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A B S T R A C T

Describing accurately the creep behavior of concrete is of significant importance for the evaluation of the long-
term performance of structures. In this regard, a finer characterization of mesostructure effects and material
non-linearity provides very insightful information. In this work, the effects of aggregate shapes on the creep
response are studied using numerical simulations on 3D mesoscopic samples. The main focus is put on the
assessment of the representativeness of generated samples versus real specimens obtained by tomography. Several
mesostructures are generated by randomly distributing aggregates with different geometries, from simple spheres
to realistic ones extracted from tomography. Creep simulations with finite element (FE) and Fast Fourier
Transform (FFT) methods are then performed on different spatial refinements. Moreover, a classical linear
viscoelastic (VE) and a viscoelastic-viscoplastic (VE-VP) behavior able to reproduce non-recoverable strains are
adopted for describing the matrix behavior, to assess the relevance of a more accurate model. It is shown that
numerical samples generated with tomographic aggregates may be regarded as a good approximation of the real
specimen, while more ‘isotropic’ shapes, especially spherical, lead to significant differences at both local and
macroscopic levels. Results obtained with FE and FFT methods are very close, indicating that while FFT is well
adapted, FE remains attractive in this context. Finally, notable differences are observed between VE and VP
response due to the development of residual strains in the matrix and correspondingly more limited strain
redistribution, which indicates that VP-like models should be preferred to capture accurately the creep features at
mesoscale.
1. Introduction

Concrete structures designed in the context of nuclear activities (in
particular containment buildings and waste storage structures) have
generally to fulfill high levels of containment and protection against
radionuclide migration. The performance and durability of the material
is then of crucial importance. Long-term creep and induced development
of cracks are well known phenomena leading to a reduction of contain-
ment capabilities. Therefore its accurate characterization and modelling
contribute to a better description and prediction of the concrete behavior
and structure response.

At mesoscale, concrete is a heterogeneous material that may be
described at first glance by linear elastic aggregates distributed in a
mortar matrix ruled by a time-dependent behavior and concentrating the
viscoelastic mechanisms. Great efforts have been made in the past two
decades to estimate and analyze the mechanical and creep response of
concrete by explicitly accounting for its main constitutive phases. To this
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aim, analytical homogenization techniques can be applied to the com-
posite (including in some cases aggregate/matrix interfaces) to obtain
approximations of the macroscopic mechanical effective properties, see
e.g. Refs. [1–3]. However suchmethods, although versatile and relatively
easy to manipulate, suffer generally from a simple mesostructure repre-
sentation, in particular when the aggregate shapes are irregular and
non-convex. Besides, classical mean-field homogenization techniques are
approximate by nature, and the estimations deviate increasingly from the
‘real’ sought properties when the volume fraction of the inclusive phases
or properties contrast are high. Furthermore, they do not permit in
general to obtain accurate information on the local response of the ma-
terials, which are complex to capture especially when nonlinearities are
considered. Such analyses of the local fields can, however, provide
insight into both stress and strain redistribution mechanisms occurring
for non-linear mechanical behaviors, and for microcracking description.
On the other hand, 3D computational analysis represent an alternative
and promising way of capturing overall as well as local response of
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specimens, either numerically generated or experimentally obtained.
Following the increasing power of computers, they are more and more
used on numerical samples whose description and representation are
growingly accurate and realistic. Besides the classical finite element
method (FEM) to solve the problem, alternative techniques have
emerged as the FFT-based method to reduce the shortcomings of
computational costs and tricky meshing procedures (e.g. Refs. [4,5]).
Regarding concrete, these procedures have been successfully applied to
analyze for instance the effects of aggregate shapes and aggregate/matrix
interfaces (e.g. Refs. [6–8]), or the initiation and propagation of cracks
([9–11]) on numerically generated samples having different configura-
tions. In parallel, X-ray Computed Tomography have allowed obtaining
extremely accurate descriptions of the mesostructure (the fineness of the
details is only limited by the image resolution), which makes it possible
to examine the response of much more representative and complex
specimens (see e.g. Refs. [12,13]). Note that while such experimentally
obtained samples characterize almost perfectly the real material, gener-
ated mesostructures have the advantage to allow examining the effect of
some parameters that are impossible in practice to control independently
with experimental specimens, as the mineralogical nature (and their
mechanical properties), size, shape, spatial distribution etc. of aggregates
or inclusions. In this sense, the numerical procedures, once validated,
give the possibility to perform ‘virtual tests’ in a much easier way than
real experiments. On the other hand, the question of the representa-
tiveness of these fully generated mesostructures arises, and it is in general
relatively difficult to precisely evaluate it.

In this study, we investigate the mesoscopic response of numerically
generated samples of concrete assumed to be composed of a homoge-
neous viscoelastic mortar matrix in which are distributed elastic aggre-
gates of various size and shape subjected to creep loadings. Experimental
data on corresponding mesostructures are not available (and would be
hardly feasible), so that the comparative analysis is made on a purely
numerical basis. As it is not the focus of the paper, we also suppose that
all complex micromechanisms affecting creep in the cement paste can be
described at the mortar scale through a simple viscoelastic (possibly
coupled with plasticity) approach. The detailed effects of e.g. relative
humidity and temperature on creep phenomena are beyond the scope of
the study. Another simplifying hypothesis is that the interfaces between
matrix and aggregates are considered as perfectly bonded, as at the
mesoscale their influence is reported to be weak (see e.g. Refs. [8,14]).
Note that such hypothesis is no longer valid for mortar materials, i.e. at
microscale, since in this case the ITZ size could not be ignored with
respect to the aggregate dimensions (sand grains sizes range between
several hundreds of micrometers to several millimeters, while typical ITZ
size is around 20 μm), and correspondingly their impact becomes
non-negligible. It is also assumed that the material is not subjected to
damage, a hypothesis that experimental data justifies in a regime of basic
creep and moderate loadings. Loading rates of 20%–40% of the material
strength in compression were repeatedly shown to induce little to no
damage as indicated through the linearity of the creep behavior and
constancy of the Poisson's ratio (and absence of dilatant effects) [15] and
from acoustic emission measurements [16].

The main objective of the paper is then to examine and assess the
suitability of the obtained virtual samples and their construction meth-
odology to reproduce the behavior of real concretes, which is an
important aspect related to numerical generation procedures. Accord-
ingly, a special attention is paid to the effects of aggregate shapes on both
overall and local response. A related question is to quantify the level of
accuracy provided by different shapes of aggregates, from very simple
(sphere) to more complex ones (polyhedrons), up to ‘real’ tomographic
aggregates. To achieve this analysis, we propose to generate several
samples of virtual concrete with different aggregate shapes while keeping
the same volume fraction and size distribution, and to compare the re-
sults with those obtained with a real tomographic sample. Another point
is to study the effects of two different approaches to describe the creep
behavior, i.e. a linear viscoelastic model and a richer viscoelastic-
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viscoplastic one. The main difference between these two models lies in
the ability of the latter to reproduce irrecoverable strains appearing after
unloading, that may be expected to be of importance for complex loading
paths and the prediction of damage. Although numerical mesoscale ap-
proaches to concrete creep are commonly using linear viscoelastic
models [7], mechanisms specific to viscoplasticity such as in Ref. [17]
deserve further study. This aspect is interesting regarding the lower
computational costs and much simpler micromechanical analytical
treatment of the linear viscoelastic behavior. Finally, the simulations will
be performed with two numerical methods, namely the classical FEM and
the FFT-based method. The latter is deemed to be of greater efficiency for
solving problems on numerical periodic samples, while the former is
more versatile and can be applied on any types of structures. An inter-
esting aspect is then to assess the degree of accuracy and effectiveness of
these methods for viscoelastic problems on heterogeneous meso-
structures. The effects of the mesh fineness and grid resolution, and
boundary conditions for FEM, will also be studied.

The results obtained will be compared in terms of macroscopic strain,
per phase average strains and stresses evolutions, and stresses distribu-
tion in both phases in the case of a creep loading followed by recovery.
The distribution of a damage-like variable will also be investigated
through an index calculated from the local positive strains at the post-
processing stage.

2. Models and methods

2.1. Linear viscoelasticity and viscoelastic-viscoplastic model for creep

The models used in this study for reproducing the matrix behavior are
briefly described in this section. Note that the viscoplastic model is
constructed from the viscoelastic one by introducing additional terms for
expressing the viscoplastic strains. By this way, the same numerical
implementation serves for both linear viscoelastic and viscoplastic sim-
ulations, the former case obtained by simply disregarding the viscoplastic
strains. As mentioned above, the aggregates are assumed isotropic linear
elastic, with Young modulus and Poisson coefficient equal to 70 GPa and
0.3, respectively.

Linear viscoelasticity is expressed in a stress-based formulation as:

εve ¼ S0 : σ þ
Z t

0
ΔSðt � τÞ : σ ðτÞdτ (1)

ΔSðtÞ ¼
XN
n¼1

Snλnexpð�λntÞ (2)

with λn the inverse characteristic times, S0 the instantaneous compliance
tensor and Sn the delayed compliance tensors (which are assumed
isotropic and described in the following through their inverse, using the
corresponding Young's modulus En and Poisson's coefficient νve). Three
time scales are considered in the present model (N ¼ 3) considering
three temporal decades of interest in the applied loadings (1, 10, 100
days).

A large part of the basic creep strains in cementitious materials is not
recoverable (in particular long-term creep, and independently of ageing).
Some proposed mechanisms include sliding of C–S–H sheets, water
microdiffusion and/or microcracking (e.g. Refs. [16,18,19]). In order to
take into account these irrecoverable strains, we propose to introduce a
purely viscoplastic part in the formulation. A non-linear viscoelas-
tic-viscoplastic (VE-VP) model is then built by writing the following
simple strain decomposition, in a way similar to Darabi [20], itself a
particular model derived from the general Schapery models [21]:

εvevp ¼ εve þ εvp (3)

The viscoplastic model is taken of the Perzyna form:
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_εvp ¼ Γϕ
∂ϕ
∂σ ¼ _pn (4)
with Γ the viscoplastic fluidity parameter, ϕ the yield function and ϕ its
positive part; it is expressed with p the cumulated plastic strain and n the
flow direction tensor. A simple yield function with linear hardening is
taken for the purpose of the present work; it is expressed as:

ϕ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 þMI21

q
� σy

�
� Hp (5)

with I1 the first stress invariant, J2 the second invariant of the deviatoric
part of the stress tensor and σy , H and M material constants corre-
sponding respectively to the yield stress, the hardening modulus andM a
parameter linked to the irrecoverable creep “Poisson's coefficient”.

Both models have been calibrated based on a short term creep-
recovery test on cement paste by Parrott [22] due to its good quality of
transverse strain measurement; it yields directly the instantaneous elastic
properties as E ¼ 14 GPa, ν ¼ 0:242. The viscoelastic model has been
identified only on the creep phase while the VE-VP model is identified on
the whole strain response (see Fig. 1). The model parameters are given in
Table 1. Considering that only one test at a single stress level is available,
the identification is underdetermined. It is postulated for the present
example that σy ¼ 5MPa corresponding to the assumption that creep is
fully recoverable for approximately 15% of the compressive strength.
That hypothesis is sufficient to identify with a least squares procedure the
viscoelastic parameters on the recovery branch and then the combined
VE-VP parameters on the creep branch. Although results may differ
quantitatively, most of the following conclusions hold for any reasonable
non-zero value of the yield stress.

This model was finally formulated as a non-linear system of partial
differential equations, following in particular Crochon [23] for the
Fig. 1. Identification of the constitutive models.

Table 1
Material parameters identified for the constitutive models.

Param. VE-VP VE

λ1;E1 1 d�1, 20 GPa 1 d�1, 20.5 GPa
λ2;E2 0.1 d�1, 85 GPa 0.08 d�1, 14.5 GPa
λ3;E3 0.01 d�1, 100 GPa 0.01 d�1, 10 GPa
νve 0.11 0.12
Γ 7.10�6 d�1MPa�1 -
σy 5MPa -
H 7 GPa -
M 0.325 -
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integration of the viscoelastic part. This constitutive model was imple-
mented using the MFront tool (http://tfel.sourceforge.net/), which
allowed to automatically generate an efficient implicit integration pro-
cedure usable by both our FFT and FE solvers [24].
2.2. FFT-based and finite element-based integration of mechanical
boundary value problems

As mentioned in the Introduction, one objective of the study is to test
and apply FE and FFT-based numerical methods to solve the problem on
the heterogeneous mesostructures. The interest is to evaluate the level of
accuracy of both methods and their respective adequacy in the case of
complex mesostructures with non-linear viscoelastic-viscoplastic
behavior. In theory FFT-based solvers are more efficient for the hetero-
geneous mesostructures considered in this study, while FEM is more
flexible and can be used for any morphology and structure type (not only
Representative Volume Elements, RVE). However it suffers generally
from a higher computational cost and requires a tricky meshing pro-
cedure when unstructured meshes are involved (see e.g. Ref. [4]).

The FE code Cast3M (http://www-cast3m.cea.fr/) developed at the
French Atomic Energy Commission (CEA) is used to perform the FE
simulations. The direct solver is applied along with the modified Newton-
Raphson method, associated with a convergence acceleration procedure
which takes advantage of the three previous iteration results to estimate
the new strain increment.

FFT-based methods [25] allow solving numerically in an efficient
manner the problem of a heterogeneous unit-cell submitted to periodic
boundary conditions. In linear elasticity, and under imposed strains, the
mechanical problem can be formulated as:

8>>><
>>>:

divðσ ðxÞÞ ¼ 0
σ ðxÞ ¼ CðxÞ : ε ðxÞ
uðxÞ ¼ E :xþ u�ðxÞ
u�ðxÞ periodic on opposite boundaries
σ :n antiperiodic on opposite boundaries

(6)

with CðxÞ the stiffness tensor at each point of the unit-cell, E the imposed
macroscopic strains and u�ðxÞ the fluctuations of the displacement field.
This problem can be rewritten with the introduction of a homogeneous
reference medium of stiffness tensor C0 (Lippmann-Schwinger equation):

ε ðxÞ ¼ ��
Γ0�τ �ðxÞ þ E (7)

τ ðxÞ ¼ �
CðxÞ � C0

�
: ε ðxÞ (8)

with Γ0 the periodic Green operator associated to the reference medium
C0 and � representing the convolution product. The principle of solving
this problem using FFT-based methods can be summarized as follows:
first the polarization field τ is evaluated at each point x of the grid, then
the discrete (Fast) Fourier Transform (FFT) of this field is performed in
order to compute effectively the convolution product, and finally the
inverse Fourier transform is computed to obtain ε ðxÞ in the real space. In
the case of non-linear behaviors considered here, the stiffness CðxÞ is
straightforwardly replaced by the adequate tangent operator C*ðxÞ
(linearized problem) [26]. In the used FFT solver, AMITEX_FFTP [27]
(http://www.maisondelasimulation.fr/projects/amitex/html/) the
convergence acceleration technique used in FE code Cast3M is applied
advantageously to the classical fixed-point algorithm. For the problem
under consideration, these methods have strong benefits relatively to
finite element (FE) methods who suffer, as already mentioned above,
from a high numerical cost. The mesostructure being represented as a 3D
regular array of points (seen as “voxels”), the meshing step required for
FE, which may be tricky especially if periodicity of the samples is
required, is avoided entirely. It is therefore possible to perform direct
simulations on experimental geometries obtained from imaging (2D) and

http://tfel.sourceforge.net/
http://www-cast3m.cea.fr/
http://www.maisondelasimulation.fr/projects/amitex/html/


F. Bernachy-Barbe, B. Bary Finite Elements in Analysis and Design 156 (2019) 13–23
tomography (3D). At last, these methods are easily parallelized and allow
dealing with complexmechanical behaviors on fine grids with reasonable
computation times.

2.3. Mesostructure generation

The direct use of mesostructures obtained from tomographic images
for FFT computations is problematic because they are generally non-
periodic and edge effects arise due to “cut” features at the boundaries.
In order to get realistic mesostructures, it is proposed to extract real
aggregates from a tomographic image, measure their properties (the size
distribution here, but more refined methods can be conceived), and
generate a periodic RVE with such properties using the extracted
aggregate shapes. Note that alternative efficient approaches exist to
create numerically accurate random aggregate shapes, as for instance by
using spherical harmonic series combined with X-ray computed micro-
tomography (see Refs. [28,29]).

In practice, aggregates were obtained from the X-ray Computed To-
mography (X-CT) of a diameter 110mm cylindrical concrete sample,
obtained at BAM (Berlin, Germany), that was cropped to a cubic box of
size approximately 75mm and resampled (using trilinear interpolation)
to be of size 5113 voxels (Fig. 2 a.). After standard Gaussian filtering and
beam-hardening correction, this image was then segmented with a sim-
ple threshold on the grey levels. A series of morphological operations
(opening and closing) allowed to eliminate all aggregates of equivalent
radius equal or below 7 voxels (they are counted as matrix) while elim-
inating holes inside the aggregates and preserving as accurately as
Fig. 2. Illustration of the generation procedure for the aggregate meshes (a. raw X-
measurement, d. meshing of a simplified geometry).

Fig. 3. Five different mesostructure types (a. spheres, b. isotropic Voronoi polyedr
generated using tomographic aggregates, g. 3D view of the non-periodic segmented
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possible their shapes (Fig. 2 b.), in a way similar to Ref. [12]. A limitation
of such image processing techniques is the loss of some geometrical
features under the size of the structuring element (here a ball of radius 3
voxels, which corresponds to a physical size of approximately 0.44mm).
This mesostructure were used directly to perform FFT simulations (Fig. 3
g.). Aggregates were individually isolated by detecting the contiguous
regions obtained after a morphological erosion (to avoid counting
touching aggregates as one), eliminating aggregates cut at the edges of
the domain (which may create some bias). They were restored back to
their initial (approximate) geometry by performing the opposite
morphological dilation (Fig. 2 c.). They were then measured: the
resulting size distribution that was used for the last steps of the genera-
tion procedure is presented in Fig. 4; the total aggregate volume fraction
is 39.83%. Note that typically in standard concrete such concentration is
close to the one of coarse aggregates (i.e. gravel), while the total volume
fraction of particles including sand grains ranges generally between 65
and 70%. Considering around 40% of volume fraction of aggregates
dispersed in a mortar matrix appears then justified. Finally, the biggest
100 aggregates' surfaces were first finely meshed and their meshes were
coarsened to be of the order of 100–200 triangles for the meshes to be of
reasonable size, and stored as a library of “.stl” meshes (Fig. 2 d.).

The procedure for generating the mesostructure geometries and
subsequent meshes and “voxellized” images is detailed in Ref. [30]. It has
been applied to various problems relative to the concrete behavior at
mesoscale, including drying and carbonation [31], corrosion [32] and
analysis of matrix/aggregate interface effects [8]. It relies on the
open-source python library Combs implemented in the Computer-Aided
CT data, b. filtering and segmentation, c. voxel single aggregate extraction and

a, c. flattened Voronoi polyedra, d. e. and f. three “virtual concrete” samples
tomography used for direct FFT computations).



Fig. 4. Experimental sieve curve of aggregates measured using tomography, and
used for virtual sample generation (bin size of 1, radius expressed in voxels).

Fig. 5. Macroscopic strains as a function of time for a Voronoi “virtual concrete”
with different boundary conditions.
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Design code Salome (http://www.salome-platform.org) to produce both
geometry and meshes of the mesostructures. As mentioned, the influence
of the inclusions shape was studied through samples generated with
different aggregates: spheres, polyhedral convex aggregates obtained by
a classical Voronoi space decomposition, and the tomographic aggregates
described above (see Fig. 3). Further, another shape class was obtained
by modifying the initial Voronoi aggregates into flattened inclusions: an
aspect ratio of 4 was applied to all shapes along an axis randomly defined
before being placed. The corresponding particle shapes were termed as
‘anisotropic Voronoi’ in the following. As indicated, the aggregate vol-
ume fraction was imposed to the same value of 39.83% for all samples. To
assess the representativeness of the obtained samples, three realizations
were made for each aggregate shape.

The geometries were obtained by randomly distributing in a box the
aggregates of prescribed sizes and shapes. More precisely, the placement
of aggregates resulted from a random process where points defining the
gravity centers were arbitrarily determined in the box, and tests were
performed for verifying that the newly placed aggregates did not overlap
the already present. The placement procedure has been efficiently
improved for the convex aggregates by implementing the GJK [33] 3D
algorithm into Combs, which allowed to significantly reduce the
computation time of the particle to particle distances (see e.g. http://
www. dyn4j.org/2010/04/gjk-distance-closest-points). The periodicity
of the numerical samples were further imposed to meet FFT computation
requirements, and also to allow applying periodic boundary conditions in
FE simulations. Note that similar placement procedures have been
applied for generating concrete specimens with realistic aggregate
shapes, see e.g. Refs. [28,34]. The unstructured periodic meshes were
generated with triangular elements for surfaces (MeshGems-CADSurf)
and tetrahedral elements for volumes (MeshGems-Tetra) by making use
of the automatic meshing softwares developed by Distene (http://www.
meshgems.com). The number of linear tetrahedral elements in the
reference meshes (see the next section for a study on the effect of the
mesh refinement) ranged from 2.45� 106 to 2.58� 106 for the poly-
hedral aggregates and from 2.86� 106 to 2.9� 106 for the spherical
shapes. All mesostructures were generated following the same size dis-
tribution obtained from the tomography to eliminate this factor from the
present parametric study (Fig. 4).

3. Results

We present and analyze in this section the results obtained with the
different configurations of aggregate shapes, numerical methods and
matrix behaviors as considered in this study. The load as used in the
model calibration (Fig. 1) is a constant uniaxial stress (creep) σ11 ¼ �
17
8;91 MPa applied during 42 days followed by zero stress for 48 days,
discretized in 33 time steps for all the simulations.

3.1. Numerical aspects of the problem

3.1.1. FE boundary conditions
It is well known that the response of numerical samples which are not

true RVE depends on the applied boundary conditions (BC) (see e.g. Refs.
[4,35]). To evaluate the BC effects on the macroscopic behavior, we
analyze the FE response obtained on a particular sample with 3 classical
BC types: homogeneous strains (Kinematic Uniform Boundary Conditions
- KUBC), homogeneous stresses (Stress Uniform Boundary Conditions -
SUBC) and periodic BC (PBC) [35,36]. KUBC are applied by imposing to
the nodes belonging to the sample surfaces displacements corresponding
to a homogeneous macroscopic strain by appropriate relations, while the
external load is prescribed to be the creep stress. Likewise, PBC are set
through node-to-node displacement constraints imposed between the
two nodes located on the exact opposite positions on the sample faces.
Obviously, such BC are possible due to the periodic characteristics of the
generatedmeshes. In this case the FE problem size to solve is significantly
greater since these imposed relative displacements are integrated in the
matrix of the system as constrained relations.

The Fig. 5 shows the results in terms of macroscopic strains obtained
with a Voronoi mesostructure with the 3 different BC (note that for the
other shapes the results are analogous). We observe that SUBC and PBC
give close results, as already reported in Ref. [8] for similar materials,
whereas the response with KUBC differs muchmore; a strong discrepancy
between SUBC and KUBC simulations is then exhibited. We may antici-
pate from the results in linear elasticity in Ref. [37] that SUBC provides
more accurate results than KUBCwhen the matrix is more compliant than
the aggregate phase (this is the reverse when the matrix is stiffer).
Moreover, PBC are generally considered as a good compromise and
provide precise results with respect to the sought mechanical properties
(e.g. Refs. [35,37]). As the computation timewith PBC is almost twice the
one with SUBC, and given that both results are comparable, in the
following the FE simulations are analyzed only through SUBC.

3.1.2. Mesostructure discretization
We examine in this subsection the effect of the mesostructure spatial

discretization for the two numerical methods. Three different grid reso-
lutions (1273, 2553, 5113 voxels – odd sizes are faster in the used
implementation) for FFT calculations and three different mesh sizes
(0.96, 2.49 and 5.02� 106 elements) for FE simulations are compared.
Fig. 6 illustrates the refinement effects by showing a detail of the FE

http://www.salome-platform.org
http://www
http://www
http://dyn4j.org
http://www.meshgems.com
http://www.meshgems.com


Fig. 6. Top: details of three discretisations of a FE mesh with Voronoi isotropic polyedra (with the number of linear tetrahedral elements) and bottom: three dis-
cretisations of a FFT grid with realistic concrete aggregates (with voxel count).
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meshes (top) and of the grids (bottom) for the three sizes. The results in
terms of axial (i.e., in the direction of the creep loading) macroscopic
creep strain as a function of time are plotted in Fig. 7 a) for the FFT
calculations on the three virtual concrete mesostructures, and in Fig. 7 b)
for the FE simulations on a Voronoi aggregate mesostructure. Overall, we
observe the same effect of the refinement for the two computational
methods: refining the mesh leads to a slightly more compliant material. It
appears that in both cases the response is still slightly different for the
two higher refinements, indicating that, in theory, the discretization
fineness is not quite sufficient to consider the solutions as totally
‘converged’. However as the difference is very limited and the curves
comparable, the accuracy can be reasonably regarded as good. In the
following, the reference resolution will be 5113 voxels for the FFT, while
the reference number of elements in the FE meshes will range between
2.45� 106 and 2.9� 106 elements as explained above.

Concerning the representativeness of the generated samples, it can be
seen in Fig. 7 a) that the curves obtained for the three realizations of the
virtual concrete and for each grid resolution considered are very close.
This means that, at least for the macroscopic results examined here, the
mesostructures may reasonably be viewed as representative volume el-
ements. Note that for clarity reason, the FE results obtained with the
three realizations of the Voronoi samples are not shown, as they are very
similar to the ones provided with FFT calculations.
Fig. 7. a) Convergence of the axial creep response for three different refinement of t
Finite Element mesh refinements for an isotropic Voronoi microstructure.
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The computation time for solving the system on a standard Linux
workstation (128 Go RAM, 20 cores) with FEM ranges from 30min to
10 h for the meshes with 0.96 and 5.02� 106 elements, respectively,
while it takes from 15min to 14 h with FFT on the grids with 1273 and
5113 voxels. For the cases considered here, the computations times are
then of comparable orders of magnitude.

3.2. Creep response

The macroscopic response in terms of axial creep strains averaged for
the three realizations of the different aggregate shapes are summarized in
Fig. 8 a). It can be classically observed that more regular and ‘isotropic’
shapes (the extreme case being spherical aggregates) provide lower
“stiffness”, the highest “stiffness” being those of the realistic micro-
structures generated with real aggregates exhibiting non-convex and
flattened/elongated shapes with acute angles (referred to as “concrete” in
all figures). The response of microstructures with “anisotropic Voronoi
shapes” is then situated as expected between the “concrete” and the
“isotropic Voronoi shapes” ones. Note that the curve of the “concrete”
samples is very close to the one of the real sample obtained by tomog-
raphy, which proves the suitability and accuracy of the reconstructed
volumes from real aggregates. By contrast, the differences between the
“concrete” and sphere samples curves are important, highlighting the
he three realizations of the “virtual concrete” mesostructure in FFT and b) three



Fig. 8. a) Macroscopic axial strain for all the aggregate shapes with the VE-VP matrix model, and b) with the two models using spheres and “virtual concrete”
mesostructures.
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interest of accounting for precise aggregate shapes. It is worth
mentioning that the “reinforcing” effect of non-convex flattened or
acicular aggregate shapes is related to the stiffer behavior of the aggre-
gates compared to the matrix. The aggregates would be softer than the
matrix, the flattening effect would be to soften the overall material.

Following what was shown in the boundary condition study (Fig. 5),
it can also be observed that FE computations using SUBC are in good
agreement with FFT computations for all considered aggregate shapes.
Another interesting feature is the very good agreement between the FFT
direct computations on the aperiodic segmented tomography with the
generated mesostructures that are truly periodic (blue and purple
curves). This result demonstrates that edge effects due to the non-
periodic mesostructure of real tomographic images are of minor impor-
tance as far as macroscopic behavior is concerned, and for the conditions
(in particular phase contrasts) retained in this analysis.

Although identified on the same experimental data than the linear
viscoelastic model and providing a near identical creep response (Fig. 1),
the viscoelastic-viscoplastic model considered for the cementitious ma-
trix is non-linear in particular due to the flow stress threshold that has
been postulated; plasticity induces a modified stress redistribution be-
tween the matrix and aggregate phases relative to a linear viscoelastic
matrix behavior. It can be seen in Fig. 8 b) than the macroscopic response
is softer for a linear viscoelastic matrix than for the VE-VPmaterial model
for the two extreme aggregate shapes (similar results have been obtained
Fig. 9. a) Axial stress averages per phase for all the aggregate shapes (plus the matrix
creep phase, b) matrix average axial stress in the recovery phase (same color code).
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with the other shapes but are not shown here for clarity reasons). The VE-
VP model allows then the matrix to sustain comparable stress levels (see
Fig. 9) with slightly lower strain magnitude than the purely VE approach.
Obviously, the linear viscoelastic matrix provides a fully recoverable
creep behavior.

Volume average axial stress evolutions in both matrix and aggregates
phases are given in Fig. 9 a) during the creep phase. It can first be
concluded that FFT and FE computations provide very similar results on
this more local quantity. Besides, we observe that as expected the
magnitude of the stress is much higher in the aggregate phase than in the
matrix one, and that interestingly the effects of the irregularity in the
aggregate shapes is to increase this magnitude difference: the axial
stresses in matrix and aggregate phases are significantly closer for
spherical shape than for real aggregate shapes. The curves for the
different shapes are ordered as identified in Fig. 8 a) (i.e., the “sphere”
curve is followed by the “isotropic Voronoi”, then the “anisotropic Vor-
onoi” and finally the “concrete” one). Another aspect is that after the first
3–4 days following the application of the creep loading, the average axial
stress redistribution appears almost nonexistent in the case of the VE-VP
behavior, while in the purely VE case a non-negligible evolution takes
place, leading to a progressive increase in the stress magnitude difference
between matrix and aggregate phases. In the recovery phase, some small
discrepancy is noted between FE and FFT results although the ordering of
the different responses is preserved. At unloading (see Fig. 9 b), a “jump”
linear viscoelastic case for the “virtual concrete” and spherical shape) during the
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in tension is observed, due to the equilibrium occurring between the
elastic aggregate phase and the matrix having stress-free accumulated
creep strains. This tensile stress does not exceed 0.5MPa and 1MPa for
VE-VP and purely VE behavior, respectively, and rapidly decreases
especially in the VE-VP case.

Although there is necessarily zero residual stress at long-term for the
linear viscoelastic matrix, it can be observed that viscoplasticity induces
in most cases a small compressive residual average stress lower than
�0.1MPa in the matrix, though almost negligible for realistic aggregate
shapes. Interestingly, this residual stress field of approximately zero
average is highly heterogeneous and has a structure aligned with the
loading direction (see Fig. 10 b) and d)), exhibiting tensile bands that
may reach locally 1.5MPa. We can observe that these tensile bands are
located essentially between very close aggregates in the loading direc-
tion, while in the regions where matrix phase dominates, the axial re-
sidual stress become mostly negative. This straightforwardly results from
the elastic behavior of the aggregates in a plastically deformed matrix. In
can indeed be verified that the tensile residual stress zones (Fig. 10 b))
coincide with zones of higher cumulated plastic strains (Fig. 10 d)), in
turn resulting from higher magnitude of total stresses (Fig. 10 c)).
Clearly, as expected because of the stiffer behavior of aggregate phase,
the effect of a greater proximity of aggregates in the compression loading
direction is to increase and concentrate the compressive stresses in the
matrix between aggregates. Note that these areas of tensile residual stress
(corresponding to higher compression stress magnitude) may not
necessarily be associated to areas of preferential damage.

Indeed in the case of compression loading the initiation and propa-
gation of microcracking result mostly from tensile strains occurring
perpendicular to the global compressive direction. The regions confined
between close aggregates are not likely to be the best candidates for such
perpendicular tensile strains (see e.g. Ref. [38]). This aspect would
Fig. 10. Fields computed using FFT for a sample with isotropic Voronoi aggregates u
days (MPa), c) axial stresses at the end of the creep phase t¼ 42 days (MPa), d) cum
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deserve further investigations and will be the objective of a subsequent
specific study.

3.3. Local fields and damage index

As mentioned in the previous subsection, local stress and strain fields
are of interest regarding the occurrence of damage, as could be taken into
account using for example a Mazars law coupled to a creep model [39,
40]. Damage is not explicitly taken into account in the non-linear VE-VP
model but some insight about damage mechanisms can be brought by the
analysis of local fields.

Axial stress distributions per phase are plotted in Fig. 11 for several
aggregate shapes at the end of the simulated creep phase from FFT re-
sults. The results obtained with a purely linear viscoelastic matrix (VE)
for the “virtual concrete” are also reported. Note that in the case of FFT
the distributions are straightforwardly calculated from the values per
voxel, meaning these are volume-averaged quantities. It can be observed
that local fields in the aggregate phase are highly dependent on the
aggregate shape. Although aggregate volume distributions are identical,
the complexity of aggregate shapes induces differences in term of
dispersion of the stress fields. Irregular, non-convex and pointed shapes
result in large spreading of aggregate stresses, as in the case of “virtual
concrete” and anisotropic mesostructures, whose distributions appear
very close. Interestingly, the axial stress dispersion in virtual concrete is
also nearly the same for both VE-VP and VE models. By contrast,
“isotropic Voronoi” and, above all, “sphere” aggregate shapes show a
much narrower and quasi-symmetrical distribution, whose peak position
is then in line with the aggregate phase mean value reported in Fig. 9 a)
around�12.5MPa. This is not the case for the “anisotropic Voronoi” and
“concrete” distributions, which appear left-skewed with maximum value
ranging between�11 and�10MPa while the mean stress is calculated at
sing the VE-VP model: a) Aggregates positions, b) residual axial stresses at t¼ 90
ulated plastic strain at t¼ 90 days. The loading direction is vertical.



Fig. 11. Distribution of axial stresses obtained in aggregate and matrix phases with FFT for different shapes of aggregates at the end of the creep phase (42 days); the
results obtained with a purely linear viscoelastic matrix (VE) for the “virtual concrete” are also reported.
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about �13.5MPa. This indicates that a non-negligible fraction of the
aggregate phase sustains axial stresses significantly lower than this mean
stress.

On the other hand, no substantial difference is observed regarding the
matrix stress distributions using the VE-VP model, which appear rela-
tively narrow with few skewness. The linear viscoelastic model (VE)
shows however significantly different fields, with slightly more disperse
matrix stresses. Differences are essentially coming from the non-linear
nature (i.e., presence of plastic strains) of the VE-VP model. It is worth-
while noting that in the VE-VP case, providing the hypotheses of a
compression-induced microcracking initiation in the matrix phase
together with the suitability of approaches based on micromechanics and
stress fluctuations to estimate the compressive strength (see e.g. Refs.
[41–43]), the influence of the aggregate shape seems to be weak on
strength. Assuming a simplified spherical shape in such estimation
models appears then justified.

Comparing the results between FFT and FE methods, we find that
local fields agree relatively well as shown in Fig. 12, with the FFT dis-
tribution obtained directly from the voxel fields (as in Fig. 11) and FE one
with the finite element field weighted by the element volume, even
though the FFT and FE spatial discretization is significantly different. The
Fig. 12. Axial stress redistributions between the beginning (step 2) and the end of th
using FFT and FE methods.
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FE stress distributions in the matrix phase appear however more largely
spread out than the FFT ones; this may be explained by the finite element
sizes that are generally noticeably higher than the FFT voxels, implying
that one finite element provides less detailed information than one voxel.
On this Figure step 2 and step 17 correspond to 1 day of loading and the
end of the creep phase (42 days), respectively. The extent of stress
redistribution during the creep phase from step 2 to step 17 between
aggregate and matrix is also very small compared to viscoelasticity [40],
as was already shown with stress averages in Fig. 9.

We now examine briefly the results in light of an index illustrating in
a very simplified manner the cracking tendency. The widely used Mazars
model makes use of an equivalent strain for the computation of the
damage variable [44]. We assume that this equivalent strain can be used
as a scalar indicator of the severity of the applied loading in the matrix,
whose behavior is brittle with both tension and compression strength
much lower than the aggregate one. It takes the following form:

εMazars ¼
ffiffiffiffiffiffiffiffiffiffiffiX
i

ε2i
r

(9)

where the εi are the eigenvalues of the total strain tensor and εi their
e creep phase (step 17) in the matrix and the aggregates for the virtual concrete,



Fig. 13. Mazars equivalent strain distribution in the matrix for all the aggregate shapes at the end of the creep phase, for FE and FFT results.
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positive part. Note that the classical value of equivalent strain used as
threshold for damage initiation is around 10�4 for most concretes. This
threshold value is closely related to the tensile strength, while in
compression as considered in this study it is of less importance. The
behavior in case of compressive states of stresses is much more ductile
than in tension, and the damage propagation is then controlled by the
(positive) extension strains perpendicular to the compression direction.
Fig. 13 presents a comparison of the equivalent strain distributions in the
matrix for the different mesostructure shapes computed using FE and
FFT. The values used to compute this distribution are taken per voxel in
the case of FFT calculation and per Gauss integration point in the FE case.
It is important to notice that this equivalent strain cannot be rigorously
related to damage since crack initiation and propagation is accompanied
by substantial stress and strain redistributions, which are not taken into
account in our modelling. Accordingly, the results should be validated
against suitable experimental results of microcracking characterization.

Consistently with previous information on the strain fields, meso-
structures with spherical aggregates seem to show slightly higher Mazars
equivalent strains and could exhibit earlier damage compared to more
irregular aggregate shapes, which may be seen as counterintuitive. It is
therefore suspected that analytical estimates of mechanical properties
obtained for elastic spherical aggregates in linear viscoelastic matrices
would provide conservative evaluation of damage properties.

As this equivalent strain distribution is computed differently for FE
and FFT solution fields, moderate differences in the results are obtained.
Distributions are centered on the same values; differences are mostly
expected in the properties of the long distribution tail that is however of
importance since cracking will be initiated at these locations of higher
strains. As already mentioned, more advanced simulations with an ac-
curate description of fully matrix damage initiation and propagation (and
associated stress-strain redistribution) would be necessary to evaluate if
this difference is relevant. A regularization scheme for the used softening
law would be however a prerequisite to ensure mesh independence.

4. Conclusions

In this paper, the creep response of numerically generated 3D con-
crete samples composed of a homogeneous viscoelastic matrix with
randomly dispersed elastic aggregates of various size and shape has been
investigated. The focus has been put on the effects of aggregate shapes
(i.e., tomographic versus numerical convex aggregates) on both overall
and local response, the influence of the creep model (linear viscoelastic
versus viscoelastic-viscoplastic) and the impact of the numerical methods
(FEM versus FFT-based method) for solving the problem. Specifically, the
representativeness of the virtual samples and their corresponding
22
aggregate shape is analyzed by comparing their response with the one of
real concrete in terms of macroscopic strain, per phase average strain and
stress evolutions, and stresses and strains distribution in both phases in
the case of a creep loading followed by unloading. The important impact
of the shape of aggregate has been highlighted and quantified on both
macroscopic and microscopic results, justifying the interest to consider
accurate and realistic shapes for more precise analyses. In particular and
as expected, with respect to the real mesostructure, the more marked
differences are reported with spherical aggregates, whereas the response
of samples generated with tomographic aggregates is very close. The
discrepancies with the concrete specimen increase with, in the order,
flattened Voronoi aggregates, then isotropic ones. To sum up, numerical
samples constructed with tomographic aggregates may be regarded as a
very good approximation of real specimens, while more ‘isotropic’ and
convex shapes lead to softer and softer behavior and exhibit noticeable
macroscopic and local differences. This outcome regarding the influence
of purely numerical convex aggregates is more significant than in Refs.
[7,8], probably due to the more important phase contrast, to the different
volume fractions considered and also to more angular shapes.

The results obtained with FEM and FFT method are very close when
static uniform (SUBC) or periodic boundary conditions (PBC) are applied,
even with a relatively limited mesh size (i.e., the FE computation time
with SUBC is equal to about 2 h, compared to the times presented in
3.1.2). This means that, though FFT is particularly well adapted for the
proposed analysis, FEM remains in practice an interesting means to solve
problems on representative material volumes, providing the meshes are
carefully generated and of good quality. Regarding the response obtained
with linear viscoelastic and viscoplastic models, important differences are
reported as expected in the unloading stage due to the development of
residual strains in the VP case. The non-negligible disparities in the creep
stage are also attributed to this plastic strains development, which leads to
a different repartition of strains and stresses in particular in the matrix
phase. It has been observed that due to the stiffer behavior of aggregate
phase, a lower distance between aggregates in the compression loading
direction increases and concentrates the compressive stresses in the cor-
responding matrix region, leading to the development of plastic strains.

In the future, a damage model will be introduced in the matrix
formulation to investigate the microcracking initiation and propagation
in the mesoscopic samples subjected to various loadings, including
thermal and hydric ones. As the interfaces (ITZ) between aggregates and
mortar matrix have generally weaker mechanical properties than the
matrix, they will also be considered in the modelling to describe a
possible decohesion. In parallel, experiments based on Computed To-
mography will allow accurately characterizing the microcracking
development, and will serve to validate the models.
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