground motion peak values in the near field (e.g. Yenier & Atkinson, 
2014). Using a pure point‐source model, ground motion amplitudes continue to increase as the 
recording station is closer to the fault. Conversely, real observations and finite‐fault ground motion 
modeling show that as one gets sufficiently close to the source, the observed ground motion 
amplitude saturates (it stops growing). This effect especially depends on the fault size, and is then 
magnitude dependent: the saturation extends to larger distances with increasing magnitude. 

Thanks to the increasing number of strong motion observations and the improving quality of data 
and metadata, this phenomenon is now accounted for in GMPEs through the functional forms used 
for regression (see Fukushima et al. (2003) and Zhao et al., (2006) for example). It can also be mimic 
in point source simulations through the use of an effective distance (Atkinson & Silva, 2000; Boore, 
2015). The effective distance represents an estimation of the average distance between the station 
and all fault points, where fault dimensions are estimated empirically (Yenier & Atkinson, 2014; 
Boore & Thompson, 2015). 
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However, very few studies have attempted to identify the physical mechanisms behind the 
saturation effect. It is however the major influence on the ground motion peak values near the 
source (up to 25 km for a M 5.0 event, and up to 35 km for a M 6.0 event, see Dujardin et al., 2015). 
Rogers & Perkins (1996) highlight the role of isochrones (i.e. loci on the rupture area for which the 
radiated energy arrives at a given station at the same time), whose length increases with fault size, 
both on magnitude dependence of the ground motion decay and the finite fault saturation effect. 
Anderson (2000) highlights the role of constructive interferences between the different parts of the 
rupture area. These interferences increase as the distance increases, partly because of the decrease 
of arrival time’s differences between the different parts of the fault. Both of these assumptions 
support the idea that the closest portions of the rupture of large earthquakes dominate the motions 
recorded close to the fault. As such, the RRUP (used in this study) and RJB definitions of the source‐to‐
site distance are a priori more adapted for extended fault at short distance than distance definitions 
based on a point‐source model such as REPI and RHYP. RJB and RRUP represent the closest distance 
between the site and the projection of the rupture area, and between the site and the rupture area, 
respectively; REPI and RHYP represent the distance between the site and the projection of the 
nucleation point and between the site and the nucleation point respectively. For example, the Boore 
et al. (2014) GMPE uses the RJB definition, but this is not the case in most of the commonly used 
GMPEs. Thus, the choice of a suitable distance definition is crucial in the GMPEs implementation 
because it controls the strong motions predictions at short distances (Sherbaum et al., 2004). 

When the use of GMPEs is not possible to perform seismic hazard analyses (e.g. when ground motion 
time series are required or for site specific studies), simulations techniques must be deployed. One 
relevant simulation approach is the summation of small magnitude events, used as empirical Green 
functions (EGF) (Hartzell, 1978), which implicitly accounts for the complexity of propagation and site 
effects in a broad frequency range (e.g. Causse et al., 2009; Dujardin et al., 2016). In low to moderate 
seismicity areas, this approach remains however difficult to deploy for near‐fault ground motion 
predictions because of the limited number of events that can be used as EGF. Several selection 
criteria further limit the number of available small events (limited range of magnitude, position, focal 
mechanism, see Dujardin et al. 2016 for details). When simulations are performed with a limited 
number of EGFs and in near‐source area, the distances between the different parts of the fault and 
the target station strongly vary. Some EGF adjustments are then necessary to properly account for 
directivity effects, geometrical spreading and variations of the radiation pattern, among other 
effects.  

The objective of this study is to investigate the feasibility of near‐fault EGF‐based ground motion 
predictions in low‐to‐moderate seismicity areas (that is, with few available EGFs) and propose some 
adjustments to enhance the method accuracy. In particular, we investigate the conditions under 
which the saturation effect is properly modeled. Our analysis is conducted using numerical ground 
motion simulations based on finite‐fault source models. The source is described according to the k‐2 
method (Bernard et al., 1996; Causse et al., 2009). The method enables to derive static slip 
distributions, which allow generating a variable set of source time functions that respect the ω‐2 
model (Aki, 1967; Brune, 1970). The Green’s functions are numerically computed using the wave 
number method, assuming a 1D‐layered visco‐elastic medium (Bouchon, 1981; Coutant, 1989). 
Green’s functions can then be computed for any pair of fault point and surface receiver of the 
assumed 1D medium, so as to analyze the ground motion uncertainty induced by a spatially sparse 
set of Green’s functions. 
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The simulations are first performed for an ideal case (referenced later as the “ideal case”), in which 
45 numerical Green’s functions distributed over the entire rupture area are used. This “ideal case” is 
then degraded, so as to mimic a sparser set of available Greens functions and investigate the 
influence of various effects (geometrical spreading, anelastic attenuation, variation of the radiation 
pattern) on the saturation effects. The simulated ground motion peaks values are also compared 
with a point‐source stochastic simulations, which account for the finite fault saturation effect 
through the use of a finite fault factor (FFF) described in Boore & Thompson (2015). Finally additional 
simulations are carried out to study the impact of the depth of the considered set of Green’s 
functions.  

 

I Method (K2) 

I.1. Static slip distribution 

 This code has been developed to perform ground motion simulations of a hypothetical future 
event. In such as case, there is no available recording and the physical characteristics of the source 
are unknown, except the seismic moment M0 and the focal mechanism which are postulated. The 
rupture area dimensions are then calculated automatically from the stress drop value and M0. The 
stress drop is chosen to be a free entry parameter, to be constrained by the user, for several reasons. 
First, although the stress drop has been considered as constant since the fundamental work of Aki 
(1967), it may vary from one region to another (Chouet et al., 1978). Secondly, the variability of the 
stress drop values is significant with variations generally ranging between 0.1 and 100 MPa (Allmann 
& Shearer, 2009). Moreover, this similar hypothesis is now questioned and it is suggested that the 
constant stress drop condition is not appropriate for a large scale of magnitude (Beeler et al., 2003, 
Kanamori & Rivera, 2004, Drouet et al., 2011). 

The dimensions of the rupture area are derived as follow: from the stress drop (Δσ), we derive the 
corner frequency (fc) following Boore (2003): 

𝑓𝑓𝑓𝑓 = �16
7
𝛥𝛥𝛥𝛥
𝑀𝑀0
�
1/3

𝑘𝑘 𝛽𝛽𝑆𝑆      (1) 

 

with  𝛽𝛽𝑆𝑆 the S wave (m/s) velocity and 𝑀𝑀0 the seismic moment (Nm) and the stress drop is in Pa. 

This allows deriving the rupture duration (TRUP), according to the following approximation (Hanks, 
1979; Hanks & McGuire, 1981): 

𝑓𝑓𝐶𝐶 = 1
𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅

        (2) 

And then, we can estimate the dimensions of the rupture area thanks to the expression: 

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 = √𝐿𝐿2+𝑊𝑊2

𝑉𝑉𝑅𝑅
        (3) 

where VR represents the average rupture velocity and L and W are the length and the width of the 
fault respectively. Thus only the ratio between L and W is necessary to derive the dimensions of the 
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rupture area. The VR value depends on the velocity of the S waves (VS) in the vicinity of the fault, and 
commonly  varies between 0.7 and 0.85*Vs (Heaton, 1990). The S wave velocity in the vicinity of the 
fault is also used to derive the differences in travel time between the different parts of the rupture 
area to a station. Both VS and the ratio between VS and VR are parameters to be constrained by the 
user. 

 The last parameter to be constrained is purely numerical. It is the spatial sampling of the slip 
distribution on the rupture area (i.e. the size of each subfault). Indeed, the k-2 theory allows to 
constrain the spectrum to simulate only up to the Nyquist wavenumber (kNY). This one depends on 
the sampling rate in the spatial domain (kech) of the rupture area, or on the size of each subfault 
(SFdim): 

𝑘𝑘𝑁𝑁𝑁𝑁 = 𝑘𝑘𝑒𝑒𝑒𝑒ℎ
2

= 1
2.𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑

      (4) 

Beyond this limit, we observe the phenomenon of spatial aliasing. This has the consequence of 
limiting the spectrum in the frequency domain to the maximum frequency  𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  : 

𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =  𝑘𝑘𝑁𝑁𝑁𝑁 ∗ 𝑉𝑉𝑅𝑅       (5) 

Thus, by fixing the target frequency limit (fkmax), the fault size can be defined by combining equations 
5 and 6 : 

𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑘𝑘 = 𝑉𝑉𝑅𝑅
2×𝑓𝑓𝑘𝑘𝑑𝑑𝑘𝑘𝑘𝑘

      (6) 

 

Once the rupture area dimensions are defined, the low and the high frequency part of the 
slip distribution are constrained separately. The low frequency part is defined homogeneously over 
the whole rupture area at the value of the mean slip. This mean slip 𝐷𝐷� is derived from the relation 
between the seismic moment and the rupture area dimensions: 

𝑀𝑀0 = µ 𝑆𝑆 𝐷𝐷�        (7) 

where S=L*W is the rupture area, and µ = 𝜌𝜌 𝑉𝑉𝑆𝑆2. We use a density 𝜌𝜌=2.7g/cm3 and VS is the S wave 
velocity. 

 The high frequency complexity of the static slip distribution is defined for any wavenumber 

greater than ��1
𝐿𝐿
�
2

+ � 1
𝑊𝑊
�
2

. It is described according to Herrero & Bernard (1994) in order to have 

an asymptotic decay in k‐2 in the wavenumber domain, beyond the corner wavenumber kC. By 
analogy, the source model in 𝜔𝜔−2  (Brune, 1970) exhibit an ω−2 decay beyond the corner frequency 
𝑓𝑓𝑐𝑐. Since the fault plane is rectangular, the amplitude spectrum is defined similarly to Somerville et al. 
(1999) and Gallovic & Brokesova (2003) : 

𝐷𝐷𝑘𝑘�𝑘𝑘𝑘𝑘,𝑘𝑘𝑦𝑦� = 𝐷𝐷�𝐿𝐿𝑊𝑊

�1+�� 𝑘𝑘𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘
�
2
+�

𝑘𝑘𝑦𝑦
𝑘𝑘𝑒𝑒𝑦𝑦

�
2
�
2
     (8) 
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where 𝑘𝑘𝑘𝑘 and 𝑘𝑘𝑦𝑦 represent respectively the wavenumber in the strike and the dip directions 
(direction of the length and the width).  

The corner wavenumber associated to the strike and the dip direction are defined as  𝑘𝑘𝑓𝑓𝑘𝑘 =
𝑘𝑘𝐶𝐶

𝑊𝑊
𝐿𝐿

 and 𝑘𝑘𝑓𝑓𝑦𝑦 = 𝑘𝑘𝐶𝐶
𝐿𝐿
𝑊𝑊

 . In such a way that �𝑘𝑘𝑓𝑓𝑘𝑘 ∗ 𝑘𝑘𝑓𝑓𝑦𝑦 = 𝑘𝑘𝐶𝐶  , with 𝑘𝑘𝐶𝐶  the corner wavenumber which 

will define the corner frequency of the simulated event. 

By analogy with the relation which connects the corner frequency 𝑓𝑓𝐶𝐶  with the rupture duration 
𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 (equation 2), the corner wavenumber can be expressed as a function of the characteristic 
rupture dimension denoted  𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅  : 

𝑘𝑘𝐶𝐶 = 1
𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅

        (9) 

where 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑉𝑉𝑅𝑅. This allows us to derive the expression of 𝑘𝑘𝐶𝐶: 

𝑘𝑘𝐶𝐶 = 𝑓𝑓𝐶𝐶
𝑉𝑉𝑅𝑅

        (10) 

The high frequency spectrum phases are defined in a purely random way. Then the high frequency 
contributions of the slip are obtained by the inversion of the total high frequency spectrum 
(composed of the amplitude and the phase spectra). Finally the final static slip map is obtained by 
summing the high and the low frequencies parts. 

 

I.2. Rupture kinematics and absolute source time function 

The theoretical k‐2 source model of Bernard et al. (1996) allows to generate source time 
function which respect the empirical ω‐2 model under the following conditions: (1) the wavenumber 
slip distribution spectrum falls as the inverse of the wavenumber squared (k‐2), (2) the Fourier 
amplitudes of the slip velocity are independent of ω at high frequencies, and (3) the rupture velocity 
is constant. 

 In this study we choose to follow the approach by Hisada (2000) who proposes a more 
realistic model by introducing rupture velocity variations. According to this approach, the last two 
conditions cited above are modified. First the slip velocity is defined by the model of Kostrov, (1964) 
by superimposing triangles, and a variable rupture velocity is introduced. This rupture velocity 
variation is modeled in two dimensions, through a rupture time variation, over the entire rupture 
area according to a k‐2 model, which is recognized as the most plausible one among those tested by 
Hisada (2001): k‐1, k‐2 and k‐3. Thus, the rupture time of the subfault whose position (i,j) is given by: 

𝑇𝑇𝑑𝑑𝑖𝑖 = 𝐷𝐷𝑛𝑛𝑢𝑢𝑒𝑒(𝑑𝑑,𝑖𝑖)
𝑉𝑉𝑅𝑅

∗ (1 + 𝛥𝛥𝑇𝑇𝑅𝑅(𝑖𝑖, 𝑗𝑗))      (11) 

where 𝐷𝐷𝑛𝑛𝑛𝑛𝑐𝑐(𝑖𝑖, 𝑗𝑗) is the distance between the nucleation point of the rupture, and the subfault of 
position (i,j). 𝑉𝑉𝑅𝑅  is the average rupture velocity and 𝛥𝛥𝑇𝑇𝑅𝑅(𝑖𝑖, 𝑗𝑗) the rupture time variation, (expressed 
as a percentage) at the (i,j) position. 

Following the Hisada (2001) formulation, the amplitude spectrum of the rupture time 
variation on the rupture area is given by : 
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𝛥𝛥𝑇𝑇𝑘𝑘�𝑘𝑘𝑘𝑘,𝑘𝑘𝑦𝑦� = 1

�1+�� 𝑘𝑘𝑘𝑘
𝑘𝑘𝑒𝑒𝑘𝑘𝑘𝑘

�
2
+�

𝑘𝑘𝑦𝑦
𝑘𝑘𝑒𝑒𝑘𝑘𝑦𝑦

�
2
�
2
     (12) 

where 𝑘𝑘𝑓𝑓𝑇𝑇𝑘𝑘 et  𝑘𝑘𝑓𝑓𝑇𝑇𝑦𝑦 are the corner wavenumbers in the direction of the strike (along length) and the 
dip (along width) respectively. These parameters make it possible to control the characteristic 
dimensions of the rupture time perturbations 𝐷𝐷𝑖𝑖𝐷𝐷𝛥𝛥𝑇𝑇𝑅𝑅

𝑋𝑋  and 𝐷𝐷𝑖𝑖𝐷𝐷𝛥𝛥𝑇𝑇𝑅𝑅
𝑁𝑁  in the strike and dip directions, 

respectively: 

𝐷𝐷𝑖𝑖𝐷𝐷𝛥𝛥𝑇𝑇𝑅𝑅
(𝑋𝑋,𝑁𝑁) = 1

𝑘𝑘𝑐𝑐𝑇𝑇(𝑘𝑘,𝑦𝑦)
      (13) 

Each of these dimensions is fixed independently, randomly for each simulation, in an interval chosen 
by the user, proportional to the length and the width of the rupture area. As for the slip spectrum, 
the phase spectrum of the velocity perturbation is defined randomly. Finally, the rupture time 
perturbation map is obtained by inverse Fourier transform, and normalized so as not to exceed the 
percentage of the rupture velocity chosen by the user.  

The rupture propagates from the nucleation point, whose position is fixed by the user. The 
slip rate function on each subfault 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖 is defined according to the approach proposed by Hisada 
(2000) as a sum of triangular functions.  The slip duration (i.e. the rise time 𝜏𝜏𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟) is constant over the 
fault plane and constrained according to the Somerville et al., (1999) regressions : 

𝜏𝜏𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 = 2.03 × 10−9(𝑀𝑀0)1 3�      (15) 

where 𝑀𝑀0 is in dyne.cm. 

The absolute source time function is then obtained by summing each subfault contribution: 

𝑆𝑆𝑘𝑘𝑎𝑎𝑟𝑟(𝑡𝑡) = ∑ ∑ �𝛿𝛿�𝑡𝑡 − 𝑇𝑇𝑑𝑑𝑖𝑖�𝑆𝑆𝑑𝑑𝑖𝑖 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖�𝑁𝑁𝑊𝑊
𝑖𝑖=1

𝑁𝑁𝐿𝐿
𝑑𝑑=1     (16) 

where NL et NW are the subfault numbers in the strike and the dip direction respectively, 𝑆𝑆𝑑𝑑𝑖𝑖 
represent the values of the static slip, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖 is the slip rate function for the subfault (i,j).  

 

I.3. Time series generation and Green’s functions corrections 

The simulated displacement 𝑈𝑈(𝑟𝑟, 𝑡𝑡) at position 𝑟𝑟, is expressed numerically according to the 
discrete representation theorem (Aki & Richard, 2002) : 

𝑈𝑈(𝑟𝑟, 𝑡𝑡) = ∑ ∑ �𝑆𝑆𝑑𝑑𝑖𝑖 ∗ 𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖(𝑟𝑟, 𝑡𝑡)�𝑁𝑁𝑊𝑊
𝑖𝑖=1

𝑁𝑁𝐿𝐿
𝑑𝑑=1      (17) 

where 𝑆𝑆𝑑𝑑𝑖𝑖 represents the contribution of subfault (i,j) to the absolute source time function (equation 
16) and 𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖(𝑟𝑟, 𝑡𝑡) is the Green’s function associated to the same subfault. As mentioned above, in 
real applications of the EGF technique, the set of Green’s functions 𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖(𝑟𝑟, 𝑡𝑡)  is approximated using 
a limited number of small earthquake recordings. In case of a unique available Green’s function 
(called 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡)), several adjustments may be applied, described in the following. 
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The first adjustment consists in shifting 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡) by a time Δt(i,j), so as to incorporate the 
directivity effect of the rupture propagation. The Δt(i,j) values are defined as follows: 

𝛥𝛥𝑡𝑡(𝑖𝑖, 𝑗𝑗) =  
𝑅𝑅𝑆𝑆𝑘𝑘𝑆𝑆(𝑟𝑟��⃗ )
𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖 −𝑅𝑅𝑆𝑆𝑘𝑘𝑆𝑆(𝑟𝑟��⃗ )

𝑆𝑆𝐹𝐹0

𝑉𝑉𝑆𝑆
      (18) 

where 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑟𝑟)
𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖  represents the distance between the subfault (i,j) and the station at the position 𝑟𝑟 

considered and 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑟𝑟)
𝑆𝑆𝐹𝐹0  the distance between the Green’s function and the station at the position 𝑟𝑟. 

The adjusted Green function is then expressed as: 

𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖
𝑘𝑘𝑑𝑑𝑖𝑖,1 = 𝛿𝛿�𝑡𝑡 − 𝛥𝛥𝑡𝑡(𝑖𝑖, 𝑗𝑗)�𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡)    (19) 

 The second adjustment concerns the geometrical attenuation term. The distances between 

each subfault and the station �𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑟𝑟)
𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖 �  being different, the geometrical attenuation difference (in 

1/R) is taken into account by the correction of the Green’s function amplitude: 

𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖
𝑘𝑘𝑑𝑑𝑖𝑖,2 = 𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖

𝑘𝑘𝑑𝑑𝑖𝑖,1  ×
𝑅𝑅𝑆𝑆𝑘𝑘𝑆𝑆(𝑟𝑟��⃗ )
𝑆𝑆𝐹𝐹0

𝑅𝑅𝑆𝑆𝑘𝑘𝑆𝑆(𝑟𝑟��⃗ )
𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖

     (20) 

 

with 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑟𝑟)
𝑆𝑆𝐹𝐹0  the true distance between the Green’s function used and the station, and 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑟𝑟)

𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖  the 

distance between the subfault of position (i,j) and the station. 

 The third correction concerns the anelastic attenuation, still applied for the same distance 
difference than before. The anelastic attenuation, modelised by the quality factor Q(f), is frequency 
dependent. Then this correction is applied in the frequency domain: 

𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖
𝑘𝑘𝑑𝑑𝑖𝑖,3 = 𝑖𝑖𝑆𝑆𝑆𝑆𝑇𝑇�𝑆𝑆𝑆𝑆𝑇𝑇(𝑆𝑆𝐹𝐹𝑑𝑑𝑖𝑖

𝑘𝑘𝑑𝑑𝑖𝑖,2). 𝑒𝑒𝑒𝑒𝑒𝑒
−𝜋𝜋 𝑓𝑓 �𝑅𝑅𝑆𝑆𝑘𝑘𝑆𝑆(𝑟𝑟��⃗ )

𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖 −𝑅𝑅𝑆𝑆𝑘𝑘𝑆𝑆(𝑟𝑟��⃗ )
𝑆𝑆𝐹𝐹0 �

𝑄𝑄𝑄𝑄 𝑓𝑓𝛼𝛼 �   (21) 

with 𝑄𝑄(𝑓𝑓) = 𝑄𝑄𝑄𝑄 𝑓𝑓𝛼𝛼 the quality factor estimation for S wave, and f the frequency vector. 

Finally, due to the inherent complexity of the wave radiation patterns, the amount of energy 
radiated toward a target strongly depends on the subfault position. In case of a single available 
Green’s function some additional adjustments are then required. Such a correction is however not 
easy to implement since body waves are a complex combination of the near‐field, intermediate and 
far‐field  of P and S waves, all associated with different radiation patterns (equation 21, from Aki & 
Richard, 2002). Since the proposed tests are purely numerical, this influence will be tested by the use 
of several Green’s functions generated over the entire rupture area instead of using the unique 
Green’s function 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡). 

In order to highlight the impact of each of these effects, we perform ground motion simulations 
considering various approximations of equation 17. The first case is the most complete (referenced 
as the ideal case) and take into account all the listed adjustments. This ideal case is then degraded, 
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by removing one by one the different adjustments proposed, so as to judge their relative influence. 
We consider the following 4 cases: 

‐ Ideal case: this case represents the most realistic case and takes into account all the effects 
mentioned above. The set of Green’s functions 𝑆𝑆𝐹𝐹(𝑟𝑟, 𝑡𝑡) is represented by 45 Green’s functions 
spread over the fault plane (Figure 5) so as to take into account the complexity of the radiation 
pattern. The number of subfaults being greater than 45, each Green’s function is corrected, for 
the subfaults set on which it will be use, in the same way as the adjustments described in the 
case of a single Green’s function (equation 19 to 21). 

 
‐ No time shift case: we remove the time shift adjustment due to the travel time difference, which 

is at the origin of the directivity effect. The 45 numerical Green’s functions are thus corrected so 
that their arrival time are all the same. In this way, we are able to judge the importance of the 
directivity effect alone. 

 
‐ No radiation pattern case: the influence of the radiation pattern complexity is removed by 

replacing the set of 45 Green’s functions by the use of a unique Green’s function 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡), 
located at the center of the fault plane (Figure 5), on the whole rupture area. This Green’s 
function is still corrected from the geometric and anelastic attenuation when it is shifted from its 
original position, and not corrected from the time shift adjustment. 

 
‐ No correction case: we remove the last adjustments (i.e. the geometric and anelastic 

attenuation adjustment, equation 20 and 21). This last case consists in the convolution of the 
absolute source function (same at every distance and azimuth) with the unique and uncorrected 
Green’s function spread over the whole fault and is therefore comparable to a point source 
simulation. 

 

II Experiment description 

We choose to generate a M 6.0 event (i.e. M0=1.1220.1018 Nm), which is a typical target in a 
seismic risk analysis for the metropolitan French territory, corresponding roughly to the maximal 
observed magnitude in instrumental database (e.g. the Lambesc 1909 earthquake whose magnitude 
is estimated at 6, Baroux et al., 2003). The S wave velocity of the propagation medium is fixed at 
VS=3600 m/s. The rupture velocity is defined at the fixed value of VR=0.7*VS=2520 m/s (consistent 
with Heaton, 1990). The stress drop is defined at the fixed value of Δσ = 1.0 MPa (consistent with 
Allman & Shearer, 2009). The corner frequency is then derived from the parameters listed above 
(Mo, VS and Δσ) thanks to the equation 1, giving fc=0.17Hz. By fixing a ratio of 1.6 between the length 
and the width of the rupture area, its dimensions are derived thanks to the equations 2 and 3: 
L=12650m and W=7900m. In order to be able to generate broadband simulations up to about 50 Hz, 
the fault is divided into sub‐faults with dimensions SFdim = 25m (equation 6). 

We generate a population of 20 random static slip distributions (Figure 1) using the k‐2 model 
(equation 8). This population combined with the rupture kinematics results in a set of 20 rupture 
models which are used to compute synthetics at all the considered stations. According to the model 
proposed by Hisada (2001), rupture time perturbations are defined according to a k‐2 model 
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(equation 12). Since we are primarily interested on how the finite fault dimension influences the 
saturation of the ground motion peak values in the near field, we consider a smooth spatial variation 
of the rupture time. Then we have chosen to vary the characteristics dimensions of the rupture time 
variations between 30 and 70% of the L and W dimensions of the fault plane (equation 13), with 
rupture time variation values normalized so as not to exceed 10% (equation 11, Figure 2a). In this 
way we avoid to have too rude propagation front while maintaining a smooth variability (Figure 2b). 
The nucleation point is located at the bottom of the fault (consistent with Mai et al., 2005), at 
distances of 0.15*L along the strike direction and 0.8*W along the dip direction (Figure 2b). The 
generated absolute source functions exhibit a significant variability in the time domain (Figure 3a), 
but closely follow the ω‐2 model in the frequency domain (Aki, 1967; Brune, 1970) as imposed by the 
Hisada (2001) method (Figure 3b). 

The fault is defined as a plane with a strike of 0° and a dip of 60°, and extends between 1.6 
km and 8.4 km depth. The center of the rupture area is located at a depth of 5 km. The stations are 
placed all around the fault plane, every 22.5° of azimuth (from 0° to 337.5° N), with respect to the 
fault center. In each of these azimuths, stations are located at distances of 3, 6, 10, 20, 40 and 70 km 
from the projection of the rupture area at the surface (i.e. from a distance RJB=0 km).This leads to 96 
stations, located at 16 different azimuths and 6 different distances (Figure 4). 

The Green functions are numerically computed using the discrete wavenumber method 
(Bouchon, 1981), thanks to the development of Coutant (1989) modified so as to consider a 
frequency dependent quality factor. The 45 Green’s functions used for the ideal case are distributed 
over the entire rupture area (every 1.5 km along‐strike and along‐dip, Figure 5). Their focal 
mechanisms are defined as strike, dip and rake values of 0°, 60° and 0° respectively. The unique 
Green’s function 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡) used for the last two simulation cases (no radiation pattern and no 
correction cases) is positioned at the center of the rupture area, at a depth of 5km (Figure 5). 

We assume that the propagation medium is homogeneous half space, where VP=5000m/s 
and VS=3600m/s and the anelastic attenuation, defined through the quality factor is fixed at QP=50f0.2 
for P‐waves and QS=200f0.3 for S waves. 

Finally we extract the peak values in acceleration (PGA) and velocity (PGV) from the 
generated synthetics. Those results are also compared with point‐source stochastic simulations, 
incorporating saturation effect through the use of an effective distance (Atkinson & Silva, 2000). The 
stochastic simulations are generated according to the same parametrization as the one used in k‐2 
simulations: a M 6.0 event, a stress drop of 1.0 MPa, and an hypocentral distance equal to distance 
between the fault center and the station so as to facilitate the comparison with the no correction 
case. As for k‐2 simulations, we generate a set of 20 stochastic simulations per stations. The duration 
of each of the 20 simulations is imposed as equal to the duration measured on each k‐2 simulation. 
Two cases are considered for the stochastic simulations. The first one does not consider the 
saturation effect, whereas the second case uses an effective distance calculated based on the Boore 
& Thompson (2015) finite fault factor (FFF). We choose to fix the parameter which defines the energy 
distribution due to the radiation pattern at 1 (see equation 7 in Boore, 2003). In order to be 
consistent with the definition of geometric mean of the peak values, we also set to 1 the parameter 
of energy partition between the two horizontal components to 1 (see equation 7 in Boore, 2003). 

 



10 
 

III Results 

The stations being positioned along azimuths ranging from 0 to 360°, the energy will be 
distributed differently on the horizontal components depending on the station’s azimuth. Therefore 
the peak values are computed as the geometric mean of the horizontal components. This choice is 
also motivated by the comparison with stochastic simulations which do not allow to generate a 
vertical component, nor to distinguish between the two horizontal components. Futhermore the 
peak values are averaged over the 20 rupture realizations. The PGA and PGV are presented as 
function of the rupture distance (RRUP) (Figure 6 and 7, respectively). 

First, we observe that simulations in the “ideal case” exhibit a saturation effect. As described 
by Yenier & Atkinson (2014), as one get sufficiently close to the fault, the peak values cease to 
increase. This observation is valid for both PGA and PGV for all azimuth range (Figure 6 and 7). 

The second observation pertains the directivity effect. The rupture propagates preferentially 
to the North, but has also a westward component (see the nucleation position, Figure 2). The 
suppression of the time shift adjustment as defined in equation 19 (i.e. “no time shift case”) has the 
effect to remove the directivity effect. Then by comparing the “no time shift case” and the “ideal 
case” we observe an amplification of the PGA and the PGV values due to the directivity effect at 
azimuth N0° and N22.5° and from azimuth N270° to N337.5° (Figure 6 and 7). Conversely, the anti‐
directivity effect tends to decrease the peak values, but this phenomenon is less visible (see azimuths 
N90° to N180°). Note that the suppression of the time shift correction does not seem to have a 
significant influence on the saturation effect. 

Next we remove the influence of the radiation pattern complexity by the use of a unique 
Green’s function summed over the entire fault plane (i.e. “no radiation pattern case”). While the 
unique Green’s function is shifted from its original position, the anelastic and geometric attenuation 
adjustments are applied (equations 20 and 21), but we do not include any correction of the focal  
mechanism. The suppression of the radiation pattern influence leads to two observations. First, there 
is a sharp decrease in peak values in the nodal planes (Figure 8: “no radiation pattern case” 
compared with the “no time shift case”) of the unique Green’s function (see azimuths N45°, N135°, 
N225°, N247.5°, 292.5° and N315° in Figure 6. It is observed at all distances, but this effect is stronger 
at the lowest distances. On the contrary, for all the other azimuths, we observe an increase of the 
peak values between the PGA of the “no time shift case” and the “no radiation pattern case” 
reaching 2 for the closest stations. These observations are also made for PGV (Figure 5) although the 
influence is less pronounced. 

In the last case, the influence of the geometrical spreading and the anelastic attenuation is 
suppressed, and no correction is applied to the unique Green’s function (i.e. “no correction case”). By 
comparing the “no radiation pattern case” and the “no correction case”, we can conclude that the 
difference of attenuation due to the geometrical extension of the fault has a negligible impact for all 
azimuths (Figure 6 and 7). 

Ground motions computed using the k‐2 source model in the 4 cases analyzed above all 
exhibit a saturation effect. This means that a significant part of the saturation effect is not accounted 
for by any of the proposed adjustments, but is implicitly included in the “no correction case”. The “no 
correction case” is equivalent to a point source simulation because a single Green’s function (not 
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corrected) is convolved with the absolute source time function to obtain ground motion. The 
comparison between the “no correction case” and the stochastic point source simulations performed 
without finite‐fault factor (the one which do not incorporate saturation effects) clearly points out a 
ground motion saturation at short distance (Figures 6 and 7). In addition the “no correction case” 
and the stochastic simulations provides similar PGA and PGV attenuation curves at some azimuths if 
considering saturation in the stochastic simulation through the Boore & Thompson (2015) finite fault 
factor (referred to as BT15 FFF) (see in particular azimuths N00°, N180.0°, N202.5 and N337.5° in 
Figure 6). As explained in the following, the saturation effect observed in the no correction case is 
attributed to the depth of the Green’s function 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡). 

We then carry out additional simulations to investigate the sensitivity of the PGA and PGV 
attenuation curves to the depth of the Green’s function 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡). Three simulation cases are 
considered: one with the Green’s function located at the top of the fault, one with the Green’s 
function at the center of the fault plane (“no correction case”) and one with the Green’s function at 
the base of the fault plane (see positions on Figure 5). 

The results show a clear dependence, in the West direction (azimuth N270°), of the 
saturation effect to the depth of the Green’s function used: the deeper is the source, the more 
pronounced the saturation effect is. This observation is true for PGA and PGV (Figure 9 and 10). 

We associate the saturation phenomenon observed to the vertical rotation around the 
radiation pattern as the station is getting closer to the epicenter. Indeed, for close stations, the ray 
path is much more vertical as the source location is depth, station is then in a weaker azimuth of the 
radiation pattern (see the west propagating ray paths, Figure 11). The same phenomenon can also be 
observed for the east direction, but it will appear for even smaller distances because of the 
orientation of the source (see the east propagating ray paths, Figure 11).  

This last observation helps to explain that the saturation phenomenon observed in our k‐2 
simulations is stronger in the east direction (see azimuths N202.5° to N315° compared with azimuths 
N22.5° to NN135°, Figure 6 and 7). This difference is all the more important since it is visually 
amplified by the use of the RRUP distance definition. For stations located at the same RJB distance 
around the fault, the RRUP distance will indeed be lower in the west direction than the others due to 
the west dip of the fault. 

 

Conclusion 

 The realization of reliable ground motion simulation represents a major issue in seismic 
hazard assessment to overcome the lack of data, especially at distances which can be affected by the 
saturation effect. The observation that ground motion ceases to increase as we get closer to the 
source is known as the saturation effect (Yenier & Atkinson, 2014). This effect is known and 
empirically taken into account in the GMPEs, but also in the point source numerical simulations. Very 
few studies have attempted to identify the physical mechanisms behind this phenomenon. However 
a good understanding of this phenomenon should allow a better consideration of it and a better 
consideration of the ground motion variability at distances closed to the source.  
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The work of Roger & Perkins, (1996) and Anderson, (2000) are both consistent with the 
commonly accepted hypothesis that this effect is due to the geometrical extension of the fault. But, if 
only the geometrical extension of the fault was at the origin of this phenomenon, the geometric and 
anelastic attenuation adjustments should be sufficient to reproduce the majority of this 
phenomenon. However, we note in our simulations that these two influences are weak. 

In point source numerical simulations, Atkinson & Silva (2000) introduce the notion of 
effective distance. This distance is the one used in simulations, instead of the true hypocentral 
distance, in order to reproduce the geometrical extension of the fault. The effective distance is 
derived from a magnitude dependent parameter denominated by “pseudo depth”. This parameter is 
then reused by Yenier & Atkinson (2014) who use the denomination “saturation term” and by Boore 
& Thompson (2015) who call it “finite fault factor”. Our simulations showed that most of the 
saturation effect was reproduced by the no correction case (similar to a point source simulation). Our 
additional simulations highlight the role of the source depth, and more precisely the role of the 
vertical rotation of the station around the radiation pattern as this one is getting closer to the 
epicenter. That is why, we will prefer the original term of “pseudo depth” proposed by Atkinson & 
Silva (2000) to those proposed by Yenier & Atkinson (2014) and Boore & Thompson (2015). 
Moreover, the use of an effective distance does not make it possible to highlight the azimuthal 
variability of the ground motion at such distances. 

In general way, the radiation pattern is the major influence on the ground motion amplitude, 
and on the saturation effect. The radiation pattern is indeed the major parameter that constrains the 
azimuthal ground motion variability, but also allows explaining a part of the saturation effect. Its 
orientation makes it possible to explain that this phenomenon is seen in some azimuths more than in 
others. The influence of the depth can also be brought back to the focal mechanism since the 
modification of the depth modifies the way we see the focal mechanism from the surface, thus 
modifying the strength of the saturation phenomenon. 

In the context of extended fault simulation using a limited number of empirical Green’s 
functions, the radiation pattern correction on the whole rupture area represents the one that has the 
greatest impact on ground motion amplitude at short distances. Not taking this effect into account 
also exposes us to overestimations at short distances, and to strong misestimations near the nodal 
plane of the Green’s functions used. The dependence of the nearby stations ground motion, to the 
depth and the source orientation, also point to the importance of having quality metadata even on 
small magnitude seismic events.  
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FIGURES 

 

 

Figure 1: Realization of static slip distributions over the rupture area, generated from the k‐2 source 
model. 

 

 

Figure 2: a) Examples of distribution of the rupture time perturbations over the rupture area 
expressed as a percentage of the rupture time Tr computed for the average velocity (according to the 
k‐2 source model of Hisada, 2001). The characteristic dimensions of the perturbation are 0.7*L x 
0.4*W for simulation #1, 0.6*L x 0.6*W for simulation #2, 0.3*L x 0.7*W for simulation #3 and 0.3*L 
x 0.6*W for simulation #4. b) Representation of the rupture front propagation. Isolines of the rupture 
time are represented every 1/15 of the total propagation time. The nucleation position is 
represented by a black cross. 
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Figure 3: a) Realization of absolute source time functions generated by the k‐2 method (Hisada, 2001). 
b) The spectra of these absolute source time functions are compared with the ω‐2 reference model 
(black dashed line). 

 

 

Figure 4: General representation of the experiment geometry. The rupture area is represented in the 
center, and its surface projection is shown in red. Stations in the 16 azimuths are represented by blue 
triangles. 
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Figure 5: Representation of the fault geometry, its surface projection (in red), and the first four 
stations along the azimuth 90°N. The positions of the 45 Green’s functions distributed over the whole 
rupture area and used to compute ground motion in the ideal case and the no time shift case are 
represented by white dots. The unique Green’s function 𝑆𝑆𝐹𝐹0(𝑟𝑟, 𝑡𝑡), used for the other cases is located 
at the center of the fault plane and represented by a blue dot. The two positions of the Green’s 
functions used in the additional simulation case are represented by a green and a red dot at the top 
and the bottom of the fault plane respectively. The position of the rupture nucleation is indicated by 
a red cross. 
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Figure 6: Comparison between the peak ground acceleration values (PGA) calculated for the different 
cases described in section 1.3. The PGA is calculated as the geometric mean of the two horizontal 
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components. Each point represents the average value of 20 realizations of rupture scenarios. The 
azimuths range from 0° to 67.5°N (left), and from 180° to 247.5°N (right). 

Figure 6 (continued) : Azimuths from 90° to 157.5°N (left) and 270° to 337.5°N (right). 
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Figure 7 : Comparison between the peak ground velocity values (PGV) calculated for the different 
cases described in section 1.3. The PGA is calculated as the geometric mean of the two horizontal 
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components. Each point represents the average value of 20 realizations of rupture scenarios. The 
azimuths range from 0° to 67.5°N (left) and from 180° to 247.5°N (right). 
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Figure 7 (continued) : Azimuths from 90° to 157.5°N (left) and 270° to 337.5°N (right). 

 

 

Figure 8: Top view of the S‐wave radiation pattern. The radiation pattern is computed for a strike of 
0°, 60° of dip, and 0° of rake. The fault plane is represented by a gray rectangle. Only the upper part 
of the radiation pattern is represented (values for which the energy is radiated towards the surface).  
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Figure 9: Comparison of acceleration peak values (PGA) calculated with a unique Green’s function. 
Three cases are represented, the unique Green’s function is located at the top, at the center and at 
the bottom of the rupture area.  

 

Figure 10: Same as Figure 9 for PGV values. 

 

 

Figure 11: Representation of the S‐wave radiation pattern of the 3 Green’s functions used for the 
additional simulations. The stations are represented by triangles. Ray path between the 3 Green’s 
functions (GF) are represented in solid color lines (green for the top GF, blue for the center GF, and 
red for the bottom GF). The lights colors on the radiation pattern schematically represent the 
radiation pattern factor. 

 


